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Abstract—The anisotropy of the conductivity and the shape of the I–V characteristics for a two-dimensional
quantum superlattice with the nonharmonic electron dispersion law are investigated for different directions
of the current and field applied to the structure relative to the superlattice axes. The anisotropy of the char-
acteristics and the conditions for the occurrence of multivalue I–V characteristics in different current f low
modes are discussed. It is shown that the deviation of the electron dispersion law in a two-dimensional quan-
tum superlattice from the harmonic one in a strong dc electric field noticeably affects the shape of the
I–V characteristic of a two-dimensional quantum superlattice. Several current peaks in a strong field are
caused by both mixing of the current lines for directions orthogonal to the applied field and electron transport
over Stark-ladder levels formed in different miniband valleys.
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1. INTRODUCTION
Interest in two-dimensional (2D) heterocompos-

ites and nanocomposites, in particular, quantum
superlattices (SLs) is related, to a great extent, to the
development of nanotechnology and advances in the
development of nanotransistors, quantum cascade
lasers, and quantum-dot lasers. The rapid develop-
ment of the technology of bipolar and field-effect het-
erotransistors with the tunneling emission of electrons
into the nanoscale base (channel) region of a structure
makes the study of features in the characteristics of
surface nanostructured periodic composites already
relevant at the current stage. Now, it is most frequently
suggested that 2D quantum SLs (2DSL) are formed
using arrays of quantum dots and nanopores coupled
by tunneling [1, 2]. In addition, it is interesting to
study natural superstructures, which are imple-
mented, e.g., on the basis of heterocomposites with
nanocrystalline silicon-carbide layers [3]. At present,
the possibilities of observing the spatial confinement
effects in silicon-carbide nanocrystallites are widely
discussed in publications [4]. The properties of various
allotropic forms of silicon-carbide crystals character-
ized by the presence of a natural superlattice in the
bulk of the structure have also been intensively inves-
tigated [3, 5]. Obviously, the development of such sys-
tems significantly expands the range of properties of

available quantum electronic devices based on 1D
superlattices and makes it possible to consider the
characteristics of nanocrystalline materials from a new
perspective.

The effect of Bloch generation, which has been
experimentally studied in 1D GaAs/AlGaAs quantum
superlattices since the 90s [6, 7], holds a special place
among phenomena discussed in relation to periodic
semiconductor heterostructures. Despite the difficul-
ties faced in manufacturing a Bloch generator, it con-
tinues to attract the attention of numerous researchers
due to the low level of critical fields of emission gener-
ation in it and the possibility of operation in the
microwave range [8]. The interest related to 2D quan-
tum SLs is due to the fact that, as was shown in [9],
under certain conditions, they are characterized by
long lifetimes of Bloch oscillations as compared with
1D periodic structures. This allows one to increase the
lasing power and the efficiency of conversion of high-
frequency radiation in 2DSLs, making them attractive
for application.

Meanwhile, at present, the theoretical study of the
electronic characteristics of 2D quantum SLs are lim-
ited to few works focused mainly on the simplest har-
monic electron dispersion law in a SL in the form of a
square [1, 2, 9, 10]. On the other hand, the effect of
Bloch generation is related to electron transport in a
319
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narrow miniband and can depend on the electron dis-
persion law implemented in it in the applied electric-
field direction. The diagnostics of the miniband spec-
trum and, correspondingly, identification of the lasing
mechanism observed in the SL are, however, quite dif-
ficult, since in a strong electric field the electron dis-
persion law in a SL is transformed into a system of dis-
crete levels, which generally form a system of Stark
ladders [2, 11]. In view of this, studying the features of
the response of a system to external perturbation
caused by the effect of the initial (without electric
field) form of the electron dispersion law on the Wan-
nier–Stark quantization of the electron spectrum in
the SL minibands is an important task.

In this study, we investigate the shape of the I–V
characteristics of a 2DSL for different modes of cur-
rent f low through the structure. The features of the
anisotropy of the transport properties of lateral quan-
tum SLs with a harmonic electron dispersion law
more complex than a simple one in a dc electric field
E are analyzed. The anisotropy of the conductivity and
the mechanisms responsible for the manifestation of
various features in the I–V characteristic are dis-
cussed. On the one hand, interest in SLs with a com-
plex electron dispersion law is due to the wide range of
semiconductor materials currently used in fabricating
periodic heterostructures. On the other hand, the
transport properties of carriers in 2DSLs in a strong dc
electric field are greatly affected by the anisotropy of
electron scattering, which causes mixing of the quan-
tum states for different crystallographic directions.
Therefore, additional mechanisms affecting the nega-
tive conductivity observed at both low and high fre-
quencies can appear in the system.

2. ELECTRON TRANSPORT
IN TWO-DIMENSIONAL SUPERLATTICES

IN A STRONG DC ELECTRIC FIELD
Below, we examine features of the transport char-

acteristics of lateral quantum 2DSLs in different cur-
rent f low modes. In contrast to previous studies [1, 12,
13], which were devoted to a simple square lattice with
a harmonic electron dispersion law, here we discuss
the electrical characteristics of 2DSLs with a more
complex quasimomentum dependence of the carrier
energy. Let us write the electron dispersion law in a 2D
miniband in the form

(1)

where ε(k) and k are the electron energy and wave vec-
tor, respectively; ki are its components; and Δ1(2), Δ11,
Δ12, and δ0 = ±1 are the parameters of the energy band
of the 2D quantum SL. The introduction of the disso-
ciative (~Δ2) term complicates the dispersion law,
allowing the appearance of additional lateral extrema
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in the 2D Brillouin zone. The position of the latter is
highly sensitive to the choice of both the parameters
  and the direction (the angle θ of the vector k relative to
the principal axis x1). In general, the ε(k⊥) dependence
is determined by the choice of materials for the hetero-
pair. Representation of the ε(k3) dependence in the

form ε(k3) =  can be used, for example, for
2DSLs consisting of a periodic set of 1D quantum
wires arranged vertically and coupled by tunneling,
which are formed in a nanoporous photonic crystal.
Another example is textured polycrystals (for example,
the 3C-SiC/Si(100) structures) with nanoscale grains
growing in columns in the vertical growth direction
[3]. In a 2D array of quantum dots, it is reasonable to
assume ε(k3) = ε03 = const, where ε03 corresponds to
the lowest size-quantization level in the direction per-
pendicular to the 2DSL plane. In the general case, we
assume d1 ≠ d2, which is typical of quantum-dot arrays
arranged along parallel guide grooves formed on the
crystal surface, which are discussed in publications.

At the first stage, in order to identify the features
caused by the specificity of the electron dispersion
law, similar to [1, 12], we calculate the I–V character-
istics of a 2D quantum SL using the Boltzmann equa-
tion with the collision integral in the constant relax-
ation-time approximation

(2)

where f(k, t) and f 0(k) are the nonequilibrium field-
disturbed and equilibrium electron distribution func-
tions, respectively. The approximation chosen for the
collision integral is wholly acceptable for revealing the
main features of the electrical characteristics related to
the form of the electron dispersion law used in the
lower miniband and simultaneously take into account
the effect of the entanglement of states for different
directions. Next, along with a 2DSL characterized by
a square unit cell (d1 = d2 = d), which is natural, for
example, for nanocrystalline textured 3C-SiC films
deposited onto the Si(100) surface [3], we also con-
sider the characteristics of SLs with a rectangular cell
(d1 ≠ d2). A version of the latter, as was mentioned
above, are line structures consisting of a periodic
sequence of quantum dots with the period d1 formed
along natural or artificial guides separated by dielectric
layers.

In the one-miniband approximation, the equation
for the current density is written in the form

(3)

Using the periodicity condition, we present the dis-
tribution function as a Fourier series

(4)
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(5)

The expression for Fνμ depends on the dimension-
ality of the model and the choice of the equilibrium
distribution function. For the Boltzmann distribution
and dispersion law (1), we obtain

(6)

where

When deriving Eq. (6), we assumed that the directions
of vectors k1 and k2 coincide with the directions of the
principal axes of the rectangular lattice: k1 || [100] and
k2 || [010]. The Φνμ(t) function is determined by solving
Eq. (2)

(7)

In the case of a dc electric field E = const with
components E1,2 along the x1,2 axes, at the initial
instant of the time of switching on the field t0 = –∞,
we have

(8)

where Ω1 = , E1 = , Ω2 = ,
E2 = , Ωτ = E/E0, E0 = ℏ/ed1τ, and ψ is the
angle between the field direction and axis x1. Substi-
tuting (1), (4), (6), and (8) into Eq. (3), we arrive at
expressions for the current components along the
principal axes of the 2DSL with dispersion law (1).
The corresponding equations for the current density
components j1 and j2 in the direction of the 2DSL
principal axes take the form
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(10)

where j0 = eF0/2πℏd2 and χ = (d2/d1)2. If we introduce
the parameter dψ corresponding to the SL period in
the direction of the applied field E (d1 = dψcosψ, Eψ =
ℏ/edψτ), then current components (9) and (10) can be
rewritten as

(11)

(12)

In formulas (9) and (11), the first terms in curly
brackets describe the I–V characteristic of a 1D (along
the x1 axis) quantum SL. For a 2D quantum SL in the
absence of a nonadditive term in dispersion law (1),
i.e., at D20 = 0, current density equations (9) and (10)
were obtained and investigated in [1]. In the work, the
anisotropy of the electrical characteristics of a quan-
tum SL was first studied. In particular, it was shown
that the mixing of electronic states in the directions
longitudinal and transverse relative to the field leads to
a mismatch between the directions of the field and the
current f lowing through the structure. The degree of
anisotropy increased with the applied electric field.

3. FEATURES OF THE I–V CHARACTERISTIC 
OF A TWO-DIMENSIONAL QUANTUM 

SUPERLATTICE WITH A NONADDITIVE 
DISPERSION LAW AT A SPECIFIED

FIELD DIRECTION
Preliminary analysis of the I–V characteristic car-

ried out in [12] for the simplest square lattice (D11 = D12)
showed that the presence of a nonadditive term (Δ2 ≠ 0)
in dispersion law (1) affects the I–V characteristic,
shifting its maximum toward fields higher or lower
than the nonlinearity critical field E0. In strong fields,
an additional (second) maximum may, in principle,
appear in the I–V characteristic of a 2DSL with a non-
additive dispersion law. Below, we consider in more
detail the properties of the steady-state conductivity
and features of the I–V characteristic caused by the
nonadditivity of the electron dispersion law in a 2DSL
with both the same and different SL periods d1 and d2
along the principal symmetry axes.

In the general case, the value of the current f lowing
through the structure is expressed as j = ( )1/2
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Fig. 1. Field dependences of the angle ϕ of inclination of
(a) the current lines and (b) the values of the current com-
ponents (1, 1 ', 2, 2 ') parallel (j||) and (3, 3 ', 4, 4 ') perpen-
dicular (jtr) to the field direction of the current compo-
nents j for the angles ψ = (1, 1 ', 3, 3 ', 5, 5 ') π/18 and
(2, 2 ', 4, 4 ', 6, 6 ') π/6. The parameters of a 2D square SL
were taken to be d2 = d1, Δ1 = 5 meV, Δ2 = (5, 5 ', 6, 6 ') 1
and (1–4, 1'–4 ') 20 meV, Δ11Δ12 = 1, δ0 = (1–6, solid line) 1
and (1 '–6 ', dashed line) –1, and kBT = 7 meV.
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and the relation j2/j1 = tanϕ sets the current direction
relative to the x1 axis, which is determined by the
angle ϕ. As was already noted in [1, 12], the main fea-
ture of a 2DSL is the mismatch between the directions
of the field (angle ϕ) and the current f lowing through
the structure (angle ϕ). For a 2D lattice, the exceptions
are high symmetry axes, i.e., the angles ψ = ϕ = 0, π/4,
and π/2 (at d1 = d2) and ψ = ϕ = 0 and π/2 (at d1 ≠ d2).
The mismatch between the angles ψ and ϕ is related to
the asymmetry of the distribution function in the col-
lision integral, which arises as a result of entanglement
of the quasimomenta k1 and k2 upon heating of the
electron gas. The asymmetry increases with applied
electric field. In this case, the observed effect mani-
fests itself even in structures with a purely harmonic
dispersion law (Δ2 = 0) under the conditions of an iso-
tropic relaxation time (τ = const) [1]. The observed
divergence of the angles ψ and ϕ increases with devia-
tion of the chosen field direction from the high sym-
metry axes and the value of the applied electric field.

3.1. Conductivity of Electrons in a Square
Two-Dimensional Superlattice

For a square lattice with the parameters Δ1 ≫ Δ2,
the maximum current is obtained at angles (ψ, ϕ) lying
in the diagonal direction (ψ, ϕ ≈ π/4) at Ωτ ≈ :

(13)
For a lattice with the parameters Δ1 ≪ Δ2, as well as

for a 1D SL, the maximum current is obtained at
angles (ψ, ϕ) close to zero at Ωτ = 1

(14)
In the more general case, the characteristic depen-

dences of the angle ϕ and the components of the cur-
rent j f lowing through the structure on the direction
and value of the applied field E for a square SL are
shown at several parameter values   in Fig. 1. In a square
SL, for all values   of the parameters in the region of
high fields E > Eψ, the current steadily decreases with
an increase in the electric field.

The presence of the nonadditive term (Δ2 ≠ 0) in
dispersion law (1) upon a deviation in the direction of
the electric field applied to the structure from the
principal symmetry axes (ψ = 0, π/4) leads to a change
in the shape of the I–V characteristic, in particular, to
the occurrence of a transverse current component.
The latter can occur if there are effective mechanisms
for the drainage of carriers at the ends of a system; i.e.,
there is strong surface recombination. Then, charges
do not accumulate at the lateral surface and the
applied field direction does not change. As follows
from Fig. 1a, the angle ϕ will depend on both the value
of the applied field (the difference between the angles
ψ and ϕ increases with field) and the contribution
determined by the value (Δ2) and sign (δ0) of the dis-
sociative term in the electron dispersion law. In this
case, with increasing field, the transverse current
component behaves similarly to the longitudinal com-
ponent, but with the maximum current shifted toward
stronger fields. The presence of negative differential
conductivity portions in both current components
indicates the possibility of the amplification of high-
frequency signals polarized in both the longitudinal
and transverse directions relative to the direction of
the applied dc electric field. A decrease in the contri-
bution of the dissociative term to the dispersion law
leads to a change in the sign of the transverse compo-
nent of the current (Fig. 1a), which can be used to
identify the electron dispersion law in a SL. The calcu-
lations made for a quantum SL with both narrow and

2
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Fig. 2. General view of the dispersion law ε(k) and its view in the direction at an angle of θ = π/10 at parameters of Δ1 = 5 meV,
Δ11 = Δ12 = 1, Δ2 = 1 (dashed line) and 20 meV (solid line), δ0 = (a) –1 and (b) 1, and kBT = 7 meV. Here, ε is given in meV and
k = k1,2d1,2 is the dimensional parameter.
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broad (relative to kBT) allowed minibands in the
region Ωτ > 1 show the dependence of the differential
conductivity on the parameters included in the elec-
tron dispersion law. Thus, even within the quantum
limit, the interrelation between the current f lowing
through the discrete levels of the Stark ladder and the
form of the initial (without field) electron dispersion
law in the miniband of the quantum SL is retained.

3.2. Conductivity of Electrons in a Two-Dimensional 
Superlattice with a Rectangular Lattice

A somewhat different situation is observed in a
rectangular quantum SL (d1 ≠ d2). In this case, the
ε(k) dependence contains lateral extrema, whose posi-
tion and depth are determined by the value and sign of
the parameter D20, as well as by the choice of angle θ
(Fig. 2). A change in the sign of the parameter δ0 leads
to inversion of the central valley, which can be of fun-
damental importance for periodic heterostructures
with overlapping states of the valence and conduction
bands of neighboring layers.
SEMICONDUCTORS  Vol. 55  No. 3  2021
Figure 3 shows the field dependences of the current
components in the longitudinal direction (j||) and the
transverse direction (jtr) relative to the applied electric-
field direction at a fixed angle ϕ at different values   of
the dissociative term Δ2 in the electron dispersion law.
In the calculations, we took into account the effect of
the amplitudes of the harmonics FIJ included in the
equations for the currents and changing with the
parameters over a fairly wide range on the shape of the
I–V characteristic. The comparison of the curves in
Figs. 2 and 3 clearly demonstrates the interrelation
between the dispersion law in the miniband, the cho-
sen angle of application of the field, and the shape of
the I–V characteristic of the SL.

It can be seen in Figs. 2 and 3 that the change in the
form of the dispersion law with increasing parameter Δ2
noticeably affects the transport properties of electrons
in the SL. In this case, the inversion of the central val-
ley upon a simple change in the sign of parameter δ0
does not fundamentally affect the qualitative form of
the I–V characteristic of the SL. The negative differ-
ential conductivity (NDC) portion observed in the
I–V characteristic j||(E) at Ωτ ≫ 1 (Fig. 2) related to
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Fig. 3. Field dependences of the current components for
several values of parameter Δ2 and several constant angles
ψ of field inclination. (a) Component j||, ψ = (1, 1 ') π/10,
(2, 2 ') π/11, and (3, 3 ') π/9; Δ2 = 5 meV; δ0 = (1–3, solid
curve) and (1 '–3 ') –1. (b) (1, 1 ', 2, 2 ') component j|| par-
allel to the field direction and ((3, 3 ', 4, 4 ') perpendicular
component jtr; ψ = π/10, Δ2 = (1, 1 ', 3, 3 ') 1 and (2, 2 ', 4,
4 ') 20 meV; and δ0 = (1–4, solid line) 1 and (1 '–4 ', dashed
line) –1. The remaining parameters were taken to be d2/d1 =
2.7, Δ1 = 5 meV, Δ11 = Δ12 = 1, and kBT = 7 meV.
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the mechanism of Bloch oscillations noticeably nar-
rows both with an increase in the dissociative term
proportional to Δ2 and upon a variation in the angle ϕ
(Fig. 2a). In a strong field (E > Eψ, with increasing
parameter Δ2, the current density increases, leading to
the occurrence of an additional broad maximum in the
current characteristic, which most likely results from
the redistribution of electrons between neighboring
valleys. In a strong field, the I–V characteristic of the
2DSL becomes similar to the characteristic of a 1D
SL, which reveals the effective redistribution of elec-
trons between adjacent minibands due to tunneling
between them [11, 14, 15]. We can assume that, in a
2DSL with a complex multivalley dispersion law, the
electron spectrum in a strong field transforms not into
one, but into a system of Stark ladders, the transitions
between which lead to the observed change in the
shape of the I–V characteristic. To reduce the contri-
bution of electrons in the lateral valleys to the forma-
tion of the I–V characteristic of a 2DSL, it is sufficient
to change the angle of the applied field relative to the
principal axes of the 2DSL (Fig. 2a). The possible
entanglement caused by the anisotropy of the collision
integral of states in the directions perpendicular to the
field can also be assumed as the mechanism responsi-
ble for the appearance of the second maximum in the
2DSL I–V characteristic. This effect leads to mixing of
the longitudinal and transverse conductivity of the
system, similar to how it occurs in measurements of
the quantum Hall effect by the van der Pauw method
on a square probe [16]. The effect of the damping of
Bloch oscillations due to the entanglement of Stark
states in directions along and across the direction of
current f lowing in the structure was first discussed in
[2, 9]. Obviously, more detailed information on the
structure of quantum states in a SL in a dc electric
field can only be obtained by analyzing simultaneously
the high-frequency resonance characteristics of the
system, as was done, for example, for a 1D quantum
SL [17].

4. FEATURES OF THE I–V CHARACTERISTIC 
OF A TWO-DIMENSIONAL QUANTUM 

SUPERLATTICE IN THE FIXED CURRENT 
DIRECTION MODE

Above, we examined the situation corresponding to
the choice of a specified field direction relative to the
2DSL axes. This mode can be implemented using a
surface slot diode configuration by placing, for exam-
ple, a planar SL between the source and drain contacts
of a field-effect transistor. In a real experiment, how-
ever, the case of the absence of an effective recombi-
nation sink at the lateral ends of the structure can also
be implemented. Then, due to charge accumulation at
the lateral faces, the field will deviate from its initial
direction and an electric-field component transverse
to the current direction will arise [1]. In view of this, it
seems necessary to consider the situation of a fixed
current direction (ϕ = const). Further, we assume that
the current direction is specified and the angle ϕ is
equal to the angle between the vectors j and x1. This
mode is implemented, for example, on samples made
in the Hall-bridge configuration. In this case, the field
direction in the sample determined by the angle ϕ will
depend on both the field value and other parameters of
the system.

To calculate the I–V characteristic of a 2DSL for a
fixed current direction, we can use Eqs. (11) and (12),
which establish the dependence of the current compo-
SEMICONDUCTORS  Vol. 55  No. 3  2021
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Fig. 4. Dependences of current j in the structure on the
field component E|| parallel to the current at a constant
angle of ϕ = 0.4 rad for a square SL with parameters of
d2/d1 = 1, Δ1 = 5 meV, Δ11 = Δ12 = 1, Δ2 = 20 meV, and
δ0 = 1 at kBT = 7 meV in applied fields of (E/E0)2 = (1) 0.1,
(2) 0.3, (3) 0.5, (4) 0.8, (5) 1, (6) 2, (7) 3, (8) 5, (9) 7,
(10) 8, and (11) 10. Inset: dependences of the angle ϕ of
inclination of the current lines on angle ψ of inclination of
the current lines for several (E/E)2 values. Dashed curves
show the j(E) dependences for a constant field direction.
Points correspond to the current values at (a) a constant
field value and (b) a constant ψ value.
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nent j|| on angle ψ at a specified applied electric-field
value. Then, using the relation between the angles ϕ
and ψ (see the inset in Fig. 4) determined at a constant
field value by the relation ϕ = arctan(j2/j1), it is easy to
establish the dependence of the total current j on the
angle ϕ. Then, according to the obtained depen-
dences, we select the current j and the longitudinal
(along the current direction) field component Е|| at
fixed values   of the field E and the angle ϕ (points
in Fig. 4).

To carry out a more accurate analysis, let us con-
sider the solutions of current transport equations (11)
and (12), fixing the current direction, i.e., setting ϕ =
const. Then, according to the preliminary analysis
carried out in [4, 8], similar to the Hall effect, a field
component directed across the current f lowing
through the sample will arise in the system. Let the
direction of the current f lowing through the structure
be deviated from one of the SL principal axes (the x1
axis) by angle ϕ which lies in the angular range
between 0 and π/4. In this case, the longitudinal (E|| ||
j) and transverse (E⊥ ⊥ j) components of the electric
field E and current j are related to their projections
onto the SL principal axes by the relations

(15)
The interrelation between the direction (angle ψ)

and the field value E at a specified angle ϕ can be
established using the condition of the zero tangential
component of the current: tanϕ = j2/j1 = const. The
desired j||(E||) dependence is found by substituting the
determined relation between E and ψ into the expres-
sion for the current density j = j|| = ( )1/2, where
j1,2 are determined by Eqs. (11) and (12).

Let us consider first the simplest case ϕ = 0. In this
case, using the condition j2 = 0, we immediately find
one solution ψ(1) = 0, which corresponds to current
and field coinciding in direction. Then, the expression
for the current density takes the form

(16)
However, the condition of the zero current compo-

nent j2 allows also the existence of another solution.
The simplest solution takes place at the transition to a
SL with a predominantly dissociative dispersion law.
In particular, at Δ12 = 0, the relation between the ψ(2)

direction and the field value E (2) has the form ψ(2) =
±1/2arccos[1/(τΩ(2))2]; consequently, we have

(17)
The relation between the angle ψ (at 0 < ψ < π/2)

and the Bloch frequency Ω, as well as the dependences
of the current (at ϕ = 0) on the field component E||

= ϕ = ϕ1 2cos , sin ,j j j j

⊥= ψ − ϕ = ψ − ϕ|| cos( ), sin( ).E E E E

+2 2
1 2j j

= = Ω + + τΩ(1) (1) (1) 2
1 01 11 10 11 20( )/{1 ( ) }.j j j D F F D

= Ω +(2) (2)
01 || 11 10 11 20( )/2;j j D F F D

Ω = Ω τΩ(2) (2) (2) 2
|| cos{0.5arccos[1/( ) ]}.
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parallel to the current, which are described by
Eqs. (16) and (17), are shown in Fig. 5a (curves 1).

At Δ12 ≠ 0 and ϕ = 0 in the SL with a square Brill-
ouin zone, the equation relating the direction of the
field (angle ψ) with its value E/E0 has the form of a
quadratic equation with respect to both the variable
Φ = cos2ψ and the variable W = (E/E0)2

(18)

Solving Eq. (18), we find ψ = ±0.5 arccos(Φ),
where Φ = , a = W2(D12F01 +
D20F11/2), b = –F11D20(3 + W)W/2, and c = D12F01(1 +
2W) + F11D20(1 + W/2). Substituting the obtained
solution into Eq. (11), we can easily calculate the field
dependences of the current j1(E1) and the transverse
field component E2(E1) (curves 2 in Fig. 5a).

At Δ12 ≠ 0 and ϕ = 0 in a SL with a rectangular lat-
tice (d2/d1 ≠ 1), the equation relating the field direc-
tion (angle ψ) and the field value E||/Eψ also has the
form of a quadratic equation for the quantities Z =
χtan2ψ and W = (E/Eψ)2

(19)
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+ − ψ + − ψ =

2 2
12 01

11 20

[1 2 cos 2 ]
(1 cos 2 )[1 /2 ( /2)cos 2 ] 0.

D F W W
F D W W W

− ± −2 1/2{ [ 4 ] }/2b b ac a

+ + + −
+ − + + =

2 2
1

2

[1 2 (1 ) (1 ) ]
[1 ][1 ] 0,

A W Z W Z
A W WZ WZ



326 M. L. ORLOV, L. K. ORLOV

Fig. 5. Dependences of the current j = j1 in the structure on
the longitudinal field component E|| at constant angles of
ϕ = (a) 0 and (b) π/6 and parameters of δ0 = 1, Δ11 = 1,
kBT = 7 meV. (a) Δ1 = (1, 3, 4) 5 and (2) 1 meV; Δ12 =
(1, 1 ') 0, (2, 2 ', 3, 3 ') 1, (4, 4 ') 3, and (4, 4 ') 3; Δ2 = (1) 20,
(2) 7, and (3, 4) 5 meV. (b) Δ12 = 1; (1) Δ1 = 0 and Δ2 =
5 meV, (2, 3) Δ1 = 5 meV and Δ2 = 0; (2) the main and
(3) additional solutions. (a) (1, 2) Square SL (d2/d1 = 1)
and (3, 4) rectangular SL (d2/d1 = 3/1). (b) Square SL
(d2/d1 = 1). Insets: corresponding dependences of the
angle ψ of inclination of the current lines on applied field E.
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where χ = (d2/d1)2, A1 = Δ12F01, and A2 = Δ2F11.
Solving Eq. (19), we find ψ = ±arctan(Z/χ), where
Z =  { }/2a, a = W 2{A1 + A2}, b =
–W 2(2A1 + A2) + 2W(A1 + A2), and c = A1(1 + W)2 +
A2(1 – W), and substituting the obtained solution into
Eq. (11), we can easily find the j1(E1) and E2(E1)
dependences (curves 3 and 4 in Fig. 5a).

For an arbitrary angle ϕ, the problem is compli-
cated, since it requires the solution of a third-order

− ± −2 1/2[ 4 ]b b ac
equation that relates the parameters W and ψ. In the
general case, you can use also the procedure consid-
ered above when constructing the curves shown in
Fig. 4. The obtained equation is solved most simply
only in two special cases corresponding to the zero val-
ues   of one of the parameters Δ2 or Δ1. These conditions
correspond to the purely associative or purely disso-
ciative electron dispersion law. In these cases, the rela-
tion between the value and direction of the applied
field at d1 = d2 = d takes the form

(20)

at Δ2 = 0 and

(21)
at Δ1 = 0. A typical form of the dependences of the
angle ψ of inclination of the field lines and the value of
the f lowing current j = j|| on the value of the field E||
along the current lines at a specified angle ϕ = π/6 and
the parameters Δ11 = Δ12 = 1, δ0 = 1, kBT = 7, (Δ1 = 0,
Δ2 = 5 meV) (dashed line 1), (Δ1 = 5 meV, Δ2 = 0)
(solid lines 2 (main solution) and 3 (additional solu-
tion) are shown in Fig. 5b. The change in the sign of
the parameter δ0 affects insignificantly the form of the
curves shown in Fig. 5.

The decomposition of the current characteristic
into several branches, which was first noted in [1], is
accompanied by the occurrence of an electric-field
component transverse in relation to the current direc-
tion, which can affect the behavior of the high-fre-
quency characteristics. Despite the existence of several
branches of the current characteristic, the system,
however, will remain stable due to the presence of a
balance bar, which is the transverse electric field. The
deviation of the current leads to instantaneous occur-
rence of the field component E⊥, which counteracts
the occurrence of the transverse current component
and the recovery of equilibrium in the system, which
corresponds to the requirement for the constant direc-
tion of current f lowing through the structure (in the
investigated case, to the condition ϕ = 0). As a result,
the jumps between different branches of the current
will be short-term and the field direction will oscillate
on both sides of the specified direction of the current
with angles ±ψ.

5. CONCLUSIONS
The features of the anisotropy and transport prop-

erties of lateral 2D quantum SLs with a complex mul-
tivalley dispersion law of electrons in the 2DSL lower
miniband were analyzed. The anisotropy of the spec-
trum of a quantum SL in a strong dc electric field
through the collision integral leads to the mixing of
quantum levels of Stark ladders in the directions along
and across the current f low lines. Mixing of the Stark
levels noticeably affects the shape of the I–V charac-

τ Ω = ψ − ψ ψ
− ψ ψ ψ

2 2
11 10 12 01 12 01

11 10

{ cos sin }/{ cos
sin }sin cos ,

D F D F D F
D F

τ Ω = ψ − ϕ ψ + ϕ ψ2 2 (tan tan )/(tan tan )cos 2 ,
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teristic, leading, in the case of a square SL, to slowing
of the current drop in fields above the critical one
(E > E0). In a rectangular SL, in some cases, the cur-
rent growth and the occurrence of an additional broad
maximum in the I–V characteristic of a SL in strong
fields at certain current f low angles can be observed.
This effect is similar to the effect of tunneling break-
down between the levels of Stark ladders of adjacent
minibands, which is observed in the I–V characteris-
tics of 1D SLs. It can be assumed that, in 2DSLs, this
feature of the I–V characteristic of a SL is related to
electron transport between the levels of a series of
Stark ladders forming in the Brillouin zone from
groups of carriers localized in neighboring valleys. It
was shown that the initial form of the electron disper-
sion law in the miniband noticeably affects the forma-
tion of Stark levels and the character of Bloch oscilla-
tions, which is reflected in the behavior of the
response of the system to an external field.
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