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Abstract—In this work, we consider an alternative implementation of the band structure unfolding method
within the framework of the density functional theory, which combines the advantages of the basis of local-
ized functions and plane waves. This approach has been used to analyze the electronic structure of the ordered
CuClxBr1 – x copper halide alloys and F0 center in MgO that enables us to reveal qualitatively the features
remaining hidden when using the standard supercell method, because of the complex band structure of sys-
tems with defects.
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1. INTRODUCTION
Theoretical methods of characterization of the

electronic structure in crystalline solids, based on spa-
tial periodicity, are currently applied for simulation of
not only perfect crystals, but systems with irregular
repeatability of the structural elements, such as point
defects, interfaces, superlattices, alloys, and others. In
this case, the required translation symmetry is artifi-
cially maintained due to the description of the struc-
ture via the unit cell expansion in the main crystal [1]
that results in the calculations using supercells. As a
result, the electron spectrum becomes strongly com-
plicated and acquires multiband behavior that
impedes its analysis, particularly from the point of
view of the changes caused by the perturbations that
violate the periodicity of the main crystal. On the
other hand, since the perturbations are generally sub-
jected to localized behavior, the complexity of the
electronic spectrum is mainly due to band structure
folding, which means one has the ability to study the
electronic structure of a complex crystal on the basis
of the translation symmetry of the main crystal. This
approach is called band structure unfolding and was
earlier considered in [2–6]. Actually, there is great
interest in theoretical investigations of band unfolding
when analyzing the properties of solid solutions [7–
10], surface states [11–13] and point defects in nano-
structures [14, 15].

The effective band structure obtained via unfolding
allows visualizing the effect of the translation symme-
try violation on the dispersion dependence E(k) and
assumes direct comparison with the angle-resolved
photoelectron spectroscopy data. The methods for

practical implementation of this approach proposed in
the literature are different in the type of the basis that
is used in the calculations of the electronic structure of
crystals. So, the plane wave basis is used in [3, 8–10,
13, 15], while the basis of functions localized at the
atoms is applied in [4–7, 11, 12, 14]. In this work, the
band unfolding is implemented for the basis of the
localized functions in the form of pseudoatomic orbit-
als (PAOs) [16–18]. The method, the results of the test
calculations for perfect silicon crystals, as well as an
analysis of the electronic structure of the ordered
CuClxBr1 – x copper halide alloys and a vacancy defect
(F0 center) in MgO, are presented below.

2. BAND UNFOLDING FOR PAO BASIS

In the discussion of the band unfolding method
applied to the lattices with the primitive cell (PC) and
extended cell (EC), it is convenient to use the designa-
tions from [8, 12]. A relationship between the transla-
tion vectors of a PC-lattice (ai, i = 1, 2, 3) and EC-lat-
tice (Ai) can be presented, as follows:

 (1)

where Mij is the nonsingular matrix with integer ele-
ments, and the magnitude ν = detM equals the EC-to-
PC volume ratio and the number of vectors ri, i = 1,…,
N, which can be used for completing the EC area by
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translation of PC [12]. By analogue, we can write for
the main vectors of the reciprocal PC- and EC-lattices

 (2)

As follows from (2), the points of PC- and EC- Brill-
ouin zones are related to each other by an expression 

 (3)

The wave vector value characterizes the properties of
the translation symmetry of ψnk or ψNK states. As an
example, we have for a PC-lattice

 (4)
where T(a) is the translation operator to a vector of the
EC-lattice (a = n1a1 + n2a2 + n3a3). Therefore, if the
translation symmetry of a PC-lattice is preserved after
any expansion, expression (4) will also be valid for ψNK
states, and the relationship (3) will describe the folding
of Enk bands of a PC-lattice into the Brillouin zone of
a EC-lattice (ENK), accompanied by the additional
degenerations of ENK bands in the points at the Brill-
ouin zone boundaries of the EC-lattice. If the transla-
tion symmetry of the PC-lattice built-in a EC-lattice
is broken, expression (4) for ψNK states is not valid. The
ψNK states can, however, include a part which obeys
this expression and can be obtained according to the
general idea of the band unfolding method via the pro-
jection onto the states with the translation symmetry
of k-point. For the purposes of this work, it is more
convenient to use the following expression for a
WKN(GK) weight [12]:

 (5)

In turn, the ENK band structure unfolded into the Bril-
louin zone of the PC-lattice can be presented using
the spectral function:

 (6)

Expression (5) is general, but the method for calculat-
ing A(k, E) depends on the representation of ψNK. For
the basis of the localized function, we have

 (7)

Here, ΦμK(r) are the basis Bloch functions con-
structed as the lattice sums of the localized φi(r) func-
tions centered at the atoms of the crystal at the posi-
tions τμ:

 (8)
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where Ω is the crystal volume. In this work, the pseu-
doatomic orbitals are used as φi(r) [16–18]. For calcu-
lation of the matrix Hamiltonian elements and overlap
integrals with nonorthogonal functions (8), it is con-
venient to use their representation as the Fourier series
in the reciprocal lattice:

 (9)

 (10)

Substituting (9) in (7) and then in (5) and implement-
ing the subsequent simple transformations, one can
obtain the expression for the state weights in the form:

 (11)

where

 (12)

Expressions (11) and (12) were used for further calcu-
lations. It is worth mentioning that Eq. (11) by ana-
logue with the formulas derived in [8, 13] for the plane
wave basis indicates that the band unfolding method
is, in fact, the Fourier filtering option applied to the
states that are described by ψNK functions.

3. CALCULATION PARAMETERS 
AND CRYSTAL STRUCTURES

The electronic structure was calculated using the
density functional theory (DFT) in the local approxi-
mation to describe the exchange effects and electronic
correlations (LDA) [19, 20], as well as by means of the
method of special points [21] to evaluate the electronic
density. To describe the electron–ion interaction, the
ab initio separable HGH-pseudopotentials were used
[22]. All cases involved the basis of localized pseudo-
atomic Si(ss, pp, dd), Cu(s, d), Cl(ss, pp, dd), Br(ss, pp,
dd), Mg(s, p, d), and O(s, p, d) SZ and DZ functions.
In the decompositions of the basic functions (9) and
(10), plane waves with energies to 16 Ry for silicon
crystal, 169 Ry for CuClxBr1 – x, and 184 Ry in the case
of MgO were taken into account.

The unfolding method was used for several cases of
the construction of a EC-lattice. To verify implemen-
tation, a perfect silicon crystal was considered, sub-
jected to a face-centered lattice with the basic transla-
tion vectors:

 (13)

The band structure was calculated for a PC-lattice (13)
and for two EC-lattices of silicon with the expanded
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cell, for which the matrices Mij in expression (1) were
determined as

 (14)

and correspond to four- and eight-fold PC expansion
(13). Moreover, an EC(4x) lattice becomes cubic with
eight atoms, whereas a EC(8x) one remains face-cen-
tered with 16 atoms. The electronic structure in copper
halide alloys was investigated on the basis of the
expanded cell constructed by simple expansion M[8x]

of the unit cell (13) and by the subsequent substitution
of the halogen atoms. To calculate the F0-center in
MgO, a 63-atom cell constructed by means of the
symmetry expansion M[8x] of a cubic cell with M[4x] was
used; i.e., M[32x] = M[4x]M[8x]. Before calculating the
electron spectra, the crystal structure was optimized
via LDA. For CuClxBr1 – x (x = 0.25, 0.50, and 0.75)
compounds the optimized lattice parameters were
taken from [23].

4. RESULTS AND DISCUSSION

Figure 1 displays the band structure of silicon for
two EC-lattice configurations with a superposed spec-
tral function calculated from the expression (6). As is
seen, the profile A(k, E) in its maximum values com-
pletely recovers all typical features of the band struc-
ture of a PC-lattice that reveals the full reservation of
the translation symmetry of a PC-lattice at simple
expansions of the unit cell in perfect crystal.
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As another example, the electronic structure of
CuClxBr1 – x alloy is considered, because it seems more
attractive from the point of view of the band unfolding
application. Copper halides are the direct-gap semi-
conductors with the bandgap width Eg of about 3 eV
and are of interest in optoelectronics [24, 25]. We have
previously demonstrated an ability to noticeably
increase the accuracy of the calculations of Eg for these
compounds by means of DFT, using the exchange
potential TB09 [23]. In this work, we focus on the
analysis of the spectral function, and all calculations
were thus conducted using LDA. 

 Figures 2a and 2b display the band structures of
CuBr and CuCl perfect crystals and are taken for the
further analysis of the bands of alloys. Copper halides
exhibit the qualitatively similar band structure with the
valence band composed of three bands of allowed
states which correspond to s- and p-states of halogen
and d-states of copper in order of their increasing
energy. Therefore, p–d-hybridization effects play
important roles in the formation of two upper valence
bands. We also mention that due to the different elec-
tronic structure of the halide atoms the energy levels of
the valence s- and p-bands in CuCl are located lower
than in CuBr by a value of 0.5 to 1.0 eV, while the free
levels in CuCl with the predominant contribution of
Cl d-orbitals are higher, and this difference is on the
order of 1.0 eV at the Γ point.

 Figures 2c–2e show the spectral functions of
CuClxBr1 – x alloys. As is seen, the translation symme-
try of a PC-lattice is most preserved for alloy in the
sense of (6), and its violations appear in the band rup-
tures typical for such representations of the electronic

Fig. 1. Spectral function of silicon: (a) EC(4x) and (b) EC(8x). The dark color shows the bands with a maximum weight, and the
thin lines correspond to the bands with a zero weight.
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structure. In common, the subsequent substitution of
the band structure of CuBr with that of CuCl can be
observed in the series CuClxBr1 – x, which is due to the
increasing chlorine atom concentration. For the low-
est s-bands of halogen the changes are the most obvi-
ous; where the long order for the chlorine atoms man-
ifests itself at x = 0.25 and then at x = 0.75 the s-band
of the chlorine atoms is almost completely recovered.
Herewith, the behavior and location of s-bands allows
arguing that there are no additional interactions of s-
states of different halogen atoms during the formation
of the solution or they are too small to induce the
noticeable repulsion of levels. 

The unfolded band structure is the most complex
in the range of the valence p-states, where it looks like
the superposition of valence p-bands in perfect crys-
tals for all considered x values. The typical for the

defect crystals a rupture of the p-bands with high con-
tribution of the chlorine atom states is observed for
alloy with x = 0.25 toward the direction Γ–X, but for
x = 0.5 and 0.75 the dispersion dependences are
smooth enough. It is seen that the compositional
changes in the electronic structure in the p-bands of
halides are qualitatively different from those consid-
ered above for s-states. This is due to the effect of the
p–d-hybridization, which noticeably smooths the
perturbations caused by variation in the atomic com-
position.

The unfolded band structure of CuClxBr1 – x in the
d-bands of copper accurately repeats all features of the
d-bands in perfect copper crystals at all x values, which
is due to the preservation of the initial translation sym-
metry in the cationic sublattice of alloys. In this case,
the influence of the changes in the composition, how-

Fig. 2. Band structure for (a) CuBr and (b) CuCl (the band gap is marked with gray), and spectral function of CuClxBr1 – x for
x = 0.25 (c), 0.50 (d), and 0.75 (e).
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ever, can be revealed, which is in the emergence of the
satellite bands in the center of gravity of the d-bands in
copper. As was previously observed, these states can be
attributed to the change in the p–d interactions, when
varying the Cl atom content in the anionic sublattice. 

 Figure 3a depicts the band structure of MgO with
neutral oxygen vacancy defect (F0), where the origin
of the energy scale is superposed with the top of the p-
band of the oxygen atoms for ease of analysis and fur-
ther comparison with unperturbed crystal. The
valence band contains 125 subbands, among which
124 correspond to s- and p-bands of oxygen and
exhibit the complex miniband behavior that is induced
by the effect of the multiple band folding of the perfect
crystal. The main feature is the defect band of F0-cen-
ter with an energy of 2.5 eV relative to the top of the
valence band, and it is characterized by vanishing dis-
persion, which means an isolated and strongly local-
ized behavior of the electronic states. The results of the
calculations are in good agreement with the recent cal-
culations in the localized basis [26].

 The energy bands of the perfect crystal with a
64-atom cell and of the appropriate defect crystal with
the unit oxygen vacancy, unfolded in the Brillouin
zone of a face-centered PC-lattice, are shown in

Fig. 4. As is seen, the greatest weight of the F0-center
band is observed at the Γ point that proves the above
conclusion. The main advantage of the unfolding
method is in the capability it allows to monitor the
changes in the electronic structure of the perfect crys-
tal, caused by perturbation. For system MgO[F0]
(Fig. 4b), it is obvious that the lowest s-band is com-
pletely recovered at the unfolding, exhibiting no visual
ruptures or shifts, which indicates the absence of the
considerable perturbations of the electronic states in
this energy range. This feature can also be explained by
the charge density distribution in the vicinity of the
oxygen vacancy, which is subjected to a quasi-spheri-
cal shape (Fig. 3b), although being diffusive in com-
parison with the s-electron charge distribution of the
neighboring oxygen atoms. 

It is worth mentioning that the lattice strains in the
vicinity of the F0 defect are quite minor. Indeed, in
accordance with the optimization results, the shifts of
the nearest magnesium atoms from the vacancy center
are within 0.6% of the anion–cation bond length in
the defect-free MgO. The comparatively small viola-
tion of the crystal structure explains the reproduction
of the characteristics of the low valence band in MgO,
which is formed by the deeply lying O 2s-character.
The more pronounced changes are observed for the

Fig. 3. (a) Band structure of MgO[F 0] and (b) electronic density: the full valence one (at the top) and the partial one from s-bands
of oxygen and F0-center (at the bottom).
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upper valence bands with the O 2p-feature. The rup-
tures of bands, as well as their blurs, are over the
energy range from –5 to 0 eV (Fig. 4b) due to the
change in the interaction behavior in the MgO oxygen
sub-system. Finally, the spectrum in the conductivity
band is in fact the superposition of the states of perfect
crystal and of the discrete spectrum of the free F0 cen-
ter states, which modify the band structure of the per-
fect crystal in the range of 5 to 10 eV.

5. CONCLUSIONS

In this work we obtained the band structure
unfolding formula that combines the advantages of the
basis of the localized functions and plane waves,
unlike the previously proposed analogues. The validity
of the expression was demonstrated by an example of a
perfect silicon lattice for different four- and eight-fold
expansions of the unit cell. The application of the
band unfolding method for copper halide alloys and
for MgO crystal with a vacancy defect enabled us to
analyze the changes in the energy spectra of the con-
sidered compounds and to reveal the features which
are not seen when studying electronic states of the sys-
tems with complex composition and structure via the
standard methods.
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