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Abstract—Three-dimensional carbon diamond-like phases consisting of sp3-hybridized atoms, obtained by
linking of carcasses of fullerene-like molecules, are studied by methods of molecular dynamics modeling. For
eight cubic and one hexagonal diamond-like phases on the basis of four types of fullerene-like molecules,
equilibrium configurations are found and the elastic constants are calculated. The results obtained by the
method of molecular dynamics are used for analytical calculations of the elastic characteristics of the dia-
mond-like phases with the cubic and hexagonal anisotropy. It is found that, for a certain choice of the dila-
tation axis, three of these phases have negative Poisson’s ratio, i.e., are partial auxetics. The variability of the
engineering elasticity coefficients (Young’s modulus, Poisson’s ratio, shear modulus, and bulk modulus) is
analyzed.
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1. INTRODUCTION
Carbon diamond-like phases (CDPs) consist of

carbon atoms each of which has four σ-bonds with
neighboring atoms, like in the diamond structure [1].
The lattice of such diamond-like phases is different
from the diamond lattice. The base for creation of dia-
mond-like phases may be various polymorphs of car-
bon: graphene, fullerene-like molecules, and carbon
tube structures. Diamond-like phases consisting of
fullerene-like molecules have been given the name
“fulleranes”; the material consisting of graphene
sheets, the name “graphane”; and the material con-
sisting of nanotubes, “tubulan” [1]. Beside nanodia-
monds [2], such structures attract much interest from
researchers. By now, several carbon diamond-like
phases, e.g., polymerized cubic fullerite C24 [3, 4] and
high-density carbon phase C8 [5], have been experi-
mentally synthesized and theoretically studied. In a
number of theoretical works, the characteristics of dif-
ferent diamond-like phases and their classification are
presented in considerable detail [6–9]. In [10], for the
first time, it was proposed to construct the nanodia-
mond phase of covalently bound polymerized nano-
tubes (4, 0). It was established by calculations that a
crystal of polymerized nanotubes must be a semicon-
ductor with a bandgap of 3.18 eV [10]. By methods of
molecular dynamics (MD), the structure of carbinoid

layers, carbinoid nanotubes, and carbinofullerenes
were studied and their basic characteristics were
obtained in [11]. The structural characteristics of crys-
tals obtained from polymorphs of graphene were stud-
ied in [12]. CDPs and their properties were studied
earlier in [13–15]. The equilibrium states of clusters of
fullerene-like molecules С24 and C48 were studied by
the MD method in [16, 17].

The most important application of CDPs is the use
of them as a covering material for various surfaces: in
biomedicine [18], for protection of materials and
devices from external actions [19], for wearable mate-
rials [20], and for antifriction coatings [21]. Such
materials can be produced much more easily and
cheaply than diamonds.

The analysis of the elastic properties of single-wall
carbon nanotubes has shown that they can have nega-
tive Poisson’s ratio [22–24]. Many anisotropic nano-
materials of different crystal systems (cubic, hexago-
nal, tetragonal, etc.) also exhibit negative Poisson’s
ratio upon stretching in certain directions [25–38]. At
the moment, there are more than four hundred mate-
rials known to have negative Poisson’s ratio (auxetics).
More than three hundred of such auxetics have cubic
anisotropy [25, 37]. Earlier, the analysis of the elastic
constants of some diamond-like phases and fullerite
was performed [39–42]. The elastic modules of single-

ATOMIC
CLUSTERS



PHYSICS OF THE SOLID STATE  Vol. 59  No. 4  2017

EQUILIBRIUM STRUCTURES OF CARBON DIAMOND-LIKE CLUSTERS 821

crystalline С60 were determined from measurements of
the speed of ultrasound and found to be on the order
of c11 ~ 15 GPa, c12 ~ 9 GPa, and c44 ~ 6 GPa [39]; their
relaxation contribution [40] and the temperature
behavior [41, 42] of their elastic moduli were also ana-
lyzed. The bulk moduli of diamond-like phases from
fullerene-like molecules were calculated in [13]. It was
shown that the bulk moduli vary from 141.2 to 350.5
GPa, which is smaller than the bulk modulus of cubic
diamond. The structural and energetic characteristics
of different diamond-like phases have been actively
investigated in recent years, but many their properties
remain insufficiently studied and require further
research.

In this paper, we consider diamond-like phases
with the cubic, hexagonal, and tetragonal anisotropy,
the equilibrium state of which is studied by the MD
method. The data obtained by the atomistic simula-
tion are used for the analysis of the elastic characteris-
tics.

2. METHODS OF SIMULATION

Stable CDPs were discussed in [1]; leaning upon
the computations presented in [1], in this paper, we
study diamond-like phases consisting of fullerene-like
molecules. According to [1, 13], the same fullerene
can be used to create different diamond-like phases,
because methods of linking of molecules may be dif-
ferent. The structures are named according to the
method of linking of two fullerenes. For instance, the
structure denoted by A is formed by linking with cova-
lent bonds and the structure B is obtained by uniting of
carbon atoms (Fig. 1). The initial parameters of the
diamond-like phases СА1, СА2, СА3, СА4, СА5,
СА6, CА7, СА8, СА9, and СВ are presented in [1,
13]. Fullerene-like molecules from which the struc-
tures under consideration are formed are presented in
Fig. 1a: С4, С6, С8, С16, С24, and C48. Eight of ten
CDPs with fullerene-like molecules considered here
(СА1, СА3, СА4, СА6, СА7, СА8, СА9, СВ) have
cubic anisotropy, the phase СА2 has hexagonal
anisotropy, and the phase СА5 has tetragonal anisot-
ropy [1].

To obtain equilibrium structures of diamond-like
phases and estimate their characteristics, we used the
LAMMPS software package for MD simulation [43],
in which the interatomic interaction is described by
the AIREBO potential [44]. In this potential, the
binding energy is defined as

 (1)
>

= −∑ ∑
( 1)

[ ( ) ( )],b R ij ij A ij

j j j

E V r B V r

where rij is the distance between atoms i and j,  is an
empiric function defined in [45], and VR and VA are the
functions responsible for attraction and repulsion. The
functions VR and VA are defined by the expressions

(2)

where the quantities D(e), S, β, R(e) and the function fc
were defined in [45].

This potential has shown good results in the simu-
lation of carbon and hydrocarbon structures, it repro-
duces well the properties of the covalent bond between
two carbon atoms, and is widely used to simulate sin-
gle- and multilayered graphene sheets [46, 47], crum-
pled graphene [48, 49], fullerenes [50], etc. The data
obtained with this potential are in a good agreement
with experimental results and ab initio calculations.

To obtain the equilibrium state of the diamond-like
phases under consideration, the minimization of the
energies with subsequent relaxation were performed.
The relaxation of the system was performed by means
of a Nosé–Hoover thermostat. Newton’s equations of
atomic motion were integrated by the fourth-order
Verlet algorithm. Then the compliance coefficients sij
and stiffness coefficients cij were calculated. To this
end, a small uniform strain with one nonzero compo-
nent was applied to the simulation cell and the result-
ing stresses were calculated. These stresses were sub-
stituted into Hooke’s law to calculate the sought-for
constants.
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Fig. 1. (a) Fullerene-like molecules C4, C6, C8, C16, C24,
and C48 (from left to right) and (b, c) two ways of linking
of fullerene-like molecules into a cluster.
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3. RESULTS OF SIMULATION

3.1. Equilibrium Structures

Examples of equilibrium phases from clusters of
diamond-like molecules can be found in [1, 13] and,
therefore, they are not presented here. Below, dia-
mond-like phases are described for the ten aforemen-
tioned structures by the method of relaxation to the
state with the minimum energy. To calculate the com-
pliance coefficients sij, a stress linearly increasing in
time, with one nonzero component, was applied to the
simulation cell and the resulting strains were deter-
mined. It turned out that, for strains smaller than 2%,
the stress–strain curves are practically linear; from the
slopes of these curves, the sought-for constants sij were
calculated from Hooke’s law.

For a cubic crystal, it is sufficient to calculate only
three compliance coefficients from the expression

(3)

Here we assume the correspondence εxx → ε1, εyy → ε2,
εzz → ε3, 2εyz → ε4, 2εxz → ε5, 2εxy → ε6, σxx → σ1,
σyy → σ2, σzz → σ3, σyz → σ4, σxz → σ5, σxy → σ6; s11,
s12, and s44 are the matrix compliance coefficients of a
cubic crystal. For hexagonal anisotropy, Hooke’s law
reads

(4)

where s11, s33, s44, s12, s13, and s66 = 2(s11 – s12) are the
matrix compliance coefficients of a hexagonal crystal.

The stiffness coefficients for phases with cubic
anisotropy were calculated with allowance for the
compliance coefficients as follows:
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and, for phases with hexagonal anisotropy, as

(6)

where s = s33(s11 + s12) – 2  > 0.

In a similar manner, to improve the obtained elas-
tic coefficients, a different method was applied: a
strain linearly increasing in time with one nonzero
component was applied to the simulation cell and the
resulting stresses were determined. The stiffness coef-
ficients were calculated and, from them, the compli-
ance coefficients. The comparison of the results
obtained by the different methods has shown that the
first method gives more adequate results. The differ-
ence between the results given by seemingly similar
methods can be explained by the fact that the CDPs
under consideration react differently to different
methods of loading. The parameters of more stable
CDPs can be considered by any of these methods.

The values obtained for diamond-like phases with
cubic anisotropy (СА3, СА4, СА6, СА7, СА8, СА9,
and СВ) are presented in Table 1. From the similar
simulation for hexagonal phase СА2, we have the fol-
lowing values of the compliance coefficients: s11 =
2.515 TPa–1, s33=1.92 TPa–1, s44=18.4 TPa–1, s12 =
0.0906 TPa–1, s13 = –0.3625 TPa–1, and s66 =
5.94 TPa–1. Using the relationship between the
compliance and stiffness coefficients, we obtain c11 =
409 GPa, c33 = 550 GPa, c44 = 54.4 GPa, c12 =
‒3.705 GPa, c13 = 76.5 GPa, and c66 = 168 GPa. The
deformation of the CA5 structure revealed its instabil-
ity. Even a small (within 0.01%) strain leads to restruc-
turing with the disruption of some bonds. Similarly
phase CA1 exhibited its low stability in dynamic con-
ditions. The elastic coefficients obtained for this phase
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Table 1. Compliance coefficients sij and stiffness coeffi-
cients cij for carbon diamond-like structures with cubic
anisotropy

CDP
s11, 

TPa–1

s44, 
TPa–1

s12, 
TPa–1

c11, 
GPa

c44, 
GPa

c12, 
GPa

СA3 1.87 2.496 −0.44 625 401 192
СA4 1.87 9.64 −0.437 624 104 190
СA6 0.948 8.66 −0.072 1068 115 87.8
СA7 8.12 3.64 3.82 455 262 370
СA8 1.67 5.91 −0.299 650 169 142
СA9 3.73 7.31 −0.90 316 137 101
СB 5.53 10 −2.0 306 99.9 174
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are not consistent with reality, and the obtainment of
consistent results requires additional studies.

3.2. Elastic Properties
On the basis of the values of the compliance coef-

ficients for CDPs with cubic or hexagonal anisotropy,
the variability of the elastic engineering coefficients
(Young’s modulus, Poisson’s ratio, shear modulus)
was analyzed. Young’s modulus, Poisson’s ratio, and
the shear modulus for anisotropic materials vary with
variation in the orientation of the axis of stretching
with respect to the crystallographic axes. In the case of
linear elasticity, Young’s modulus E(n) and Poisson’s
ratio ν(n, m) depend on the tensor compliance coeffi-
cients sijkl, the unit vector n in the direction of the axis
of stretching, and the unit vector m perpendicular to
the direction of stretching [51]:

(7)

(8)

The shear modulus G(n, m) is determined by the unit
vector n normal to the slip plane and the unit vector m
in the slip direction [51]:

(9)

Henceforward, the variability of the engineering
elastic coefficients will be described by three Euler’s
angles: ϕ, θ, and ψ.

The elasticity of cubic crystals is characterized by
three independent matrix compliance coefficients:
s11, s12, and s44. Then, Young’s modulus, Poisson’s
ratio, and the shear modulus can be written in the
form [37, 52]
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The combination of the compliance coefficients, Δ ≡
s11 – s12 – 0.5s44, is known as the anisotropy parameter
for cubic crystals, and A is Zener’s elastic anisotropy
ratio.

The analysis of Young’s modulus (10) enables one
to determine three extreme values [53] corresponding
to stretching in the directions [100], [110], and [111]:

(15)

(16)

(17)

The extreme values of Young’s modulus depend on the
sign of the anisotropy parameter Δ. For cubic crystals
with positive anisotropy, Δ > 0, from relationships
(15)–(17), we have E[111] > E[110] > E[100]. For cubic
crystals with negative anisotropy, Δ < 0, the same rela-
tionships imply opposite inequalities E[100] > E[110] >
E[111]. From the values of the elastic constants of equi-
librium structures with cubic anisotropy from carbon
diamond-like clusters, presented in Table 1, the
extreme values of Young’s modulus and values of the
anisotropy parameter Δ were determined (Table 2).
Three of the equilibrium diamond-like phases with a
cubic structure (СА4, СА6, and СА8) have negative
anisotropy, and four others have positive anisotropy.
Maximum Young’s coefficients were observed in the
phase СA6 (1055 GPa, Δ < 0) upon stretching in the
direction [100] and in the phase СА3 (860 GPa,
Δ > 0), in the direction [111]. Bold font in Table 2
emphasizes the maximum values of Young’s modulus.

Leaning upon the dimensionless parameters Π and
δ (see (13), (14)), all cubic crystals can be divided into
three types [37]: nonauxetics (Π > 1, δ > 0 and Π < 0,
δ < 0), partial auxetics (0 < Π < 1 for δ > 0 and δ < 0),
and complete auxetics (Π < 0, δ > 0 and Π > 1, δ < 0).
Nonauxetics have positive Poisson’s ratio for any ori-
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Table 2. Extreme values of the Young’s modulus and anisot-
ropy parameter Δ

CDP Δ, TPa–1 E[100], GPa E[110], GPa E[111], GPa

СA3 1.06 535 746 860
СA4 −2.51 535 320 282
СA6 −3.31 1055 384 317
СA7 9.85 123 313 644
СA8 −0.99 599 462 430
СA9 0.98 268 308 325
СB 2.53 181 234 260
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entation, and complete auxetics have negative Pois-
son’s ratio. Partial auxetics can have both positive and
negative Poisson’s ratios. Calculations of the dimen-
sionless parameters Π and δ show that two of the eight
considered equilibrium diamond-like structures with
cubic anisotropy, СА3 (Π = 0.83) and СА7 (Π =
0.739), can have negative Poisson’s ratio (Table 3),
i.e., these diamond-like phases are partial auxetics.
No complete auxetics have been found among the
given diamond-like structures. In addition to the
dimensionless parameters Π and δ, Table 3 presents
the global maximum and minimum values of Pois-
son’s ratio (νmax, νmin) and Poisson’s ratio averaged
over all directions, 〈ν〉. Minimum Poisson’s ratio is
observed in the equilibrium structure СА7 (νmin = –
0.4). This auxetic has a wide range of the Poisson’s
ratio (νmax – νmin = 1.54). Mean Poisson’s ratio 〈ν〉 for
all given crystalline materials proves to be positive and
ranging from 0.15 to 0.38. Let us also estimate Pois-
son’s ratio for some special orientations, defined by
the formulas

(18)

(19)

(20)

(21)

The last three numbers in brackets indicate the direc-
tions of stretching, and the first three numbers in
brackets indicate the direction of the lateral strain.
Poisson’s ratios can be expressed in terms of the
dimensionless parameters Π and δ:
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The consideration of these formulas with using ther-
modynamic restrictions Πδ > 2δ – 2 and 1 > Πδ > –2,
δ < 1.5 [37] shows that

for Π > 0 and 0 < δ < 1.5

for Π > 0 and δ < 0

for Π< 0 and δ < 0

for Π < 0 and 0 < δ < 1.5

As it is seen from Table 3, the values of Poisson’s ratio
for special orientations in equilibrium diamond-like
structures satisfy these inequalities. For structures
СА3 and СА7, negative values are observed for the
coefficient .

Figure 2 shows the auxeticity surfaces ν(ϕ, θ, ψ) =
0 for diamond-like phases СА3 and СА7, constructed
in the space of Euler’s angles with the periods Tϕ =
π/2, Tθ = 2π, and Tψ = π. For these phases, the aux-
eticity takes place inside these surfaces. From these
surfaces, one can determine Euler’s angles, i.e., the
directions of stretching for which negative Poisson’s
ratio will be observed. As we see from Fig. 2, the max-
imum auxeticity zone is inherent in the CA7 crystal-
line material.

δ Π −ν =
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( 1),
2
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− δ(111)[111]

(1.5 1).
3 2
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ν > ν > ν > ν(111)[111] [100],[001] [001],[110][1 10],[110] ,

ν > ν > ν > ν[100],[001] [001,[110] (111)[111] [1 10],[110].
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Table 3. Extreme values of Poisson’s ratio (global maxima and minima νmax, νmin for particular orientations ν[100],[001],
ν[001],[110], , and ν(111),[111]), Poisson’s ratio averaged over all direction, 〈ν〉, and dimensionless parameters Π and δ

CDP Π δ νmin νmax 〈ν〉 ν[100], [001] ν[001], [110] ν(111), [111]

СА3 0.83 0.57 −0.07 0.33 0.15 0.24 0.33 −0.07 0.07
СА4 −0.348 −1.34 0.14 0.54 0.32 0.23 0.14 0.54 0.36
СА6 −0.044 −3.49 0.03 0.66 0.31 0.08 0.03 0.66 0.37
СА7 0.739 1.21 −0.40 1.14 0.38 0.45 1.14 −0.40 0.23
СА8 −0.606 −0.59 0.14 0.37 0.24 0.18 0.14 0.37 0.27
СА9 1.840 0.26 0.13 0.28 0.21 0.24 0.28 0.13 0.19
СB 1.584 0.46 0.17 0.47 0.33 0.36 0.47 0.17 0.30

ν[1 10],[110]

ν[1 10],[110]
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The analysis of formula (12) for the shear modulus
makes it possible to determine the maximum and min-
imum values [52]:

(26)

(27)

Which of the extreme values of the shear modulus will
be maximal and which the minimal depends on the
value of Zener’s elastic anisotropy ratio A:

(28)

=1
44

1 ,G
s
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1 .
2( )

G
s s

− Δ≡ = +11 12

44 44

22 1 .s sA
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For cubic crystals with positive anisotropy Δ > 0 (or
A > 1), relationships (26) and (27) imply G1 > G2. For
cubic crystals with negative anisotropy Δ < 0 (or 0 <
A < 1), we have the opposite inequality: G1 < G2.
Table 4 presents the values of Zener’s elastic anisot-
ropy ratio A, extreme values of the shear modulus, and
the values of the bulk modulus defined by formula B =
(c11 + 2c12)/3. The maximum shear modulus is
observed in the diamond-like phase СA6 (490 GPа) at
an extreme value of G2. The minimum shear modulus
is observed in structure СA7 (G2 = 43 GPа). The max-
imum bulk modulus is observed in the equilibrium
structure СA6 (415 GPа), and the minimum bulk
modulus, in structure СА9 (173 GPa).

Fig. 2. Auxeticity surfaces of carbon diamond-like struc-
tures (a) СА3 and (b) СА7 with cubic anisotropy.

(a)

(b)

Fig. 3. (a) Surface of Poisson’s ratio and (b) auxeticity
curve in the space of two Euler’s angles for equilibrium
diamond-like structure СА2 with hexagonal anisotropy.

(a)

(b)
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For hexagonal crystals, Young’s modulus (7), Pois-
son’s ratio (8), and shear modulus (9) can be written in
the form [54]

(29)

(30)

(31)

Young's modulus, shear modulus, and Poisson’s ratio
under consideration are periodic functions of the
angular variables with the periods Tθ = Tψ = π. The
engineering elastic coefficients for hexagonal crys-
tals—in contrast to cubic crystals—depend on fewer
angles. T he Young’s modulus depends on only one
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Euler’s angle (θ), and the shear modulus and Pois-
son’s ratio depend on two angles (θ and ψ).

Figure 3a shows the surface of Poisson’s ratio for
the diamond-like phase СА2, which proves to be a
partial auxetic. The minimum value of Poisson’s ratio
is obtained upon stretching in the direction [010] and
is equal to νmin =  = –s12/s11 = –0.04.
Another extreme value of Poisson’s ratio obtained
upon stretching in the direction [010] is ν[100],[110] =
‒s13/s11 = 0.14. The maximum value of the Poisson’s
ratio (νmax = 0.67) is reached at θ = 0 and ψ = 42° and
138°. On stretching in the direction [001], the extreme
value of Poisson’s ratio is ν(001),[001] = –s13/s33 = 0.19.
Poisson’s ratio averaged over all directions, 〈ν〉, takes
the value of 0.25. Figure 3b shows the auxeticity curve
plotted by the formula

(32)

ν[00 1],[010]

+ − ψ + δ θ ψ θ =2 2 2 2
13 12 13 0(( )sin cos cos )sin 0.s s s

Table 4. Maximum and minimum values of shear modulus, Zener’s elastic anisotropy ratio A, and bulk modulus B

CDP A G1 = , GPa G2 = (2(s11 – s12))–1, GPa
B, GPa

Present work  [1, 8]  [13]

СА3 1.85 400 216 337 342 346.2
СА4 0.48 104 217 335 249 284.5
СА6 0.24 115 490 415 323 350.5
СА7 6.16 262 43 398 207 269.6
СА8 0.67 169 254 311 − 274.5
СА9 1.27 137 108 173 − 239.2
СB 1.50 100 66 218 − 277.6

−1
44s

Fig. 4. Variability of Young’s modulus of equilibrium dia-
mond-like structure СА2 with hexagonal anisotropy. Dots
mark extreme values of Young’s modulus.

Fig. 5. Surface of the shear modulus equilibrium diamond-
like structure СА2 with hexagonal anisotropy.
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The auxeticity zone is found inside the domain pre-
sented in the figure.

The variability of Young’s modulus for the dia-
mond-like structure CA2 is illustrated by Fig. 4, where
the extreme values of Young’s modulus are also pre-
sented. The maximum value of 521 GPa is reached
upon stretching in the direction [001]. The minimum
value of Young’s modulus, Emin = 181 GPa, is observed
for ψ = 46° and 134°.

The surface of the shear modulus for the diamond-
like phase СА2 is shown in Fig. 5. The shear modulus
varies from 54.4 GPa at θ = 0 and any ψ, which corre-
sponds to the slip plane (100), to 206 GPa at θ = π/2
and ψ = π/2, which corresponds to the slip plane (010)
in the direction [001]. The bulk modulus B = (2c11 +
c33 + 2c12 + 4c13)/9 for the diamond-like phase СА2 is
equal to 87.1 GPa. This value proves to be one of
smallest when comparing with the bulk coefficients of
diamond-like phases with cubic anisotropy (Table 4).

4. CONCLUSIONS
Equilibrium diamond-like phases СА1, СА2, СА3,

СА4, СА5, СА6, СА7, СА8, СА9, and СВ, obtained
by linking of fullerene-like molecules were studied by
the molecular dynamics method. Eight of these dia-
mond-like phases (СА1, СА3, СА4, СА6, СА7, СА8,
СА9, and СВ) are cubic. The structure of СА2 has
hexagonal anisotropy, and the structure of CA5 has
tetragonal anisotropy. The equilibrium structure СА5
proved to be unstable, the phase СА1 also has low sta-
bility, whereas all other phases are stable to a small
elastic strain. Calculations of stresses and elastic con-
stants made it possible to analyze other elastic charac-
teristics (Young’s modulus, Poisson’s ratio, the shear
modulus, and the bulk modulus) of diamond-like
phases on the basis of clusters of fullerene-like mole-
cules. It has been found the three of the ten diamond-
like phases considered—namely, СА2, СА3, and
СА7—are auxetics. Since their Poisson’s ratio is nega-
tive only in definite directions, these structures are
partial auxetics. CDPs are novel promising materials
of sp3-hybridized atoms, and this work contributes to
the study of their mechanical properties. The search
for auxetic materials is an important problem [23, 55–
58], because they can be used to develop composite
materials with specified elastic properties. In many
cases, anomalies of the elastic properties of materials

are connected with anomalies of their coefficient of
thermal expansion, which is supposed to be calculated
in subsequent works.

For comparison, Table 4 presents calculated values
of the bulk modulus for the same diamond-like
phases, calculated by semiempirical quantum
mechanical methods in [1, 8, 13]. We see a substantial
quantitative difference between those values and the
values of B obtained in the present work by the molec-
ular dynamics method, which apparently is explained
by the essential difference between the methods of cal-
culation.

To estimate the mechanical characteristics of the
diamond-like phases, obtained above and summa-
rized in Tables 1 and 4, Table 5 presents experimental
data for cubic diamond from [59–62]. From the com-
parison, we can see that the bulk modulus of cubic
diamond (∼440 GPa) exceeds the bulk coefficients of
all diamond-like phases considered here. The mini-
mum difference is observed with the bulk coefficients
of the phases CA3, CA6, and CA7. As to the stiffness
modulus c11, we observe a surprising proximity of its
values for the diamond-like phase CA6 and cubic dia-
mond (Tables 1 and 5).
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