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1. INTRODUCTION 

At present, the interpretation of electron magnetic
resonance (EMR) spectra of magnetic nanoparticles is
a difficult problem [1]. The reasons are the incom�
pleteness of the EMR theory of such objects and a sig�
nificant inhomogeneity of the internal structure of
nanoparticles and systems on their basis. As a result, in
many publications, the EMR spectra of magnetic
nanoparticles are described qualitatively with the sim�
plest parameters: the effective resonance field (or the
effective g�factor) and the line width determined by
the peak�to�peak method. However, for comparing
the results of the analysis of nanoparticles with close
chemical compositions and sizes but obtained in dif�
ferent laboratories or by different methods in the same
laboratory, a more detailed quantitative description of
the EMR line shape is necessary. 

The existing theoretical approaches [1–3] to the
analysis of the EMR spectra of magnetic nanoparticles
are based on the adaptation of the classical theory of
ferromagnetic resonance of single�domain particles
with a collinear internal magnetic structure [4] for the
case of strong thermal fluctuations of the direction of
the total magnetic moment, which are typical of
superparamagnetic nanoparticles above the blocking
temperature [5]. In the approach described in [1], the
inclusion of superparamagnetic fluctuations in the
analysis leads to the necessity of solving the Fokker–
Planck equation. In [2, 3], the authors solved the Lan�

dau–Lifschitz–Gilbert equation under different
assumptions on the influence of superparamagnetic
fluctuations on the magnetic parameters of particles.
In [6], the effects of quantization of the magnetic
moment of a nanoparticle additionally were taken into
account. 

However, the methods used for the calculation of
EMR spectra of magnetic nanoparticles, described in
literature [1–3, 6], have not been widely accepted yet
for a number of reasons. In particular, their imple�
mentation requires to choose a theoretical model of
calculation, to correctly specify the ranges of model
parameters, which are not always known from the
experiment, to solve a system of differential equations,
and to perform a procedure of multiparametric fitting
of the experimental and theoretical spectra. Solving
this problem is often complicated by an extremely
large width and complex shape of the EMR spectra of
magnetic nanoparticles, which additionally compli�
cates the unique choice of parameters of the theoreti�
cal model. 

In this work, a relatively simple method has been
proposed for the quantitative line shape analysis of
EMR spectra of magnetic nanoparticles. In particular,
this method employs formulas—well�known in EMR
spectroscopy—for calculating the spectra of polycrys�
tals with anisotropic magnetic centers, which are the
superposition of the contributions from individual dif�
ferently oriented crystallites. However, in contrast to
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the standard approach, the line shape of an individual
contribution is specified by means of a Tsallis function
[7, 8]. The application of the Tsallis functions enables
one—in addition to the anisotropy of the resonance
field and EMR line width—to use the possible line
shape anisotropy of an individual component of an
inhomogeneously broadened EMR spectrum. The
proposed method can help many researchers to obtain
quantitative line�shape characteristics of complex
EMR spectra of magnetic nanoparticles, convenient
for practical use. 

2. “POLYCRYSTALLINE” FORM 
OF THE EMR LINE 

OF SUPERPARAMAGNETIC 
NANOPARTICLES 

The EMR spectra of paramagnetic centers charac�
terized by an anisotropic g�factor (g�tensor) have a
typical “polycrystalline” form [9]. In a system of ran�
domly oriented ellipsoidal superparamagnetic nano�
particles, each particle is characterized by the anisot�
ropy of the resonance field HR, which can be converted
into the g�factor by the formula 

(1)

where He is the resonance field for a free electron. In
the simplest case (without regard for superparamag�
netic fluctuations), the g�tensor of a particle can be
obtained, e.g., from Kittel’s formula [4]. Of course,
superparamagnetic fluctuations can change the
parameters of the g�tensor of an individual particle but
the resulting EMR spectrum of the system of ran�
domly oriented nanoparticles should retain the “poly�
crystalline” form. In this case, for simulating the spec�
trum of a system of randomly oriented superparamag�
netic nanoparticles, one may try to apply formulas that
are traditionally used for paramagnetic anisotropic
centers. The formulas for calculating the EMR spec�
trum can be written in the form [9] 

(2)

where S(H – HR) is the resonance line (the derivative
of the absorption) for an individual nanoparticle and gp

is a factor characterizing the anisotropy of the transi�
tion probability. 

Having chosen the Cartesian coordinates with the
axes directed along the principal axes of the ellipsoid
of a particle, one can write the formula for the g�factor
of the particles as [9] 

(3)

where li (i = x, y, z) are the direction cosines of the
external magnetic field H with respect to the axes of
the Cartesian coordinates. 
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The parameter gp for the transition probability can
be written in the form [9, 10]

(4)

(5)

As was shown in [9], the quantity gp in (4) can be
replaced within ~1% with 

(6)

Considering the magnetic moment of a nanoparticle
as a “microspin,” i.e., assuming a collinear magnetic
structure inside the particle, one may expect that for�
mulas (3) and (6), which were obtained for paramag�
netic centers, must hold for nanoparticles as well. 

In addition to the anisotropy of the g�factor, the
analysis of polycrystalline EMR spectra sometimes
takes into account the anisotropy of the line width [11]: 

(7)

The similarity of formulas (3) and (7) suggests that the
principal axes of the tensors describing the anisotropy
of the g�factor and the line widths coincide. Moreover,
the dependence (7) itself is caused by inhomogeneous
broadening [11]. 

The shape of an individual line S(H – HR) in (2) is
usually chosen Gaussian or Lorentzian. In [7], for the
first time, it was proposed to use the Tsallis distribution
[12] for the computer analysis of EMR spectra. The
Tsallis distribution is defined by the relationship [8] 

(8)

for the absorption signal and

(9)

for the derivative of the magnetic field absorption sig�
nal Y1(H – HR) = dY(H – HR)/dH. Standard EMR
spectrometers detect Y1(H – HR). 

In formulas (8) and (9), Γ is the half�width of line
(8) at half�maximum, Ymax = Y(HR) is a normalization
constant, and α ≡ q – 1, where q is the parameter of the
Tsallis distribution. It should be noted that q ∈
(1; +∞); as q  1, function (8) is transformed to the
Gaussian distribution and, at q = 2, to the Lorentzian
distribution. Thus, the Tsallis function enables one to
simulate a smooth variation in the shape of a reso�
nance line from Gaussian (q  1) to Lorentzian (q =
2) and, further on, to super�Lorentzian (q > 2). The

gp g1
2
/g3

,=

g1
2 gxgy 1 lz

2–( ) gxgz 1 ly
2–( ) gygz 1 lx

2–( )+ +( )/2g2
.=

gp 2/3( ) gx
2 gy

2 gz
2+ +( )/3{ }

1/2
=

+ 1/9( ) gx gy gz+ +( ).

ΔH2
ΔHx

2lx
2

ΔHy
2ly

2
ΔHz

2lz
2
.+ +=

Y H HR–( )

=  Ymax 1 2α 1–( ) H HR–( )/Γ[ ]
2+{ }

1/α–

Y1 H HR–( ) 2Ymax 2α 1–( ) H HR–( )/ αΓ
2

( ){ }–=

× 1 2α 1–( ) H HR–( )/Γ[ ]
2+{ }

1 α+( )/α–



PHYSICS OF THE SOLID STATE  Vol. 57  No. 10  2015

APPLICATION OF TSALLIS FUNCTIONS FOR ANALYSIS 2013

anisotropy of the shape of a resonance line can be sim�
ulated, e.g., by the formula similar to expression (7):

(10)

Thus, the fitting of an experimental singlet by formula
(2), which employs S(H – HR) = Y1(H – HR), involves
the variation of ten parameters: {gx, gy, gz, Γx, Γy, Γz, qx,
qy, qz, Ymax}. The anisotropy of Γ may be specified by a
formula similar to (3) and (7): 

(11)

If the spectrum has several resolved lines, the number
of parameters increases proportionally to the number
of lines. 

Figure 1 shows the results of the fitting of the EMR
spectrum of colloidal magnetite (Fe3O4) nanoparti�
cles, used for preparation of magnetic microcapsules,
by the sum of two Tsallis distributions. The mean
nanoparticle size is ~10 nm, but many of them are
united into loose agglomerates [13]. The spectrum has
a two�pattern form often occurring in the analysis of
iron�containing nanoparticles [14–16]. 

The sum of two Tsallis distributions provides a good
approximation of the experimental spectrum. The
parameters of the Tsallis distributions are as follows:
gx =2.04, gy =2.26, gz =1.83, Γx =540 Oe, Γy =235 Oe,
Γz = 275 Oe, qx = 1.90, qy = 1.00, and qz = 1.77 (the
broad component); gx =2.00, gy =2.00, gz =1.96,
Γx = 70 Oe, Γy = 55 Oe, Γz = 135 Oe, qx = 2.33, qy =
2.43, and qz = 1.34 (the narrow component). The sin�
gle�valued convergence of the fitting procedure was
tested by specifying different initial values of the
parameters. The difference between the experimental
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and calculated spectra was minimized by a computer
algorithm used in [17, 18]. 

The narrow central line in the two�component
spectrum of iron�containing magnetic nanoparticles
may be assigned to their “fine” fraction in the colloidal
system, because the smaller is the particle, the stronger
is the effect of the superparamagnetic fluctuations on
it [1–3, 6, 19, 20]. The results of the fitting do not con�
tradict the following interpretation: the g�tensor of the
narrow signal is practically isotropic, and the magni�
tudes of its components are ~2.0; the values of the
parameters q > 2 may indicate the tailing of the reso�
nance line, enhanced with a reduction in the nanopar�
ticle size [19]. 

It should be noted that the attempts of fitting the
considered experimental EMR spectrum with a func�
tion S(H – HR) of a constant form (Gaussian or
Lorentzian) gave a significantly worse result than that
presented in Fig. 1. 

3. APPLICATION OF TSALLIS FUNCTIONS 
FOR SIMULATION OF WIDE ASYMMETRIC 

EMR SPECTRA 

The EMR spectra of certain types of magnetic
nanoparticles can be very broad or asymmetric. For
example, Fig. 2 shows the EMR spectrum of α�Fe
nanoparticles on the surface of SiO2 microgranules
[21]. In this case, it is inadvisable to simulate spectra
of the “polycrystalline” type. The form of such com�
plicated spectra can be quantitatively described by the
decomposition of them into a sum of Tsallis distribu�
tions. Due to the flexible form of the Tsallis distribu�
tions, such decomposition employs a small number of

0 1000 2000 3000 4000 5000

Magnetic field, Oe

Fig. 1. EMR spectrum of colloidal magnetite nanoparti�
cles. Points are the experimental data, and the solid line
shows the sum of two Tsallis distributions. The parameters
of the Tsallis distributions are presented in the text. The
spectra were recorded at room temperature on a Varian E�4
spectrometer. 
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Fig. 2. EMR spectrum (at T = 295 K) of α�Fe nanoparti�
cles on the surface of silicon oxide microgranules. Points
are the experimental data, and the solid line shows the sum
of four Tsallis distributions (represented by dashed lines).
The parameters of the Tsallis distributions are presented in
the text. 
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terms as compared to the decomposition into, e.g., the
Gaussian distributions. For example, as is evident
from Fig. 2, the form of the EMR spectrum of α�Fe
nanoparticles can be quantitatively specified by means
of only four Tsallis distributions of the form (9) with
the following parameters (in the ascending order of
HR): HR1 = 735 Oe, Γ1 = 265 Oe, q1 = 1.0, and Ymax1 =
2.7; HR2 = 975 Oe, Γ2 = 6120 Oe, q2 = 1.7, Ymax2 =
131.3; HR3 = 1085 Oe, Γ3 = 440 Oe, q3 = 1.4, and
Ymax3 = 5.3; HR4 = 1580 Oe, Γ4 = 1550 Oe, q4 = 2.9,
and Ymax4 = 12.5. 

The obtained “standard” spectrum of nanoparti�
cles, which dominantly contain α�Fe [21], can be used
for the quantitative analysis of the spectrum of iron�
based nanoparticles containing, apart from α�Fe,
other (as a rule, oxide) phases. For example, Fig. 3
shows the EMR spectrum of iron�containing nano�
particles stabilized on the surface of diamond micro�
granules [22]. The data of structural methods [22]
indicate that such nanoparticles have two phases: α�Fe
and γ�Fe2O3 (maghemite). The low�field part of the
EMR spectrum in Fig. 3 indicates the presence of α�
Fe. In order to separate in the EMR spectrum the
components corresponding to the α�Fe and γ�Fe2O3

phases, it can be decomposed into the “standard”
spectrum of α�Fe (Fig. 2) and an additional Tsallis dis�
tribution. The result of the decomposition is shown in
Fig. 3. The additional Tsallis distribution proved to be
close to a Gaussian distribution with the parameters
HR = 3230 Oe, Γ = 1800 Oe, and q = 1.00. 

It should be noted that the Tsallis distributions
entering into the decomposition of the “standard”
spectrum of α�Fe should not be related to real mag�
netic centers generating them. The decomposition

serves only for convenient mathematical representa�
tion of the spectrum in order to use it as an individual
component in the analysis of more complex spectra. 

4. CONCLUSIONS 

In this work, it was demonstrated that, for the
quantitative description of EMR spectra of magnetic
nanoparticles, it is advisable to use the decomposition
of the spectrum into components with the line shape
described by the Tsallis distribution. An important
advantage of the Tsallis distribution curves is a smooth
variation in the form with a change in the parameter q.
This enables one to decrease the number of compo�
nents of the decomposition and improve its quality.
For relatively narrow and symmetric EMR spectra of
nanoparticles, well�known formulas developed for the
analysis of polycrystalline spectra of paramagnetic
centers can be applied. For the quantitative analysis of
broad asymmetric spectra of non�single�phase nano�
particles, it was proposed to use “standard” EPR spec�
tra preliminary obtained in the analysis of nearly sin�
gle�phase nanoparticles. 

ACKNOWLEDGMENTS 

The author would like to thank S.P. Gubin,
G.Yu. Yurkov, and D.A. Gorin for providing the sam�
ples containing magnetic nanoparticles. 

This study was supported by the Russian Science
Foundation (project no. 14�12�01379) and the Rus�
sian Foundation for Basic Research (project no. 15�
04�03790) 

REFERENCES 

1. J. Kliava, in Magnetic Nanoparticles, Ed. by S. P. Gubin
(Wiley, Weinheim, 2009), p. 225. 

2. Yu. L. Raikher and V. I.Stepanov, Sov. Phys. JETP 74
(5), 755 (1992). 

3. E. de Biasi, C. A. Ramos, and R. D. Zysler, J. Magn.
Magn. Mater. 262, 235 (2003). 

4. C. Kittel, Phys. Rev. 73, 155 (1948). 
5. J. L. Dorman, D. Fiorani, and E. Tronc, Adv. Chem.

Phys. 98, 283 (1997). 
6. N. Noginova, F. Chen, T. Weaver, E. P. Giannelis,

A. B. Bourlinos, and V. A. Atsarkin, J. Phys.: Condens.
Matter 19, 246208 (2007). 

7. D. F. Howarth, J. A. Weil, and S. Zimpel, J. Magn.
Reson. 161, 215 (2003). 

8. J. A. Weil and J. R. Bolton, Electron Paramagnetic Res�
onance: Elementary Theory and Practical Applications
(Wiley, Weinheim, 2007). 

9. R. Aasa and T. Vånngård, J. Magn. Reson. 19, 308
(1975). 

10. J. R. Pilbrow, Mol. Phys. 16, 307 (1969). 
11. H. Blum, J. C. Salerno, and J. S.Leigh, Jr., J. Magn.

Reson. 30, 385 (1978). 
12. C. Tsallis, J. Stat. Phys. 52, 479 (1988). 

0 1000 2000 3000 4000
Magnetic field, Oe

5000 6000

1
2
3
4

Fig. 3. EMR spectrum (at T = 295 K) of iron�containing
nanoparticles on the surface of diamond microgranules:
(1) experimental data, (2) “standard” spectrum of α�Fe
(see the text), (3) the Tsallis distribution corresponding to
the γ�Fe2O3 phase, and (4) the sum of the “standard”
spectrum and the Tsallis distribution. 



PHYSICS OF THE SOLID STATE  Vol. 57  No. 10  2015

APPLICATION OF TSALLIS FUNCTIONS FOR ANALYSIS 2015

13. D. A. Gorin, D. G. Shchukin, Yu. A. Koksharov,
S. A. Portnov, K. Kohler, I. V. Taranov, V. V. Kislov,
G. B. Khomutov, H. Möhwald, and G. B. Sukhorukov,
Proc. SPIE–Int. Soc. Opt. Eng. 6536, 653604 (2007). 

14. I. S. Edelman, O. S. Ivanova, E. A. Petrakovskaja,
D. A. Velikanov, I. A. Tarasov, Y. V. Zubavichus,
N. N. Trofimova, and V. I. Zaikovskii, J. Alloys
Compd. 624, 60 (2015). 

15. N. Guskos, E. A. Anagnostakis, V. Likodimos, T. Bodz�
iony, J. Typek, M. Maryniak, U. Narkiewicz, I. Kucha�
rewicz, and S. Waplak, J. Appl. Phys. 97, 024304
(2005). 

16. Yu. A. Koksharov, G. Yu. Yurkov, D. A. Baranov,
A. P. Malakho, S. N. Polyakov, and S. P. Gubin, Phys.
Solid State 48 (5), 940 (2006). 

17. Yu. A. Koksharov, V. D. Dolzhenko, and S. A. Agazade,
Phys. Solid State 52 (9), 1929 (2010). 

18. Yu. A. Koksharov and A. I. Sherle, Phys. Solid State 46
(7), 1357 (2004). 

19. R. S. de Biasi and T. C. Devezas, J. Appl. Phys. 49, 2466
(1978). 

20. F. Gazeau, V. Shilov, J. C. Bacri, E. Dubois, F. Gend�
ron, R. Perzynski, Yu. L. Raikher, and V. I. Stepanov,
J. Magn. Magn. Mater. 202, 535 (1999). 

21. G. Yu. Yurkov, O. V. Popkov, Yu. A. Koksharov,
D. A. Baranov, and S. P. Gubin, Inorg. Mater. 42 (8),
877 (2006). 

22. S. P. Gubin, O. V.Popkov, G. Yu. Yurkov, V. N. Niki�
forov, Yu. A. Koksharov, and N. K. Eremenko, Dia�
mond Relat. Mater. 16, 1924 (2007).

Translated by E. Chernokozhin


