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Abstract—A microscopic mechanism of the long-range order in two-dimensional space induced by random
local fields of crystal defects has been found. The impurity-induced effective anisotropy has been shown to
arise in the system due to anisotropic distribution of impurity-induced random local field directions in the
n-dimensional space of vector order parameter with the O(n) symmetry. The expression for the effective anisot-
ropy constant has been obtained. A weak anisotropy of the “easy axis” type transforms the X–Y model and the
Heisenberg model to the class of Ising models, and brings into long-range order existence in the system.
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1. INTRODUCTION
Minchau and Pelcovits [1] discovered the phenom-

enon of initiation of long range order in the two-
dimensional X–Y model at finite temperature resulting
from the action of collinear to each other local fields of
the “random local field” type defects. The direction of
the magnetization arising was perpendicular to the
direction of the local fields. Since a long-range order
is absent in a pure system at finite temperature, and
the Berezinskii–Kosterlitz–Thouless phase takes
place [2, 3], this phenomenon has been further named
the “random fields induced order” (RFIO) [4]. In [4]
this phenomenon was generalized to the Heisenberg
model. As the reason for RFIO occurrence, the viola-
tion of the continuous symmetry of the system was
indicated, but the microscopic mechanism of RFIO
has not been found yet.

It was shown in our preceding paper [5] that for
space dimensionality 2 < d < 4, the anisotropic distri-
bution of random local fields in the n-dimensional
space of the order parameter gave rise to the effective
anisotropy term (in the second order perturbation the-
ory in random field). Such an anisotropy tended to
align the order parameter perpendicularly to the pref-
erential direction of random local fields.

In this paper we demonstrate that a similar effect
takes place in the two-dimensional system as well. The
specific feature of two-dimensional models, as dis-
tinct from those considered in paper [5], is the lack of
the long-range order in a perfect system at finite tem-

perature. Hence, we must suppose the existence of the
long-range order initiated by the random fields and
solve the self-consistent problem.

2. ENERGY OF THE SYSTEM
OF CLASSICAL SPINS

The exchange interaction energy of n-component
localized spins  comprising the two-dimensional
lattice has the form

(1)

where  is the exchange integral for i-th and j-th
spins, and the summation is performed over the whole
spin lattice.

The energy of interaction between the spins and
defect-induced random local fields is

(2)

where the summation is performed over impurities
randomly located in the lattice sites, and the density of
random local fields h distribution in the spin space
(order parameter space) possesses the property

, which provides the lack of mean field in
an infinite system.

Assuming the presence of the uniaxial anisotropy
in the system, we represent its energy in the form

(3)1 The article was translated by the authors.
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where Keff is the effective anisotropy constant and  is
the i-th spin projection onto this given z-axis.

Switching to the continuous distribution of the
order parameter η, we introduce the inhomogeneous
exchange energy in the form [6]

 (4)

where D ~ Jb4, b is the interatomic distance, J is the
exchange integral reflecting the interaction of the
nearest neighbors, and η⊥(r) is the order parameter
η ~ Slb–2 component caused by the random local field
and orthogonal to the direction of the average order
parameter η0.

The energy of the random field h(r) interaction
with the order parameter η(r) is

(5)

where

(6)

With account of the notations introduced above,
the anisotropy energy (3) takes the form

(7)

3. EFFECTIVE ANISOTROPY

For a qualitative explanation of the cause for the
effective anisotropy let us consider the influence of
impurity-induced local field hl upon uniform distribu-
tion of the order parameter. For simplicity, we neglect
the longitudinal susceptibility of the system at tem-
peratures much lower than the temperature of mag-
netic ordering.

The component of the random field  perpendic-
ular to the η0 direction leads to a local deviation of the
order parameter and to the appearance of the orthog-
onal component η⊥(r). The result is a negative additive
to the energy of the ground state proportional to ( )2.
It is maximal in modulus when the η0 direction is per-
pendicular to the impurity-induced local field.

Let us find the expression for the anisotropy energy
in the case of arbitrary distribution of the directions of
the impurity-induced random fields. We represent the
order parameter in the linear in h approximation in the
form

(8)

where |η0|  |η⊥(r)|. The term proportional to η0 in the
expression for Wimp vanishes because of the function
ρ(h) parity.
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The quantity h⊥(r) may be represented by a sum

(9)

where n = η0/|η0|.
The Fourier component of the function η⊥(k) is

related to the Fourier component of the random field
h⊥(k):

(10)

where

(11)

In the Heisenberg model, the “easy plane” type
anisotropy is induced by local fields perpendicular to
this plane, therefore we need to use the susceptibility
component corresponding to the direction perpendic-
ular to both magnetization vector and the easy plane.

The quantity h⊥(k) is given by the expression

(12)

where N is the number of elementary cells. Then

(13)

and the energy Wimp (5) takes the form

(14)

The integration produces the factor Vδk, –k' . Ulti-
mately we have

(15)

Due to random distribution of impurities in the
coordinate space, the contribution different from zero
results from the summands with l = m. Therefore,
Eq. (15) yields

(16)

Here, x is the dimensionless concentration of impuri-
ties (the number of defects per a unit cell), and the
brackets 〈 〉 denote averaging over all impurities local
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fields. Going from summation over k to integration
over the Brillouin zone and introducing the notation

(17)

we get the volume density of the energy of interaction
between the order parameter and impurity-induced
random local fields

(18)

One can readily see that in the case of anisotropic dis-
tribution of random field directions, the second sum-
mand in square brackets in the right-hand side of
Eq. (18) describes anisotropy in the order parameter
space.

In particular, for the collinear orientation of ran-
dom fields, the volume density of the anisotropy
energy takes the form

(19)

where ϕ is the angle between the order parameter vec-
tor and the “hard magnetization” axis (impurity-
induced random local fields are collinear to this axis),
and S is the spin vector magnitude.

The self-consistency equation for the effective
anisotropy constant can be obtained from Eq. (19):

(20)

Within the logarithmic approximation, Eq. (20) gives

(21)

In the case of coplanar and isotropic in the selected
plane distribution of random fields in the Heisenberg
model the anisotropy energy volume density is

(22)

ϕ being the angle between the order parameter vector
and normal to the plane containing random field vec-
tors. In this instance the effective anisotropy constant
is negative and the self-consistency equation looks like

(23)

whereas the logarithmic approximation produces

(24)
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For small concentration of defects, the effective
anisotropy values deduced above exceed the critical
value [7]

(25)

by this is meant that the Imry–Ma inhomogeneous
state [8] cannot arise. Indeed, to follow the f luctua-
tions of the random field, the order parameter has to
deviate from the most favorable (from the point of
view of the anisotropy energy) direction. This leads to
an increase in the anisotropy energy. When such a
growth is not compensated by the gain in energy due to
the order parameter alignment with the f luctuations of
the random field, the Imry–Ma inhomogeneous state
becomes energetically unfavorable.

In the general case of anisotropic distribution of
random field directions, one should describe the given
anisotropy through the difference Δ between the max-
imum and minimum values of the expression 〈(nhl)2〉

as a function of the vector n direction. The resulting
expressions differ from Eqs. (20) and (21) by substitu-
tion of Δ for the quantity .

4. CONCLUSIONS
It follows from Eq. (19) that for the X–Y model the

collinear orientation of random local fields induces
the “easy axis” type anisotropy, the easy axis being
perpendicular to the random field direction. A weak
anisotropy of the “easy axis” type transforms the X–Y
model to the class of Ising models [9], that explains the
appearance of the long-range order at finite tempera-
ture [1]. For the Heisenberg model such an orientation
of random local fields induces the “easy plane” type
anisotropy. As the result, the Heisenberg model is
transformed to the class of X–Y models, and thus the
Berezinskii—Kosterlitz–Thouless transition occurs in
the system [9].

In the case of coplanar distribution of random local
field directions in the order parameter space in the
Heisenberg model, there arises an easy axis perpen-
dicular to the indicated plane. So the Heisenberg
model should be transformed to the class of Ising
models and the long-range ordering is easily under-
stood [4].

Generally, it is possible to state with assurance that
behavior of the system with the anisotropy induced by
the “random local field” type defects is equivalent to
behavior of the perfect system with the same weak
anisotropy, if the anisotropy constant magnitude
exceeds its critical value (25). In the opposite case, the
inhomogeneous Imry–Ma state arises in the system.
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