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Abstract—A technique for quantization of the electromagnetic field in photonic nanostructures with three-
dimensional modulation of the dielectric constant is developed on the basis of the scattering matrix formal-
ism (S quantization in the three-dimensional case). Quantization is based on equating the eigenvalues of the
scattering matrix to unity, which is equivalent to equating each other the sets of Fourier expansions for the
fields of the waves incident on the structure and propagating away from the structure. The spatial distribution
of electromagnetic fields of the modes in a photonic nanostructure is calculated on the basis of the R and T
matrices describing the reflection and transmission of the Fourier components by the structure. To calculate
the reflection and transmission coefficients of individual real-space and Fourier-space components, the
structure is divided into parallel layers within which the dielectric constant varies as a function of two-dimen-
sional coordinates. Using the Fourier transform, Maxwell’s equations are written in the form of a matrix con-
necting the Fourier components of the electric field at the boundaries of neighboring layers. Based on the cal-
culated reflection and transmission vectors for all polarizations and Fourier components, the scattering
matrix for the entire structure is formed and quantization is carried out by equating the eigenvalues of the
scattering matrix to unity. The developed method makes it possible to obtain the spatial profiles of eigen-
modes without solving a system of nonlinear integro-differential equations and significantly reduces the com-
putational resources required for calculating the probability of spontaneous emission in three-dimensional
systems.
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1. INTRODUCTION
Understanding the interaction of radiation with

matter [1] is an important problem in modern physics,
which attracts much interest due to the possibility of
creating optoelectronic devices with adjustable char-
acteristics. It is known that media with an inhomoge-
neous dielectric constant allow control of the direc-
tion and probability of spontaneous emission [2]. In
particular, the probability of spontaneous emission
can significantly increase for the eigenmode of a reso-
nator [3]. In media in which the dielectric constant
varies periodically in space and the Bragg diffraction
of light is observed, there forms a photonic band gap
where spontaneous emission can be completely sup-
pressed [4, 5]. In recent years, attention has been
drawn to studies of nanostructures designed in a spe-
cial way [6] that possess a number of interesting prop-
erties; thus, lasing was obtained in metal/semiconduc-
tor resonators with three-dimensional modulation of

the dielectric constant [7]. Of interest are systems fea-
turing a complex photonic band structure [8], poten-
tially applicable in the terahertz range.

To describe the interaction of radiation with mat-
ter, a procedure for quantization of the electromag-
netic field in a homogeneous “quantization box” was
developed, which makes it possible to deal with a
quasi-continuous frequency spectrum instead of a
continuous one. The quantization procedure involves
setting the boundary conditions at the boundaries of
the quantization box. Traditionally, Born–Karman
periodic boundary conditions have been used [1, 9,
10]. To calculate the probability of spontaneous emis-
sion in layered structures, a method taking into
account changes in the spatial structure of the electro-
magnetic-field modes was proposed in [11]. However,
in the case of an inhomogeneous medium, the analysis
of the mode structure of a field on the basis of periodic
boundary conditions is not strict and self-consistent:
1145
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Fig. 1. Layout of the structure placed in a quantization box.
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the presence of inhomogeneities can cause significant
changes in the mode structure calculated on the basis
of periodic boundary conditions, which can lead to
inaccurate results in the study of finite-size systems
[12]. Numerical algorithms for calculating the proba-
bility of spontaneous emission on the basis of Green’s
functions [13] or expansion of the field by eigenmodes
or quasi-guided states [14] require significant compu-
tational resources when implemented for large three-
dimensional systems and can encounter problems
concerning the convergence of the results.

A strict and self-consistent procedure for the quan-
tization of an electromagnetic field and calculation of
the probability of spontaneous emission in inhomoge-
neous media can be implemented on the basis of the
S-quantization formalism [15], in which the quantiza-
tion condition is the equivalence of the amplitudes of
waves incident on the structure and those of outgoing
waves.

Here, we develop the S-quantization formalism for
media with three-dimensional modulation of the
dielectric constant.

2. QUANTIZATION
OF AN ELECTROMAGNETIC FIELD

Let us consider an arbitrary structure with three-
dimensional inhomogeneities. It is necessary to
choose a system of coordinates within this medium.
Since most structures currently fabricated have a pre-
ferred axis (the growth axis), we choose it as the z axis.
Typically, the thickness of the structure along this axis
(denoted here as Lz) is much smaller than the trans-
verse dimensions of the structure in the xy plane. We
assume that the characteristic transverse dimensions
of the structure in this plane are Lx × Ly (see figure 1).
This makes it possible to expand any variable pertain-
ing to the field-quantization problem into a Fourier
series in two dimensions. For example, an electric
field can be represented as

(1)

Here, the components of the two-dimensional vector
q = (qx, qy) take on values of 2πMx, y/Lx, y, where Mx, y
are integers, and vector ρ lies in the xy plane. Evi-
dently, this transformation does not generally allow an
arbitrary angle of incidence of a wave on the structure.
However, one can choose rather large transverse
dimensions of the structure, so that the transverse
wave vector will be close to one of the vectors q, pro-
vided that the number of terms in the expansion is
large enough. In particular, for waves of the optical
range it is sufficient that the transverse dimensions of
the structure exceed 100 μm.

Furthermore, due to the linearity of Maxwell’s
equations, any wave incident on the structure can be
presented as the sum of two polarizations with either
the Ex or Ey component vanishing. We note that these
polarizations have nothing to do with the TE or TM
polarizations, since there is no plane of incidence
as such.

As will be shown in the next section, the x and y
components of the electric and magnetic fields
uniquely determine the solution of Maxwell’s equa-
tions, and, thus, to solve the quantization problem it is
sufficient to determine the vector of Fourier coeffi-
cients for the x and y components of an electric field.
It is assumed below in this section that, wherever the
index q occurs in matrix notation, it runs twice the
entire set of values in Fourier space, once for each of
the coordinate components of the electric field.

The S-quantization procedure is based on con-
structing a scattering matrix, which relates the ampli-
tudes of the waves incident on the structure to those of
waves emitted by the structure. Thus,

(2)

(3)

Here, we introduce the following designations: the
superscript denotes the positive or negative direction
of wave propagation along the z axis, while the matri-
ces  and  describe the transmission and reflection
of the Fourier components through the structure. For
example, if there is only a wave propagating in the pos-
itive direction of the z axis, we can write
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The calculation of the reflection and transmission
matrices is described in the next section.

The procedure of S quantization implies that we
equate the eigenvalues of the scattering matrix to
unity:

(5)

(6)
In this way, we obtain the eigenmodes of the elec-

tromagnetic field in the structure. For each eigen-
value, we can determine the associated eigenvector,
which yields the initial values of the field at the bound-
aries. Subsequently, using the transfer matrix method
discussed in the next section, we can reconstruct the
distribution of the field in the given mode at any point
in the structure. Then, using the field distribution, we
can calculate such values as the probability of dipole
spontaneous emission and, as a consequence, the Pur-
cell factor [12, 15].

3. CALCULATING THE REFLECTION
AND TRANSMISSION COEFFICIENTS

The reflection and transmission matrices  and
, entering Eq. (3), can be determined by a number

of different techniques [16], usually using the finite-
difference method. The disadvantage of these
approaches is primarily their computational complex-
ity, especially when working in real space. When cal-
culations are done in reciprocal space, there may also
occur divergences for some types of materials. In one-
dimensional structures, it is reasonable to use the
transfer matrix method [17], which is well suited for
calculating the reflection and transmission coeffi-
cients and was already used in the S-quantization
method for lower dimensions [12, 15, 18]. In this
paper, we propose a generalized transfer matrix tech-
nique for the case of three-dimensional structures that
meet the requirements listed in the previous section.
In this section, we retain the convention on the index q
in matrix notation, but now it runs the set of values in
reciprocal space four times, as it counts the x and y
components of the electric and magnetic fields.

The method is based on dividing the structure into
N layers parallel to the xy plane. Let the thickness of
the lth layer be dl. We assume that the dielectric con-
stant ε inside each layer depends only on x and y

(7)
and expand it into a Fourier series similar to the field
in Eq. (1):

(8)

We note that the Fourier coefficients tend to zero as
the absolute value of q increases, and it is this fact that
makes it possible to replace an infinite set of Fourier
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components of a field with a finite one. Then, the
expansion for electric displacement can be found by
the convolution theorem:

(9)

Maxwell’s equations for the field inside the layer
are

(10)

and
(11)

by transforming the curl of both sides of Eq. (10) and
substituting Eqs. (9) and (11), we obtain a system of
homogeneous second-order differential equations for
the Fourier components:
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The Laplace operator is written in the chosen Fou-
rier representation as
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Using it in Eqs. (12) and (13), we obtain a system of
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We note that the equations for the y components
are unnecessary (see below). This system is solved in
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vector of unknown variables is written as
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The coordinates of the layer boundaries are z1 =

 and z2 =  = z1 + dl. Then, the solution
to Eq. (20) can be written as

(22)
We also have to determine the rule for the transfer

of the vector of unknowns across the boundaries.
Using Eq. (10), we obtain

(23)

(24)

(25)
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Evidently, we can get rid of the y components of the
field altogether by expressing them via other compo-
nents, and then express the derivatives via these com-
ponents. Since the tangential components of the field
are conserved at the boundaries between different
media, the Ex, q, Ey, q, Hx, q, and Hy, q Fourier compo-
nents are also conserved, so that the transfer rule for
the x vector can be written as

(29)

(30)

Now, let us introduce the transfer matrix for the
lth layer

(31)
and the transfer matrix for the entire structure

(32)

Using this matrix, we can calculate the transmission
and reflection of an arbitrary wave incident at any
boundary of the structure. Since one needs to know
the reflection and transmission coefficients for indi-
vidual coordinate and Fourier components in order to
obtain the scattering matrix, let us demonstrate how
these components can be determined. The wave vector
of a given component is
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Then, e.g., for the case of x polarization we have

(35)

(36)
These relations are sufficient to compose the x vec-

tors corresponding to the incident, reflected, and
transmitted waves, because the z dependence in free
space is given by a simple exponential factor.

Let us write the components of the vector x corre-
sponding to the Fourier component q, the positive
direction of propagation, and the x polarization of the
wave (the index q is omitted in these expressions):

(37)
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(39)

(40)

We designate this vector as . We note that the signs
of the components Ex and Ey and the derivatives 
and  are reversed upon reversal of the propagation
direction (the direction of decreasing z). Thus, to write
the vector of unknowns , corresponding to the col-
umn of the reflection matrix in Eq. (3), we need to
multiply the components corresponding to the mag-
netic field and the derivative of the electric field from
Eqs. (38) and (39) by Rq, x and the components of the
electric field and the derivative of the magnetic field
from Eqs. (37) and (40) by (–Rq, x). The vector 
describing the transmitted wave is obtained by simply
multiplying Eqs. (37)–(40) by Tq, x, because its propa-
gation direction is the same as that of the incident
wave.

To find the reflection and transmission matrices,
let us formally write expressions for the transmission
and reflection of a single Fourier component through
the structure:
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Since the original vectors  and  in Eq. (3)
have dimensions two times smaller than the new vec-
tors  and , the system of Eqs. (41) and (42) is
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sufficient to determine them uniquely. After finding
the reflection and transmission vectors for all polar-
izations and Fourier components, we can construct
the scattering matrix and proceed to the procedure of
S quantization.

4. CONCLUSIONS
We have developed a procedure for quantization of

the electromagnetic field in photonic nanostructures
with three-dimensional modulation of the dielectric
constant. The quantization of three-dimensional
structures was carried out in a quantization box with
boundary conditions based on equating the ampli-
tudes of traveling waves at opposite sides of the box
(S boundary conditions), which corresponds to equat-
ing the eigenvectors of the scattering matrix (S matrix)
to unity. Expressions for the complete S matrix in the
three-dimensional case written in terms of the reflec-
tion and transmission matrices of the inhomogeneous
structure under consideration are obtained. A method
for determining the reflection and transmission matri-
ces of arbitrary structures with three-dimensional
modulation of the dielectric constant is presented.
The method is based on reducing to a problem
depending on two Cartesian coordinates, dividing the
structure into parallel layers, and calculating individ-
ual coordinate and Fourier components. The pro-
posed procedure for quantization of the electromag-
netic field in the three-dimensional case allows the
implementation of a direct and self-consistent method
for calculating the spontaneous emission for an emit-
ter placed inside three-dimensional photonic nano-
structures that avoids convergence problems in solving
integro-differential equations and significantly
reduces the required computational resources.
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