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1. INTRODUCTION 

Nanocrystalline and ultrafine�grained materials
(hereinafter, nanomaterials) are functional and struc�
tural materials of new generation with unique
mechanical, physical, and chemical properties (see,
for example, [1–6]). Nanomaterials are the subject of
intense research [1–11] because of their paramount
importance for present and future high technologies.
In particular, nanomaterials are characterized by
excellent mechanical properties that favorably distin�
guish them from conventional coarse�grained poly�
crystals with the same chemical composition. Exam�
ples of these properties are high values of tensile yield
stress, ultimate strength, and wear resistance, as well as
the ability of some nanocrystalline metals and alloys to
undergo superplastic deformation [1–6]. Conse�
quently, the physics of plastic deformation of nanoma�
terials is the subject of intense research motivated by a
high potential of their practical application and by the
fundamental interest in specific mechanisms of plastic
deformation at the nanoscale level. 

The unique properties of nanomaterials are associ�
ated with the size effects and nanostructures, where
grain boundaries play an important role in deforma�
tion processes. Owing to the small grain size, the grain
boundaries occupy a significant volume fraction of the
material and, hence, play a decisive role in the forma�
tion of mechanical properties. On the other hand,
conventional intragranular deformation mechanisms

associated with the motion of lattice dislocations are
substantially suppressed when the grains have small
sizes. As a consequence, the majority of the mecha�
nisms of plastic deformation in nanomaterials are
controlled by grain boundaries [1–6]. Therefore,
investigation of structural features of grain boundaries
and their transformations is extremely important for
the understanding of the processes occurring in nano�
materials during their deformation. 

In their recent experiments, Sauvage et al. [12]
revealed an interesting feature: an increase in the
thickness (to 2–3 nm) of deformation�distorted (non�
equilibrium) grain boundaries in bulk ultrafine�
grained metal materials produced under severe plastic
deformation. Earlier [11], we proposed a theoretical
model of migration of deformation�distorted (non�
equilibrium) low�angle grain boundaries [11], where
among other things it was shown that these boundaries
should expand (increase in their thickness) even in the
absence of an external mechanical stress. This fact is
confirmed by experimental observations [12] of the
thickened grain boundaries in bulk ultrafine�grained
materials produced under severe plastic deformation.
However, in the experiments performed in [12], the
authors, as a rule, observed high�angle grain bound�
aries with an increased thickness, whereas our previ�
ous work [11] dealt only with low�angle grain bound�
aries. The main purpose of the present work is to
develop a theoretical model that effectively explains
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the thickening of deformation�distorted (nonequilib�
rium) high�angle grain boundaries in nanomaterials. 

2. THICKENING OF DEFORMATION�
DISTORTED HIGH�ANGLE GRAIN 

BOUNDARIES: GEOMETRICAL ASPECTS 

For the description of the thickening of deforma�
tion�distorted (nonequilibrium) high�angle grain
boundaries in nanomaterials, we generalize the model
proposed in [11] to the case of high�angle grain
boundaries. Within the approach used in [11], the
nonequilibrium low�angle grain boundary was
described as a combination of “equilibrium” and
“nonequilibrium” dislocation ensembles. The first
ensemble represents a conventional dislocation wall
(or a symmetric tilt boundary), while the second
ensemble is formed by lattice dislocations trapped by a
grain boundary during the plastic deformation and
randomly distributed along the boundary plane. A
similar description can also be proposed for the case of
high�angle grain boundaries. For this purpose, we use
the model of structural units [13] for a conventional
(equilibrium) high�angle grain boundary. In this
model, the grain boundary is formed by periodically
ordered structural units (atomic clusters) of two types
(denoted as α and β, see Fig. 1). If, for example, the
number of structural units β is smaller than that of
structural units α, then the structural units β are
referred to as minority structural units and described
as cores of periodically distributed grain�boundary
dislocations (Fig. 1b). These dislocations are charac�
terized by the Burgers vectors bgb (related to the trans�

lational symmetry of the grain boundary), whose
modulus bgb is usually less than the modulus of the
Burgers vector b of lattice dislocations and lies in the
range of b/4–b/3 [13]. In the case where the structural
units β (or α) are completely absent (Figs. 1a, 1c), the
misorientation angle of the boundary θα (θβ) is deter�
mined exclusively by the geometry of the structural
unit α (β), and the boundary is referred to as the pre�
ferred boundary. This boundary corresponds to a local
energy minimum in the dependence of the grain�
boundary energy on the misorientation angle. How�
ever, in the general case, the equilibrium high�angle
grain boundary consists of structural units of two types
(Fig. 1b), and the misorientation angle of this bound�
ary is defined as θ = θα + Δθβ, where Δθβ is the contri�
bution from the grain�boundary dislocations (struc�
tural units β) to the total misorientation of the bound�
ary [13]. The angle Δθβ is related to the period h of
grain�boundary dislocations and the magnitude of
their Burgers vector bgb by the following expression: 

(1)

Now, we use the above model as the basis for the model
of a deformation�distorted high�angle grain boundary
in a nanocrystalline material (Fig. 2). We consider the
grain boundary AB of length d in a fragment of the
nanocrystalline structure (Fig. 2a). Let this boundary
be formed by structural units of two types; i.e., in
accordance with the foregoing, it contains a periodic
wall of grain�boundary dislocations characterized by
the Burgers vector bgb. Next, according to the model of
a low�angle grain boundary [11], we assume that the
deformation�distorted high�angle grain boundary also
contains nonequilibrium lattice dislocations of oppo�
site signs ±b (Fig. 2b), which are trapped from the
adjacent grains and randomly distributed along the
boundary plane. As in the model developed in [11], we
assume that the number of positive nonequilibrium
dislocations is equal to the number of negative non�
equilibrium dislocations, so that these dislocations do
not affect the average misorientation of the grain
boundary, thus providing only its local fluctuations
around the average value of the misorientation angle θ. 

The other grain boundaries (GB1–GB4) adjacent
to the triple junctions A and B are assumed to be sym�
metric tilt boundaries. However, for simplicity, we will
not consider their dislocation structure and, in order
to take account of their influence on the migration of
the boundary AB, we will use the disclination model
[14]. According this model, the symmetric tilt bound�
ary broken at one end can be approximately repre�
sented as a wedge disclination with the power equal to
the misorientation angle of the grain boundary. If it is
assumed that, initially, the junctions A and B are fully
compensated (i.e., the sum of the misorientation
angles of the grain boundaries meeting at this junction
is zero), the misorientation angle θ of the boundary AB
is equal to the sum of the misorientation angles of the

Δθβ 2 bgb/2h( ).arctan=

Fig. 1. Model of structural units of a high�angle grain
boundary (schematically): (a) the grain boundary is
formed only by structural units α, (b) the grain boundary
consists of two types of structural units α and β (grain�
boundary dislocations are bound to structural units β), and
(c) the grain boundary is formed only by structural units β. 

(a) (b) (c)

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

β

β

β β

β

β

β

β

β

β

β

β

β

bgb

h



PHYSICS OF THE SOLID STATE  Vol. 57  No. 10  2015

THICKENING OF DEFORMATION�DISTORTED HIGH�ANGLE GRAIN BOUNDARIES 2061

other two boundaries with the opposite sign. Thus, in
the equivalent disclination representation, the influ�
ence of the boundaries GB1–GB4 is considered as a
dipole of wedge disclinations with the powers ±ω0,
where ω0 = θ. Since the misorientation angle θ of the
boundary AB consists of two parts determined by the
structural units α and β (θ = θα + Δθβ), the disclina�
tion dipole can be similarly represented as the sum of
two dipoles: ω0 = ωα + ωβ, where ωα = θα and ωβ =
Δθβ. In the framework of our model, however, a part of
the boundary AB represented by the structural units α
is completely static and does not change during the
transformation, which will be described below. The
stress field of the structure α fully compensates for the
stress field of the dipole ωα, so that other defects
(grain�boundary and nonequilibrium dislocations) do
not interact with it. Consequently, in the calculation of
the interaction with the boundaries GB1–GB4, it is
sufficient to take into account the contribution ωβ =
Δθβ; i.e., the elastic stress fields induced by these
boundaries are simulated by the dipole of wedge discli�
nations located in the junctions A and B and are char�
acterized by the power ±ωβ (Fig. 2b). 

3. THICKENING OF DEFORMATION�
DISTORTED HIGH�ANGLE GRAIN 

BOUNDARIES: ENERGY CHARACTERISTICS 

The theoretical analysis performed in [11] demon�
strated that, in nonequilibrium low�angle grain
boundaries even in the absence of applied stresses, the
energetically more favorable is a thickened configura�

tion of the boundary, where negative nonequilibrium
dislocations are collectively displaced from the initial
plane of the boundary, as is shown in Fig. 2c. Further,
it is demonstrated that, in the case of a high�angle
grain boundary, the thickened configuration in Fig. 2c
is also energetically more favorable than the initial
configuration of the boundary (Fig. 2b). As in [11], we
assume that the nonequilibrium dislocations are syn�
chronously displaced in the form of a flat wall, and
their positions can be described by a single parameter
Δl, which characterizes the thickening of the high�
angle grain boundary (Fig. 2c). 

For this purpose, we write the change in the total
energy of the system ΔW as a result of such process. It
can be seen from Fig. 2c that the described transfor�
mation is accompanied by changes in the energy of
interaction of negative nonequilibrium dislocations
with the disclination dipole AB and all other disloca�
tions (grain�boundary and positive nonequilibrium
dislocations which remain in the initial positions).
Hence, it follows that the quantity ΔW can be written
as 

(2)

ΔW Wd d– b bgb Δl yj
gb( ) yi

–( )–,, ,–( )
j 1=

k

∑
i 1=

n/2

∑=

+ Wd d– b b Δl yj
+( ) yi

–( )–,, ,–( )
j 1=

n/2

∑
i 1=

n/2

∑

+ WΔ d– b Δl yi
–( ),,–( )

i 1=

n/2

∑

Fig. 2. Model of thickening of a deformation�distorted high�angle grain boundary with randomly distributed nonequilibrium dis�
locations. (a) Fragment of the nanocrystalline sample (general view). (b) Initial state. The nonequilibrium grain boundary AB is
simulated as a combination of the wall of grain�boundary dislocations (indicated by dark symbols) and the “nonequilibrium”
structure of the positive and negative lattice dislocations (indicated by open symbols). The influence of the adjacent grain bound�
aries (GB1–GB4) is described by the disclination dipole AB (for details, see the text). (c) Extended configuration of the grain
boundary in which negative nonequilibrium dislocations are synchronously displaced by a distance Δl from the initial position. 
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Here, Wd–d(b1, b2, xi – xj, yi – yj) is the energy of inter�
action between two edge dislocations (with the parallel
Burgers vectors b1 and b2) located at the points with the
coordinates (xi, yi) and (xj, yj), respectively (hereinaf�
ter, we use the coordinate system presented in Fig. 2c);
WΔ–d(b, xi, yi) is the energy of interaction between the
disclination dipole and the dislocation with the Burg�
ers vector b (perpendicular to the axis of the dipole),
which is located at the point with the coordinates (xi,
yi); n is the number of nonequilibrium dislocations (it
is an even number, because the numbers of positive
and negative nonequilibrium dislocations are assumed
to be identical); k is the number of grain�boundary

dislocations;  = ih is the y�coordinate of the ith

grain�boundary dislocation (i = 1, 2, …, k); and 

and  are the y�coordinates of the positive and neg�
ative nonequilibrium dislocations, respectively (i = 1,
2, …, n/2). The numbering of dislocations in formula
(2) goes from the junction B (Fig. 2) and is separate for
the grain�boundary, positive, and negative nonequilib�
rium dislocations. Taking into account that the grain�
boundary dislocations are distributed periodically
(with the period h), from the elementary geometrical
considerations their number k is expressed as follows: 

(3)

– Wd d– b bgb 0 yj
gb( ) yi

–( )–,, ,–( )
j 1=

k

∑
i 1=

n/2

∑

– Wd d– b b 0 yj
+( ) yi

–( )–,, ,–( )
j 1=

n/2

∑
i 1=

n/2

∑

– WΔ d– b 0 yi
–( ),,–( ).

i 1=

n/2

∑

yi
gb( )

yi
+( )

yi
–( )

k d/h[ ]= .

Here, the notation [x] means the integer part of x. The
number of nonequilibrium dislocations n in the frame�
work of our model is set arbitrarily. 

The energies Wd–d(b1, b2, xi – xj, yi – yj) and
WΔ⎯d(b, xi, yi) are well known (see, for example, [14,
15]) and have the form 

(4)

(5)

where D = G/[2π(1 – ν)], G is the shear modulus, ν is
the Poisson’s ratio, and R is the screening radius of
elastic stresses of the dislocation and disclination
defects. Taking into account formula (1) and the fact
that the power is ωβ = Δθβ, the power of a disclination
dipole can be expressed through the period of the
grain�boundary dislocation wall h and the magnitude
of the Burgers vector bgb in the form ωβ =
2arctan(bgb/2h). 

Thus, we found all the necessary (expressions (2)–
(5)) for calculating the change in the energy ΔW. The
final expression is not given here because of its bulki�
ness. 

Next, we calculated the energy ΔW for aluminum
used as an example. This material is characterized by
the following parameters [15]: G = 73 GPa, ν= 0.34,
and b = 0.25 nm. Figure 3 shows the characteristic
dependence ΔW(Δl) calculated for the parameters of
the problem bgb = b/3, h = 10bgb, and d = 40 nm. (For�
mulas (4) and (5) also include the screening radius R,
but, using expression (2), we can demonstrate that the
change in the energy ΔW does not depend on R.) For
definiteness, the nonequilibrium dislocations in this

case are distributed periodically as follows:  = b +

2(i – 1)p and  = b + 2ip (i = 1, 2, …, n/2), where
p = 5b is the repetition period of nonequilibrium dis�
locations. For this definition of the coordinates of dis�
locations, their number n is specified as n = [(d –
2b)/p] (in the case where this number is odd, it is
decrease by unity); for the parameters given above, the
curve shown in Fig. 3 corresponds to n = 26. The curve
ΔW(Δl) shown in Fig. 3, according to our analysis, is
absolutely typical for any (not only periodic) distribu�
tion of nonequilibrium dislocations. There is always a
minimum of the change in the energy for an equilib�
rium value of Δleq > 0; i.e., the initial state of the
boundary (Fig. 2b) is not stable. In this case, the tran�

Wd d– b1 b2 xi xj– yi yj–, , ,( ) Db1b2=

× R

xi xj–( )2 yi yj–( )2+
������������������������������������������
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⎜ ⎟
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Fig. 3. Dependence of the change in the energy ΔW on the
displacement Δl of negative nonequilibrium dislocations
(grain�boundary thickenings) according to the calculation
using aluminum as an example for the following parame�
ters of the problem: bgb = b/3, h = 10bgb, and d = 40 nm. 
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sition to the stable state from the initial configuration
(Fig. 2b) is a barrierless process and should occur
spontaneously; i.e., nonequilibrium high�angle grain
boundaries have a tendency to thickening. 

Further, we investigated the dependence of the
thickening Δleq on different parameters of the problem
(also for aluminum used as an example), namely, the
number of nonequilibrium dislocations n (Fig. 4), the
length of the grain boundary d (Fig. 5), and the period
of the structure of grain�boundary dislocations h
(Fig. 6). In this analysis, we considered random distri�
butions of nonequilibrium dislocations and used the
following calculation scheme. For a given set of
parameters of the problem, 1000 random distributions
of nonequilibrium dislocations were generated and,
for each distribution, the equilibrium thickening Δleq

was determined. Then, the equilibrium thickening Δleq

was averaged over all the generated distributions, and
the average value of the thickening 〈Δleq〉 was deter�
mined. 

Figure 4a shows the dependences 〈Δleq〉(n) calcu�
lated for the parameters h = 10bgb and d = 20, 30, and
40 nm (curves 1–3, respectively). The dependences
〈Δleq〉(n) shown in Fig. 4b are calculated for the
parameters d = 30 nm and h = 10bgb, 15bgb, and 20bgb

(curves 1–3, respectively). The other parameters of
the problem are the same as in the previous case. The
maximum value of n, which was used in constructing
the curves shown in Fig. 4, corresponds to the average
distance between the nonequilibrium dislocations
〈p〉 ~ 5b. It can be seen from Fig. 4 that the typical val�
ues of 〈Δleq〉 lie in the range from 1.5 to 5 nm. More�
over, the average thickening 〈Δleq〉 is larger for the grain
boundaries with a smaller number of nonequilibrium
dislocations; i.e., the larger is the number of nonequi�
librium dislocations in the grain boundary, the more
resistant is the boundary to thickening. It should be,
however, kept in mind that, for a very small number of
nonequilibrium dislocations (for example, for n = 2,
there is only one negative nonequilibrium disloca�
tion), we cannot consider the thickening of the grain
boundary as a whole; rather, we are dealing here with
the emission of a single dislocation from the grain
boundary. The grain boundaries with a sufficiently
high density of nonequilibrium dislocations are char�
acterized by the values 〈Δleq〉 ~ 1.5–2.5 nm. These val�
ues correlate well with the experimentally observed
[12] boundaries of approximately the same thickness
in bulk ultrafine�grained materials. 
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nonequilibrium dislocations n: (a) h = 10bgb and d = (1)
20, (2) 30, and (3) 40 nm; (b) d = 30 nm and h = (1) 10bgb,
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The dependences 〈Δleq〉(d) are illustrated in Fig. 5.
The curves shown in Fig. 5a are calculated for the
parameters h = 10bgb and 〈p〉 = 5b, 10b, and 15b
(curves 1–3, respectively). Figure 5b shows the curves
calculated for the parameters 〈p〉 = 5b and h = 10bgb,
15bgb, and 20bgb (curves 1–3, respectively). The num�
ber of nonequilibrium dislocations is related to the
average distance 〈p〉 between them as follows: n = [(d –
2b)/〈p〉]. It is clearly seen that there is a tendency to an
increase in the average thickening 〈Δleq〉 with increas�
ing grain size. The curves corresponding to low densi�
ties of nonequilibrium dislocations (large values of 〈p〉)
have significant oscillations due to the discrete charac�
ter of the model and the errors of the averaging. 

The dependences 〈Δleq〉(h) are presented in Fig. 6.
The curves shown in Fig. 6a are calculated for the
parameters d = 40 nm and 〈p〉 = 5b, 10b, and 15b
(curves 1–3, respectively). Figure 6b shows the curves
calculated for the parameters 〈p〉 = 10b and d = 20, 30,
and 40 nm (curves 1–3, respectively). It can be seen
that the thickening weakly depends on the period of
the grain�boundary dislocation structure (actually, on
the misorientation angle of the grain boundary) with a
slight tendency to a decrease in the average thickening
〈Δleq〉 with increasing period h. 

4. CONCLUSIONS 

Thus, in this work, we proposed a theoretical
model that effectively describes a deformation�dis�
torted high�angle grain boundary on the basis of the
model proposed in our recent work [11] for deforma�
tion�distorted of low�angle grain boundaries and the
model of structural units [13], which describes con�
ventional (deformation�undistorted) high�angle
grain boundaries. Within this model, the structure of
a grain boundary is described as a combination of the
standard periodic wall of grain�boundary disloca�
tions and a random distribution of nonequilibrium
lattice dislocations of opposite signs that are trapped
from the adjacent grains (Fig. 2). It was shown that
the extended configuration (Fig. 2c), in which nega�
tive nonequilibrium dislocations are displaced with
respect to the boundary plane by some distance Δleq,
is energetically more favorable than the configura�
tion where all dislocations are in the same plane
(Fig. 2b). The transition between these two states is a
barrierless process and occurs spontaneously even in
the absence of external stresses. We investigated the
dependences of the averaged thickening 〈Δleq〉 for a
set of random distributions of nonequilibrium dislo�
cations on the number of nonequilibrium disloca�
tions, grain size (the grain�boundary length), and the
period of the structure of grain�boundary disloca�
tions. It was demonstrated that typical values of 〈Δleq〉
lie in the range of ~1.5–2.5 nm, which correlates well
with the experimentally observed [12] boundaries of
approximately the same width in bulk ultrafine�
grained materials. 
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