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Abstract—A stability analysis of two modes of generation in semiconductor quantum well lasers is performed.
These modes correspond to two solutions of the rate equations obtained by taking into account the internal
optical loss that depends on the density of charge carriers injected into the laser waveguide region and, hence,
on the injection current. It is shown that, in contrast to the first (“conventional”) mode of generation, which
is always stable and hence observable, the second (“additional”) mode, which is entirely due to the internal
loss that depends on the carrier density, is unstable and hence cannot be observed under the steady-state con-
ditions in the laser structure considered in this work.
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1. INTRODUCTION
Semiconductor injection lasers based on hetero-

structures emerged more than 50 years ago. They were
invented in 1970, when a laser based on an AlGaAs–
GaAs heterostructure was pioneered at the A.F. Ioffe
Institute of Physics and Technology, operating in con-
tinuous wave mode at room temperature [1].

Modern life is almost impossible to imagine with-
out the use of heterostructure lasers. Such lasers have
been widely applied, in particular, in information
technology, industry, medicine and everyday life.
Recently, much attention has also been paid to the
development of lidars (“light radars”) based on semi-
conductor lasers for use in unmanned aerial vehicles
and underwater vehicles, as well as in cars.

Over the years, heterostructure lasers, especially
lasers with a low-dimensional active region, have been
the subject of extensive research (see, for example, [2–
29]). Back in the 2000s, it was predicted in works [30–
33] that in such lasers there should be a decrease in
optical power with an increase in pump current (the
so-called rollover of the light-current characteristic
(LCC) – dependence of the output optical power on
the pump current) for the “conventional” (first) mode
of generation of stimulated emission and the existence
of an “additional” (second) mode of generation is also
possible. Both the LCC rollover for the first mode of
generation and the very existence of the second mode
are entirely due to (i) the non-instantaneous capture
of charge carriers from the bulk waveguide region

(optical confinement layer (OCL)) of the laser into the
low-dimensional active region and (ii) internal optical
loss that depends on the carrier concentration in the
waveguide region. (There is also internal optical loss in
the lowdimensional active region, but it is significantly
lower than the loss in the bulk waveguide region). The
characteristics of lasers, in particular the LCC, are
radically different for the two modes of generation
and, thus, are degenerate (have two branches) (Fig. 1).

The criterion for the existence of the second mode
of generation (and, accordingly, the second branch in
laser characteristics) can be presented in the following
form:

(1)

where σint—cross section of internal optical loss in the
waveguide region of the laser structure; —cap-
ture velocity of charge carriers from the bulk (three-
dimensional) waveguide region into an unfilled low-
dimensional active region, which is a single or multi-
ple quantum wells or layer(s) with quantum dots, b—
width of the waveguide region; B3D—coefficient of
spontaneous radiative recombination in the waveguide
region [11, 19, 34]; gmax—maximum modal gain coef-
ficient due to stimulated radiative transitions in the
low-dimensional active region of the laser [11, 15, 18,
34].
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Fig. 1. Steady-state light-current characteristic of a single
QW laser with a broadened waveguide and a lasing wave-
length of 0.98 μm. 1 – stable first (“conventional”) mode
of generation, 2 – unstable second (“additional”) mode of
generation.
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The dependence of internal optical loss on the con-
centration of carriers in the waveguide region is taken
into account by the non-zero value of the cross section
σint (in units of cm2) of internal loss in the waveguide
region (see below expression (5) for the coefficient of
internal optical loss).

The non-instantaneous capture of carriers from the
waveguide region into the low-dimensional active
region is taken into account by the finite (not infinitely
high) value of the capture velocity  (in units of
cm/s) [34–38] (see below equations (2) and (3)).

The non-instantaneous capture, in combination
with spontaneous radiative and (or) Auger recombina-
tions of carriers in the waveguide region, leads to
intrinsic sublinearity of the LCC in lasers with a low-
dimensional active region [34–38]. However, this
non-instantaneousness in itself cannot lead to a LCC
rollover. Rollover of LCC does not occur even in a sit-
uation where charge carriers are first captured from
the waveguide region to the nonemitting upper level of
size quantization in the active region, and then relax to
the emitting lower (ground) level. In this case, the
non-instantaneousness of relaxation, combined with
the non-instantaneousness of capture, further
enhances the sublinearity of the LCC is the output
optical power saturates (asymptotically approaches its
maximum possible value) with increasing pump cur-
rent [39, 40].

Thus, it is the combination of internal optical loss,
which depends on the concentration of carriers in the
waveguide region, with the non-instantaneousness of
capture from the waveguide region that leads to the
LCC rollover for the “conventional” (first) mode of
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generation. And it is the combination of these factors
that leads to the emergence of the “additional” (sec-
ond) mode of generation.

Both the LCC rollover for the conventional mode
of generation and the emergence of an additional
mode of generation can significantly affect the output
optical power and other important characteristics of
lasers with a low-dimensional active region. In con-
nection with this, it seems relevant to conduct a
detailed study of such lasers, properly taking into
account the above factors. In works [30–33, 41–45],
as a first step, both modes of generation (in particular,
both branches of the LCC) were theoretically studied
under steady-state conditions.

The next step, which naturally follows from the
first, is a theoretical study of the stability of the two
modes of generation, which is the focus of this article
in the context of quantum well (QW) lasers. The goal
of further work could be a direct experimental study of
this issue, which, as far as we know, is currently
missing.

2. THEORETICAL MODEL:
RATE EQUATIONS

In this work, we carry out a linear analysis of the
stability of two modes of generation and, accordingly,
two branches of laser characteristics. We use a model
based on the following three rate equations (for charge
carriers in the waveguide region and in the QW, as well
as for photons in the cavity):

(2)

(3)

(4)

The model of three rate equations assumes elec-
tron-hole symmetry (i.e., the sameness of all parame-
ters and quantities related to electrons and holes).
Taking electron-hole asymmetry into account would
require the use of a system of five rate equations (for
electrons and holes in the waveguide region and in the
QW, as well as for photons in the cavity) and would
introduce additional complications without signifi-
cantly affecting the physical picture as a whole.

The physical quantities included in equations (2)–
(4) and not introduced earlier are: nOCL—concentra-
tion of free charge carriers in the waveguide region, j –
pump (injection) current density, e—electron charge,
nQW—two-dimensional concentration of charge carri-
ers in each quantum well (QW), NQW—number of
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QWs, B2D—coefficient of spontaneous radiative
recombination in a two-dimensional QW material [19,
34], cg—group speed of light, nph—two-dimensional
concentration of photons (number of photons per unit
area of the stripe contact) of stimulated radiation in
the laser cavity, β = (1/L) ln(1/R)—cavity loss associ-
ated with the radiation yield through the mirror(s),
L—cavity length, R—mirror ref lectivity.

The internal optical loss coefficient αint, which
depends on the concentration of charge carriers nOCL

in the waveguide region and is included in equa-
tion (4), is given in the form

(5)

where α0—constant component that includes “built-
in” (independent of nOCL) loss. The non-instanta-
neousness of carrier capture from the waveguide
region into the low-dimensional active region leads to
the dependence of the concentration nOCL on the
injection current [34–38, 41–45] and, thus, to the
dependence of the internal loss αint on the injection
current.

The occupancy (filling factor) fn of the lower edge
of the size quantization subband in the QW by charge
carriers is not an independent quantity and is
expressed through the two-dimensional concentration
of charge carriers nQW in the QW as follows [23, 34]:

(6)

The thermal escape time τesc of charge carriers from
the QW into the waveguide region is also not an inde-
pendent quantity and is expressed through the velocity
of capture  of charge carriers from the waveguide
region into the unfilled QW as follows:

(7)

In expressions (6) and (7), the quantity  =
—two-dimensional effective density of

states in the QW, —the effective mass of charge
carriers in the QW, T—temperature in energy units.

The quantity n1 in expression (7) is determined as
follows [34]:

(8)

where  = 2[( )/( )]3/2—three-dimen-
sional effective density of states in the waveguide
region, —effective mass of charge carriers in the
waveguide region, ΔEc—QW depth for charge carriers
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(band offset at the heterointerface between the wave-
guide region and the QW), —energy of the lower
edge of the subband of size quantization of charge car-
riers in a QW.

3. ANALYSIS OF THE STABILITY OF MODES 
OF GENERATION

Within the framework of linear stability analysis,
the solutions of rate equations (2)–(4) (time-depen-
dent concentrations of charge carriers in the wave-
guide region (nOCL) and in the QW (nQW), as well as the
concentration of photons (nph) in the resonator) are
presented in the following form:

(9)

(10)

(11)

where ,  and  – solutions of the steady
state rate equations, and , , and —
small amplitudes of time-dependent components.

3.1. Steady-State Light-Current Characteristic

Solving the rate equations (2)–(4) at  = 0 gives
the steady-state values of the concentrations of free
charge carriers in the waveguide region , charge
carriers localized in the QW, , as well as stimulated
emission photons  as functions of the pump current
density j and parameters of the laser structure. Next,
the steady-state output optical power of the laser P0 =

 is calculated, where —photon energy,
S = WL—stripe contact area, W—stripe contact
width.

Here, as in works [41–45], an edge-emitting laser
structure with a broadened waveguide is considered.
The active region of the laser presents a single stressed
QW. The materials of the QW, waveguide region and
emitters (cladding layers) are In0.31Ga0.69As, GaAs and
Al0.1Ga0.9As, respectively. The widths of the QW and
waveguide region are 30 Å and 0.9 μm, respectively.
The QW is not located in the center of the waveguide
region, but closer to the p-emitter (at a distance of
0.1 μm from it). The concentrations of the majority
charge carriers in the emitters nclad = pclad = 5 ×
1018 cm–3. The cross section of internal optical loss in
the waveguide region σint = 3 × 10–18 cm2; the velocity
of capture of charge carriers from the waveguide
region into an empty QW  = 106 cm/s; length of
the Fabry–Perot resonant cavity L = 1.5 mm, reflec-

εQW
n

= + δ ΛOCL OCL OCL
0( ) ( )exp( ),mn t n n t

= + δ ΛQW QW QW
0( ) ( )exp( ),mn t n n t

= + δ Λph ph ph
0( ) ( )exp( ),mn t n n t

OCL
0n QW

0n ph
0n

δ OCL
mn δ QW

mn δ ph
mn

∂ ∂/ t

OCL
0n

QW
0n

ph
0n

ω β�
ph
0gc n S ω�

vcapt,0
SEMICONDUCTORS  Vol. 58  No. 5  2024



ANALYSIS OF STABILITY OF GENERATION 467
tivities of both mirrors R = 0.32, width of the stripe
contact W = 100 μm, temperature T = 300 K. The cal-
culated maximum modal gain in a single QW gmax =
30.73 cm–1. The lasing wavelength is 0.98 μm.

For the structure under consideration, the quantity
included in the left side of criterion (1) is equal to 2.65
and, thus, the rate equations have two solutions, which
correspond to two modes of generation. The threshold
current densities for the first and second modes jth, 1 =
31.6 A/cm2 and jth, 2 = 34 kA/cm2. The maximum
pump current density, above which laser generation is
disrupted, is jmax = 48.06 kA/cm2 (at this injection cur-
rent density, the first and second branches of the LCC
merge together—see Fig. 1).

Figure 1 shows the dependence of the output opti-
cal power on the injection current density (LCC) for
the structure under consideration. As can be seen from
the figure, the LCC consists of two branches. Above
the first threshold, the first (“conventional”) mode of
generation is switched on, which corresponds to the
first branch of the LCC (branch 1 in Fig. 1), above the
second threshold, the second (“additional”) mode of
generation emerges, which corresponds to the second
branch of LCC (branch 2 in Fig. 1). The generation in
both branches is disrupted at the pump current density
j = jmax.

3.2. Characteristic Equation

For the existence of non-zero solutions for small
amplitudes ,  and  included in (9)–
(11), the following characteristic equation (obtained
by linearizing equations (2)–(4) using the expres-
sions (9)–(11)) should be satisfied to find the eigen-
values Λ:

(12)

where the expressions for the coefficients A0, A1 and A2
are:
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(15)

The characteristic equation (12) is cubic since our
model is based on three rate equations (see equations
(2)–(4)).

Expressions (13)–(15) for the coefficients A0, A1
and A2 include the steady-state values of the concen-

trations of charge carriers and photons ,  and
, which are the solutions to the system of rate equa-

tions (2)–(4) at  = 0 and depend on the parame-
ters of the laser structure and pump current density j.
Therefore, the coefficients A0, A1 and A2 also depend
on j.

Since for the laser structure under consideration
the rate equations have two solutions, each of the two
modes of generation corresponds to its own values of
the coefficients A0, A1 and A2 and its eigenvalues Λ.

Within the framework of linear analysis, in order
for the considered mode of generation to be stable, the
exponential components in the expressions (9)–(11)
should be evanescent (solutions (9)–(11) of the system
of rate equations (2)–(4) should return over time to
their steady-state values ,  and ), i.e. the
real parts of all three eigenvalues Λ should be negative:

(16)
A positive sign of the real part of even one of the

three eigenvalues Λ would mean an exponential
increase in solutions (9)–(11), i.e., their departure
from steady-state values and the instability of the
mode of generation under consideration.

Thus, to determine the stability of modes of gener-
ation, it would suffice to determine the signs of the real
parts of the roots of the cubic equation (12). Since the
coefficients A0, A1 and A2 in equation (12) are real
quantities, there are the following two possibilities for
the roots of equation (12) (eigenvalues Λ): (i) one real
and a pair of complex conjugate roots; (ii) three real
roots.

If all three coefficients A0, A1 and A2 were always (at
any pump current) positive, then, as can be seen from
(12), the real eigenvalue(s) Λ would necessarily be
negative, and the corresponding solutions would be
stable. Since fn0 < 1 and all quantities included in
expressions (14) and (15) for A1 and A2 are positive, the
coefficients A1 and A2 are indeed always positive.
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Fig. 2. Coefficients A0, A1 and A2 of the characteristic
equation (12) against pump current density. 1 – first mode
of generation, 2 – second mode of generation.
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However, unlike A1 and A2, as can be seen from expres-
sion (13) for A0, it is impossible a priori to draw any
conclusion about the sign of the coefficient A0. Thus,
to even determine the stability of the solutions corre-
sponding to the real eigenvalue(s), an analysis of at
least the dependence of the sign of the coefficient A0
on the injection current j is required. If it turns out that
the coefficient A0 is negative, then this will also not
automatically lead to any conclusion about the sign of
the real eigenvalue(s) Λ—since the coefficient A2 is
always positive, the second (quadratic) term on the left
side of the equation (12) is always positive and for-
mally the real eigenvalue(s) Λ can be both positive and
negative. Thus, in the case of a negative coefficient A0,
to determine the sign of the real eigenvalue(s) Λ, the
solution of equation (12) will be required.

It should be noted that since 2fn0 – 1 > 0 (the con-
dition for the positivity of the steady state population
inversion and the gain coefficient in the active
region—see [11]), as can be seen from (13), in the
absence of internal optical loss that depends on the
concentration of charge carriers in the waveguide
region (i.e., at σint = 0), the coefficient A0 is also always
positive. Thus, in this case the real eigenvalue(s) Λ are
negative. This result reflects the fact that in the
absence of internal loss, which depends on the con-
centration of charge carriers in the waveguide region,
there is only one solution to the system of rate equa-
tions and, accordingly, only one (“conventional”)
mode of generation, which is always stable.

In Subsection 3.2.1 we analyze the coefficients A0,
A1 and A2. Since no conclusion can be made about the
sign of the real part of the complex-conjugate eigen-
values even in the case of all positive coefficients A0, A1
and A2, and it turns out that the coefficient A0 is nega-
tive for the second mode of generation, then further
(in Section 3.2.2) we solve equation (12) to find the
eigenvalues Λ.

3.2.1. Coefficients A0, A1 and A2 of the characteristic
equation as functions of the pump current density. Hav-
ing calculated the steady state concentrations ,

 and  for each of the modes of generation and
using further formulas (13)–(15), we determined the
coefficients A0, A1 and A2 for two branches. Figure 2
shows these coefficients as functions of the pump cur-
rent density. As can be seen from the figure, the coef-
ficients A0, A1 and A2 for the first mode of generation
(curves 1) are always positive. For the second mode of
generation, the coefficients A1 and A2 (curves 2) are
also always positive, but the coefficient A0 for the laser
structure under study is always negative. At the laser
emission cut-off point (j = jmax), the coefficients A0, A1
and A2 for the two modes (as well as all other charac-
teristics for them) coincide.

OCL
0n

QW
0n ph

0n
3.2.2. Roots Λ1, Λ2 and Λ3 of the characteristic
equation as functions of the pump current density. Hav-
ing calculated the coefficients A0, A1 and A2, we then
find the roots Λ of the cubic equation (12) for each of
the two modes of generation (Figs. 3–6).
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Fig. 3. Real eigenvalue Λ1 (a) and real parts of eigenvalues Λ2 and Λ3 (b) for the first (“conventional”) mode of generation against
pump current density.
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Let us start with an analysis of the roots for the first
(“conventional”) mode of generation. As can be seen
from Fig. 3a, one of the eigenvalues (Λ1) for the first
mode of generation is always (for all values of the
pump current, i.e., for jth, 1 < j < jmax) a real negative
quantity. It turned out that the other two roots (Λ2 and
Λ3) for the first mode of generation are complex con-
jugate quantities at pump current densities in the range
jth, 1 < j < 9.6 kA/cm2. The real part of these roots is
also negative (Fig. 3b). The imaginary parts of the
roots Λ2 and Λ3, which are equal in magnitude but
SEMICONDUCTORS  Vol. 58  No. 5  2024

Fig. 4. Imaginary parts of the eigenvalues Λ2 and Λ3 for the
first (“conventional”) mode of generation against pump
current density.
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opposite in sign, are shown in Fig, 4. Solutions in the
form (9)–(11), corresponding to the roots Λ2 and Λ3 at
pump currents in the range jth, 1 < j < 9.6 kA/cm2,
describe underdamped relaxation oscillations in the
laser—the absolute value of the imaginary parts of the
roots Λ2 and Λ3 is the angular frequency of these oscil-
lations (see [46, 47]).

As can be seen from Fig. 4, at j = 9.64 kA/cm2, the
imaginary parts of the roots Λ2 and Λ3 (i.e., the angular
frequency of relaxation oscillations) go to zero (com-
pare with Fig. 2 in [46, 47]). (In Fig. 4 we should also
note a peculiarity in the dependence of Im(Λ2) and Im
(Λ3) on the pump current density at values of j slightly
exceeding jth, 1.)

As can be seen from Fig. 3b, at j > 9.64 kA/cm2, the
roots Λ2 and Λ3 become purely real (while differing
from each other) negative quantities. Solutions in the
form (9)–(11) at pump currents j > 9.64 kA/cm2

describe overdamping, i.e. purely exponentially eva-
nescent (without oscillations) relaxation of the con-
centrations of charge carriers and photons to their
steady state values.

Thus, as can be seen from our calculations, for the
first (“conventional”) mode of generation, the real
parts of the eigenvalues (or real eigenvalues) of all
three roots Λ are negative in the entire range of oper-
ating currents in the laser jth,1 < j < jmax (Fig. 3). This
proves the stability of the first mode of generation: the
second terms on the right side of expressions (9)–(11)
decay exponentially in time, and, thus, the concentra-
tions of charge carriers and photons return to their
steady state values ,  and .OCL

0n QW
0n ph
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Fig. 5. Real eigenvalues Λ for the second (“additional”) mode of generation against pump current density: (a) positive root Λ1;
(b) negative roots Λ2 and Λ3.
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Let us proceed to the analysis of the roots of the
characteristic equation (12) for the second (“addi-
tional”) mode of generation as functions of the pump
current density. These roots are shown in Fig. 5. It
turned out that all three roots are real quantities: one
root (Λ1) is always (for all values of the pump current
for the second mode of generation, i.e., for jth, 2 < j <
jmax) positive (Fig. 5a), and the other two (Λ2 and Λ3)
are always negative (Fig. 5b).

Figures 6a–6c shows the real parts of the roots Λ1,
Λ2 and Λ3 for two modes of generation (“conven-
tional” and “additional”) as functions of the pump
current density. It can be seen from the figure that at
the lasing cut-off point (at j = jmax) the corresponding
eigenvalues for the two modes coincide. This, in par-
ticular, means that the roots Λ1 for two modes of gen-
eration (which have opposite signs for j < jmax) should
necessarily vanish at this point (Fig. 6a).

Thus, our calculations show that for the second
mode of generation the eigenvalue Λ1 is positive over
the entire range of pump currents (jth, 2 < j < jmax). This
proves the instability of the second mode of generation
in the considered laser structure: the second terms on
the right side of expressions (9)–(11), corresponding
to this root Λ1, increase exponentially in time and,
thus, the concentrations of charge carriers and pho-

tons move away from their steady state values ,

 and .
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QW
0n ph

0n
4. CONCLUSIONS

A linear analysis of the stability of two modes of
generation in semiconductor quantum well lasers has
been carried out. Two modes of generation correspond
to two solutions to the system of rate equations,
obtained taking into account the internal optical loss
that depends on the concentration of charge carriers in
the waveguide region of the laser. It is shown that, in
contrast to the always stable and, therefore, observable
first (“conventional”) mode of generation, the second
(“additional”) mode, which is entirely due to the car-
rier-concentration-dependent internal loss, is unsta-
ble and, therefore, cannot be observed under steady
state conditions in the considered laser structure.

Despite the fact that the second mode of genera-
tion is unstable and cannot be observed under steady
state conditions, i.e., with a constant pump current
(continuous wave operation), its existence can mani-
fest itself under pulsed pumping at current densities j >
jth, 2. Even possible short-term switches from the stable
first (“conventional”) mode to the unstable second
should be accompanied by a strong increase in the
intensity of radiation associated with the spontaneous
recombination of charge carriers (in the waveguide
region in the first place, but also in the quantum well)
and, accordingly, a drop in the useful power of stimu-
lated radiation from the quantum well (see Fig. 1).
Thus, f luctuations of spontaneous and stimulated
emissions under pulsed pumping can serve as indica-
SEMICONDUCTORS  Vol. 58  No. 5  2024
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Fig. 6. Real eigenvalue Λ1 (a) and real parts of the eigen-
values Λ2 (b) and Λ3 (c) against pump current density. 1 –
first (“conventional”) mode of generation, 2 – second
(“additional”) mode of generation.
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tors of the existence of an unstable second mode of
generation.
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