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Abstract—The correlation parameters of self-organizing structures are investigated using a combined
approach, a combination of 2D detrended fluctuation analysis and the average-mutual-information method.
The self-organizing structures to be investigated are model surfaces with different degrees of ordering
(ordered, disordered, and mixed) and amorphous hydrogenated silicon and tetrahedral carbon films. It is
demonstrated using test structures that the correlation vectors determined by kinks on the scale dependence
of the f luctuation function with the use of the 2D detrended f luctuation analysis coincide with sufficient
accuracy with specified periods of surface harmonic components. It is more expedient to study disordered
structures using the average-mutual-information method. The physical meaning of maximum mutual infor-
mation is shown to characterize the information capacity of a system. The combined approach allows the cor-
relation parameters of combined systems to be investigated most comprehensively.
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1. INTRODUCTION

The study of self-organizing structures based on
semiconductor, organic, and other compounds is one
of the directions in nanoelectronics [1, 2]. The suc-
cessful development of the technology of self-organiz-
ing structures is inextricably linked with methods for
studying the correlation properties of nanostructures
and nanomaterials.

In [3, 4], it was proposed that the correlation
parameters of self-organizing structures be studied
with the use of 2D detrended fluctuation analysis (2D
DFA). The 2D DFA method was tested on test struc-
tures and experimental samples and its efficiency was
demonstrated.

In [5], it was suggested that the self-organization of
structure formation in materials be studied via estima-
tion of the degree of surface-structure ordering, i.e.,
using the average-mutual-information method
(AMI), which allows the random, poorly organized,
or ordered structure of a material to be determined by
the mutual-information value, but does not allow the
correlation vector to be determined numerically. More
information on the numerical value of the correlation
vector is provided by the 2D DFA method.

Since different structures have different degrees of
order, one should know which method is better appli-
cable to investigations of a certain structure. Then,
self-organization of the structure formation can be
studied in more detail, which is necessary for solving

the inverse problem, i.e., the creation of nanostruc-
tures and nanomaterials with desired properties.

The aim of this study is to investigate self-organized
structures using a combined approach, which com-
bines 2D DFA and AMI techniques. For this purpose,
a number of model structures with different degrees of
self-organization are created and the correlation
parameters for these structures are determined. In
addition, the methods are tested on experimental
semiconductor samples, including amorphous hydro-
genated silicon a-Si:H and amorphous tetrahedral
carbon ta-C.

2. CRITERIA FOR CHOOSING TEST 
STRUCTURES. DESCRIPTION 

OF MODEL SURFACES
All surfaces can be conditionally divided into three

groups: ordered, random, and mixed. Thus, to form a
correlation-parameter database, it is necessary to syn-
thesize test structures of three types and determine
their correlation parameters, which characterize the
self-organization of structure formation (correlation
vector, scaling index, AMI, and maximum mutual
information (MMI)). The 2D DFA method allows
determination of the correlation vector, which indi-
cates the periodicity of a structure, and the scaling
index, which represents the structure type. AMI shows
the predictability of the accuracy of coincidence of the
parameters of points in a database (e.g., surface rough-
ness heights) at a certain scanning vector, and the
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MMI reflects, in fact, the information capacity of a
system.

The object of study was a surface structure (rough-
ness), which can be rather easily and reliably deter-
mined in experiments at the nanoscale with the use of,
e.g., scanning-electron- or atomic-force microscopy.
A criterion for choosing the test structures was the
presence of different degrees of structure organization.
Ordered structures are characterized by the periodic
arrangement of certain topographic features. As
ordered structures, we chose the surfaces of “Cubes”
and “Cones” and sinusoidal surfaces. The surfaces of
the “Cubes” represent ordered cubic patterns on a
smooth surface with different periods. They are char-
acterized by a sharp height drop from the maximum
value to zero (step function). The surfaces of the
“Cones” represent ordered conic figures on a smooth
surface with different periods. In this case, the height
topography changes in accordance with linear law
(linear step function). The sinusoidal surfaces are
characterized by the nonlinear law of pattern-height
variation (sinusoidal function). As disordered struc-
tures, we chose surfaces with a noise component
(Gaussian or white noise). The combined surface is
the superposition of the sinusoidal component and
Gaussian noise. In this case, the sinusoidal compo-
nent was chosen from the smooth variation in the
height pattern. Examples of the surfaces are presented
in Fig. 1. We specify the physical size of surface to be
1 × 1 μm at a pixel size of 512 × 512. The maximum
protrusion height was chosen to be 7 nm.

Thus, the model structures were data arrays pro-
cessed using the combined approach to studying self-
organizing structures. The 2D DFA method allows

correlations in the surface structure to be determined
and the period of harmonic components (correlation
vectors) in a structure to be revealed. First, the initial
data array is divided into segments of different scales
and fluctuations are investigated in each of them. As a
result, the dependence of the f luctuation function F
on scale s is obtained. The slope of the f luctuation
function is the scaling index [3].

The AMI method consists in the following. Mutual
information is calculated for each pair of height points
on the basis of information theory. Mutual informa-
tion is defined as the quantity of information about the
value of the random function at point A that becomes
known when its value at point B is obtained. The
allowed mutual information values range from 0 to 1
and the information dimension is bits. In other words,
the mutual-information values change from zero to
the maximum average entropy of total chaos. Corre-
spondingly, the higher the degree of order of a struc-
ture, the large the AMI value is [5].

3. NORMALIZATION AND CLUSTERIZATION 
OF MUTUAL INFORMATION

In studying real materials and structures, the num-
ber of possible surface-point heights and the number
of system states can be very large and, consequently,
both the entropy and information of the system can
tend to infinity. To study these objects using tech-
niques of information theory, the system is quantized,
i.e., the range of values of some quantities is reduced
to a finite set.

For instance, if the height of the surface profile
point obtained using a scanning microscope lies in the

Fig. 1. Examples of model surfaces.

(a) (b)

(c) (d)



24

SEMICONDUCTORS  Vol. 50  No. 1  2016

ALPATOV et al.

range [A; B], we can divide this range, e.g., into 28 =
256 intervals and round the height of each point at the
interval center.

After such a quantization procedure, the entropy
and information become finite measurable quantities.
The maximum entropy of the system from one point is
equal to the logarithm of the number of states, in our
case, eight bit. Mutual information is equal to the
same value, if the quantity was not completely deter-
mined before measurement and became unambigu-
ously determined after it.

The chosen quantization discreteness is a compro-
mise between roughening of the result caused by a
small number of levels and the complexity of the cal-
culations. As was shown using the AMI method, the
discretization of values comparable with that of linear
coordinates in terms of the number of levels is suffi-
cient and a further increase in their number does not
significantly change the results.

To eliminate the arbitrariness of this choice, all
quantities with information dimension are normalized
by the maximum entropy of the system and, in our
case, are divided by eight for one point. After normal-
ization, the value of the system entropy acquires phys-
ical meaning and changes from zero (the state is
known) to unity (complete chaos with equiprobable
states). The mutual information also changes from
zero (the knowledge of one value provides nothing
about another) to unity (the value was completely
undetermined and now is exactly known).

What are the advantages and drawbacks of this nor-
malization? For real systems, choosing normalization
is good. The profile-point heights acquire all possible
intermediate values and, even if these values are not
equiprobable, this does not significantly decreases the
entropy; therefore, the correlation in the samples is
reliably established [5, 6].

The situation is different for artificial model sur-
faces. Let us consider a 2D surface consisting of N × N
rectangular columns. It is worth noting that the
heights acquire only two possible values from 256 with
a probability ratio of 1:3. Then, the average entropy of
such a system for an off-duty ratio of two is determined as

where p(x) is the probability of their being of one of the
heights at point x.

The obtained entropy is much smaller than the
entropy of total chaos, which amounts to eight. There-
fore, the MMI in such a system for the given normal-
ization by chaos cannot exceed 0.1. At an off-duty ratio
of four, the mutual information is even lower (no
larger than 0.04.
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The physical meaning of this effect is that the
mutual-information value is not the degree of ordering
of the system, but an estimate of the system part that is
caused by the correlation of profile heights at different
points. Therefore, if a system is already essentially
determined, then the information obtained from the
known values at other points is not large.

Nevertheless, the AMI maximum obtained in tests
in the phase space of translation vectors retains its
interpretation, but it is incorrect to estimate it by com-
parison with unity. In view of this, information can be
normalized not by the average entropy of chaos, but by
the average entropy of the surface under treatment.

The average mutual information calculated for all
point pairs in a sample is numerically equal to the total
entropy with the positive sign; therefore, normalizing
the AMI by the sample entropy, we explicitly deter-
mine unity as an absolute average.

It is likely that in the case of such normalization, we
can use some absolute criteria to estimate, e.g., the
presence of correlation by a translation vector. This
needs further investigation.

Below, we consider other types of the clusterization
of mutual information. The average mutual informa-
tion for a translation vector is defined as the average
sum of mutual information of all pairs of points com-
prising this translation vector for the sample area. This
can be interpreted in another way: the translation vec-
tor creates a cluster from pairs of sample points and
the AMI integral is determined for these clusters. The
cluster set in itself forms a phase space, two-dimen-
sional in this case.

The presence of extrema in the cluster phase space
can be interpreted as the presence of some long-range
interaction, information transfer, and other structures
in the sample.

Another form of clusterization already investigated
by us is based on the distance between points. In this
case, the cluster forms a set of pairs of points separated
by the same distance from each other. Then, the phase
space is linear.

To establish the presence of linear structures in a
sample, we can consider a set of points lying on one
straight line to be a cluster. For each such cluster, the
AMI is calculated separately. In this case, the phase
space is two-dimensional. This form of clusterization
can reveal different linearly extended structures,
including waves and lattices.

In real samples, ring structures are often observed.
To identify such structures, a set of points lying on an
arbitrary circle is considered to be a cluster. The phase
space is three-dimensional and is difficult to repro-
duce, but the AMI can be averaged, e.g., for clusters
over all circles of the same radius, establishing the
AMI distribution over the ring structure radii.
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4. RESULTS AND DISCUSSION

The calculated AMI and MMI, scaling index α,
and correlation vector d for the test structures are
listed in Table 1.

We first analyze the 2D DFA data. When test struc-
tures with one harmonic component are studied by the
2D DFA technique, the scale dependence of the f luc-
tuation function should contain one kink and the
slope (scaling index) should be two before the kink
and zero after it. When the surface structure contains
several harmonic components, then the number of
kinks in the 2D DFA plot should correspond to the
number of these components. The 2D DFA data on
the sinusoidal model surfaces confirm this statement.
The correlation vector decreases with the period of the
sinusoid [3, 4].

For the second group of surfaces (“Cones”), the
scale dependence of the f luctuation function also con-
tains one kink, which is indicative of the presence of a
harmonic component in the structure. Thus, using the
2D DFA technique, it was established that the investi-
gated structures of the “Cones” are ordered. The cor-
relation vector decreases with the period.

Similar results were obtained using the 2D DFA
method for the model surfaces of “Cubes”.

For the random surfaces of “Gaussian noise” and
“White noise”, the scale dependence of the f luctua-
tion function contains no kinks and the scaling index
is 0.5. Upon superposition of the sinusoidal compo-
nent and “Gaussian noise”, the 2D DFA method
yielded a kink, which confirms the existence of a har-
monic component in the structure. A slope (scaling
index) of 1.1 before the kink and 0.1 after it corre-
sponds to the presence of a noise component.

It can be seen from Table 1 that the correlation vec-
tors determined according to kinks agree fairly well
with the model surface periods. The most exact values
of the correlation vectors were obtained for the sinu-
soidal model surfaces. For the profiles of “Cones” and
“Cubes”, a small error in the correlation vector arises.
Upon the superposition of the sinusoid and “Gaussian
noise”, the error is somewhat larger (the correlation
vector was found to be 195 nm at an initial period of
the sinusoid of 167 nm), since the kink in the f luctua-
tion function curve was blurred. Thus, the 2D DFA
method allows harmonic components in the structure
to be revealed and the specific values of the correlation

Table 1. Test-structure parameters determined using AMI and 2D DFA methods

No. Description MMI AMI α d, nm

Ordered surface
Sinusoidal surfaces

1 Period T = 333 nm 0.727 0.126 2; 0 332

2 Period T/2 = 167 nm 0.731 0.127 2; 0 168

3 Period T/4 = 84 nm 0.730 0.129 2; 0 83

4 Period T/8 = 42 nm 0.718 0.123 2; 0 41

5 Periods T/2 + T/4 0.672 0.079 2; 0.7; 0 170; 84

6 Periods T + T/8 0.651 0.070 2; 0.6; 0 333; 41

Surfaces of “Cones”

7 Period 104 nm 0.243 0.20 1.75; 0 111

8 Period 78 nm 0.355 0.035 1.75; 0 84

9 Period 62 nm 0.553 0.058 1.63; 0.13 59

10 Period 48 nm 0.640 0.66 1.63; 0.10 53

Surfaces of “Cubes”

11 Period 115 nm 0.101 0.004 1.64; 0 106

12 Period 80 nm 0.167 0.008 1.75; 0 78

13 Period 58 nm 0.278 0.014 1.9; 0 59

14 Period 35 nm 0.484 0.019 1.84; 0.4 32

Random surfaces
15 “Gaussian noise” 0.542 0.002 0.5 –

16 “White noise” 0.752 0.001 0.5 –

Combined surface
17 “Gaussian noise + sinusoid” 

with a period of T/2
0.542 0.009 1.1; 0.1

195
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vector to be determined. Below, we consider the
results obtained using the AMI method.

The largest MMI value (0.752) was obtained for

“White noise”. “White noise” is an example of a com-

pletely random system without correlations between

its points. Consequently, the entropy of such a system

is at maximum. Since, according to the Shannon for-

mula, entropy is directly proportional to the natural

logarithm of information, the MMI (in fact, the infor-

mation capacity of a system) tends to its maximum.

For the sinusoidal model surfaces, the MMI values

appeared somewhat smaller than for “white noise”.

The AMI values were maximum among all test sur-

faces.

For the surface of “Gaussian noise”, the MMI is

0.542, which corresponds to a poorly organized struc-

ture. In fact, according to construction principles, the

structure is random. In our case, this is confirmed by

the AMI value. The same result (0.542) was obtained

for the surface of “Gaussian noise + sinusoid” and the

AMI value corresponds to the category of random

structures.

For the surfaces of “Cubes”, the AMI values were

the smallest. In fact, these structures are ordered and

have a certain period. In this case, the degree of order

for the structure can be determined from the mutual-

information values and the presence of AMI-distribu-

tion peaks in phase space. For all four surfaces, one

can see pronounced peaks in the AMI distribution

(Fig. 2). These features are indicative of the presence

of long-range correlations in the structure, which, in

turn, can bear witness to structure ordering and result

from self-organization processes.

Analysis of the AMI spatial distribution for the sur-

faces of “Cones” yielded results similar to data on the

surfaces of “Cubes”. The AMI field also included pro-

nounced peaks; therefore, the surface of “Cones” is an

ordered structure.

5. EXAMPLES OF STUDYING 
THE CORRELATION PARAMETERS 

OF THE STRUCTURFE OF SEMICONDUCTOR 
MATERIALS USING THE COMBINED 

METHOD

Since semiconductor materials have very diverse

structures, the correlation parameters of the surface

structure are interesting to study. The model surfaces

studied here have semiconductor analogs. In [3–7],

disordered semiconductors were mainly studied using

the 2D DFA and AMI methods. Disordered semicon-

ductors are formed under nonequilibrium conditions

with the violation of symmetry in a thermodynami-

cally open nonlinear system, which will allow the cre-

ation of self-organized systems on their basis in the

future. Examples are a-Si:H and ta-C films (Fig. 3).

These samples were obtained by pulsed laser sputter-

Fig. 2. Average mutual information in the phase space for an undirected vector for the surfaces of “Cubes” at periods of (a) 115,
(b) 80, (c) 58, and (d) 35 nm.
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ing. The a-Si:H film was deposited onto a glassce-

ramic substrate over 7 min at a laser-pulse repetition

rate of 10 Hz, a laser-radiation energy density of

11.8 J/cm2, and a substrate temperature of 200°C. The

ta-C film was deposited onto a [100] silicon substrate

doped with phosphorous over 36 min 40 s at a laser-

pulse repetition rate of 10 Hz, a laser-radiation energy

density of 14.4 J/cm2, and room temperature of the

substrate.

In atomic-force-microscopy images of the experi-

mental samples, one can see conic and sinusoidal

structures with a noise component on the surface.

The AMI and 2D DFA surface parameters of the

experimental samples are listed in Table 2. The com-

bined use of the 2D DFA and AMI methods showed

that the investigated a-Si:H and ta-C samples have a

correlation vector and, judging by the AMI value,

relate to random structures. The MMI value for the a-

Si:H film was found to be fairly small. If we compare

it with the MMI values given in Table 1, then it is sim-

ilar to the value for the surfaces of “Cones” with a high

off-duty ratio of conic structures. Thus, the a-Si:H

sample studied here belongs to structures with a low

information capacity of the surface. The MMI value

for the ta-C film is much larger and similar to the

value for the model surface of “Cones” and combined

surface of “sinusoid + noise”. The ta-C film has a

high information capacity of the surface.

It is worth noting that the combined method for

studying the correlation parameters of self-organizing

structures on the basis of 2D DFA and AMI methods

is not only informative for disordered materials. There

are many interesting objects for investigations among

crystalline semiconductors as well, e.g., textured crys-

tal silicon with pyramidal surface structures, which is

currently used in solar cells.

6. CONCLUSIONS

We demonstrated that the 2D DFA method is more

informative for studying structures with a harmonic

component. When random structures are investigated,

it is sufficient to use the AMI method, since it allows

the degree of disorder to be estimated. The MMI tech-

nique is not always suitable for calculations, either. It

was established that when the surface is a structure

where maximum (minimum) points cannot be distin-

guished, then it is incorrect to compare the MMI with

unity. In addition, it is incorrect to estimate the prop-

erties of a structure using the MMI value in the case of

random surfaces, which have no determined correla-

tion vector. In this case, it is expedient to use AMI. In

studying complex self-organizing surfaces with an

unknown structure, which can contain both harmonic

and random components, the combined use of 2D

DFA and AMI methods is the most effective.

Using test structures, it was shown that the 2D

DFA method allows the period of harmonic compo-

nents to be determined with sufficient accuracy by

kinks on the scale dependence of the f luctuation func-

tion. For the AMI method, it was established that the

mutual information characterizes the information

capacity of a system: the larger the MMI, the higher

the information capacity.

The combined use of the 2D DFA and AMI meth-

ods allows the correlation parameters of a material

structure to be studied most comprehensively. The

obtained knowledge makes it possible to control the

information capacity and degree of order of the devel-

oped self-organizing structures, which, in turn, will

allow complex structures with the desired properties to

be synthesized.

Fig. 3. Atomic-force-microscopy images of the a-Si:H and
ta-C film surface.
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Table 2. Surface parameters of the experimental samples as
obtained using the AMI and 2D DFA methods

Sample MMI AMI d, nm

a-Si:H 0.146 0.017 234

ta-C 0.447 0.010 490
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