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Abstract—Analytical expressions for calculating the tensor of the effective permittivity of a matrix-type het-
erogeneous medium with inclusions of random ellipsoidal shape, which are a small deviation from the average
spheroidal shape, are obtained. The orientations of the inclusions are probabilistically distributed; rotation
group representations are used for their consideration. It is shown that the developed method is a generaliza-
tion of the Maxwell–Garnett approximation for the given medium type. Based on this method, the fre-
quency-induced dielectric properties of porous silicon are simulated in the range of 103–108 Hz.
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INTRODUCTION 
Heterogeneous materials, i.e., inhomogeneous

materials, whose local physical characteristics are
piecewise constant functions of spatial coordinates,
play an important role in science and engineering. For
example, porous silicon and carbon, thin polycrystal-
line and composite films of different functionalities
find wide application in electronics. In many applica-
tions, of importance is the behavior of such materials
in alternating electromagnetic fields, which is deter-
mined by the effective permittivity of such a material
under the condition of smallness of the inhomogeneity
scale in comparison with field-inhomogeneity param-
eters. This causes the stable interest of researchers in
the problem of its calculation. In turn, the effective
permittivity of a heterogeneous material depends not
only on the dielectric properties of its components and
their volume fractions, but also on structure formed by
them.

Important components of the structure are the
shape texture and crystallographic texture whose
manifestation is anisotropy of the effective material
properties. The most effective approach which can
naturally take into account the material texture is asso-
ciated with the introduction of a reference body. In
this approach, along with the problem for the initial
heterogeneous medium, a similar problem for the ref-
erence body is considered [1–5]. Then, via certain
transformations and assumptions, one can come to

some approximation, e.g., the generalized singular
approximation [2] which has also found wide applica-
tion in calculating the effective elastic moduli of het-
erogeneous media [3].

In [6–9], the effective dielectric characteristics of
textured composites were calculated. In [6, 7], matrix
axially textured composites with spheroidal isotropic
[6] or spherical biaxial anisotropic [7] inclusions were
considered. In [8], a method for taking the orienta-
tions of ellipsoidal isotropic inclusions into account
using SO(3) group representations and allowing a fun-
damental advance in deriving expressions for the
effective characteristics of a composite for any texture
type was proposed. In [9, 10], this method was gener-
alized to the case of anisotropic ellipsoidal inclusions
provided that the principal axes of the inclusion per-
mittivity tensors coincide with the ellipsoid axes.

The objective of this study is to derive analytical
expressions for components of the effective permittiv-
ity tensor of a textured matrix composite with inclu-
sions whose shape is random ellipsoidal and is a small
deviation from the spheroidal shape. A fundamental
version of consideration of the shape randomness
within the ellipsoidal shape was proposed in [11].
However, its implementation requires a very resource-
intensive procedure: calculations of double integrals of
quantities which are themselves expressed in terms of
elliptical integrals. In [12], a composite with inclu-
sions of random spheroidal shape whose semiaxis ratio
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is uniformly distributed in a certain range was consid-
ered.

STATEMENT OF THE PROBLEM AND ITS 
SOLUTION IN THE GENERALIZED 

MAXWELL–GARNETT APPROXIMATION 
Let us consider a statistically homogeneous sample

of a two-component composite of volume V, consist-
ing of a homogeneous isotropic matrix with ellipsoidal
anisotropic inclusions immersed into it. The volume
fraction d of inclusions is not high. It is assumed that
the principal axes of the permittivity tensors of the
inclusions coincide with the axes of the corresponding
ellipsoids. Inclusions are oriented probabilistically and
have a random ellipsoidal shape being a small devia-
tion from the spheroidal shape. The inclusion shape
and orientation are considered independent of each
other.

Let a constant electric field Е0 be applied to the
boundary  of this sample. The medium permittivity
tensor  is a random piecewise constant function of
coordinates:

 (1)

where  is the permittivity of the matrix,  is the
region occupied by the matrix,  is the unit tensor, 
and  are the permittivity tensor of the -th inclusion
and the region occupied by it, respectively, and  is
the number of inclusions in the sample.

From electrostatic equations 
, taking into account the constitutive equa-

tion , we come to the boundary-value problem
for the potential  in a given medium ( ):

 (2)

where  is the volume charge density.
The problem lies in calculating the tensor  of the

effective permittivity of the composite, which relates
the average electrical displacement and electric-field
strength vectors, . We introduce a homo-
geneous reference body with the same sizes, shape,
and charge density distribution as those of the com-
posite sample [1–5]. We present  and  in the
form , , where
index “c” is related to the reference body. For the ref-
erence body, a problem similar to Eq. (2) is formulated
as

. (3)

Subtracting Eq. (3) from Eq. (2), we obtain the
boundary-value problem:
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Introducing the Green function  of prob-
lem (4) by the conditions

,

the solution to problem (4) at  is written in the
form of the convolution [1, 2, 5]:

.

After some transformations, to calculate  in the
generalized singular approximation [5], we obtain the
expression

, (5)

where  is the tensor related to a particular inhomoge-
neity grain (the matrix can also be considered as con-
sisting of individual grains) and taking a constant value
within it, and its components are calculated by the for-
mula [1, 5]

,

where  is the -th component of the external unit
normal to . Integration is performed over the surface

 of a given inhomogeneity grain.
For a matrix medium, it is logical to take specifi-

cally a matrix as a reference medium, i.e., to accept
.

In this case, the tensor components of the ellip-
soidal inclusion in its intrinsic system can be written
as [1]

,

where  are the geometrical factors of the ellipsoid
(  are its semiaxes) [11]:

 

.

In this version of reference-body choice, the gener-
alized singular approximation leads to the Maxwell–
Garnett generalization [5], and Eq. (5) takes the form

. (6)

Here the tensors related to a specific inclusion are
introduced,

, .
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The tensor  has a clear physical meaning; it relates
the field strength  within a single ellipsoidal inclu-
sion and the applied uniform field  in an infinite
matrix,  [11]. Then, to simplify the expres-
sions, we omit the subscript  related to the inclusion
number. The principal values of tensors  and  are
calculated by the following formulas (  are the prin-
cipal values of the tensor ):

, ,

. (7)

The tensors  and  in Eq. (6) are averaged over all
sample inclusions. In this case, this is averaging over
all orientations and inclusion shapes. Under the
assumption that the inclusion shape and orientation
are independent, averaging is performed sequentially
over inclusion orientations and shapes,

,

where  is averaging over shapes and  is averaging
over the orientations of inclusions.

AVERAGING OVER INCLUSION
ORIENTATIONS 

Let the inclusion shape be fixed. We introduce the
coordinate system  related to the composite sam-

ple, while each inclusion is related to the coordinate
system  of principal axes of its ellipsoid. Then the
inclusion orientation  in the system 
(  are Euler angles) is the turn from  to .
The volume fraction  of crystallites whose ori-
entations belong to the volume element of angular
parameters

 is given
by

,

where  is the inclusion-orientation distribu-
tion function (ODF) [13]. Tensors ,  in the system

 are averaged by the formulas

,

where the integral over the SO(3) group has the form

.

Using rotation-group-representation theory, the fol-
lowing expressions for the orientation-averaged com-
ponents of tensors  and  were obtained in
the system  [9] (the numbering of subscripts

 of tensor components in the system 
implies the correspondence ):

 (8)
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If the inclusion shape is random, expressions (8)
should also be averaged over the inclusion shapes.
Under the assumption that the inclusion orienta-

tion and shape are independent, expressions (8)
after averaging over the inclusion shape take the
form

 (10)

Formulas (10)  are convenient for applications,
since the ODF is often written as the Fourier series
in generalized spherical functions [13]:

. In this case, for the aver-

aged components of tensors  and , we obtain
expressions [10] containing Fourier coefficients of the
distribution function  of only weight 2, i.e., ,

 which can be experimentally deter-
mined by X-ray or neutron diffraction methods.

Let us consider in detail the specific distribution of
inclusion orientations, i.e., the central normal distri-
bution (CND) with one parameter . The CND is a
particular case of normal distributions over the SO(3)
group, i.e., the limit distributions to which body orien-
tation distributions tend during random rotational
walks; it is often used in describing textures [13]. In the
case of the CND, ODF expansion in generalized
spherical functions is given by [13]

. (11)

The parameter  is related to the inclusion-orientation
spread: , . In
the case of the CND of inclusion orientations for com-
ponents  in the system , we obtain

 (12)

where , .

AVERAGING OVER INCLUSION SHAPES 
Let one semiaxis of all inclusions be fixed:

, while two others randomly deviate

from a certain average value equal to , i.e.,
. Then the random inclusion shape is

determined by a random vector with components
equal to the relative deviations  of the semiaxes

 from their average values: 
, therewith . Let the variances of

 be small:  , and  and 
are independent; therefore, . Thus, the aver-
age shape of all inclusions is a spheroid with semiaxes

.
As seen from formulas (9) and (10), to average the
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expand them in powers of  to the 2nd order inclu-
sive:
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Calculating this set, we have

 (14)

where

Let us show the expressions for these integrals.
1. At . The average shape is an oblate spheroid
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Using set (13), we expand Eq. (7) in powers of 
to the 2nd order inclusive:

 (15)

. (16)

Averaging Eq. (15) over the shape, taking into
account Eq. (7), we have

 (17)

 (18)

SIMULATION RESULTS 
FOR THE FREQUENCY DIELECTRIC 

CHARACTERISTICS OF POROUS SILICON 
AND DISCUSSION 

Formulas (12), and (16)–(18) were used to calcu-
late the frequency dielectric characteristics of porous
silicon with fibrous or layered structures in the system
xyz in the frequency range of 103–108 Hz. A formally
continuous medium in such a material is silicon; how-
ever, due to its small volume fraction in the material, it
was considered as inclusions, and air was considered as
the matrix. Porous silicon with the fibrous structure
was modeled by inclusions of random ellipsoidal
shape with a small spread around the average strongly
prolate spheroidal shape. The material with the lay-
ered structure was modeled by inclusions with a small
deviation from the average strongly oblate spheroidal
shape. The inclusion orientation was considered to be
distributed according to the CND law with the ODF
in the form of Eq. (11) at various β. In the absence of
inclusion-orientation spread, inclusion semiaxes

 are parallel to the  axes, respectively.
Bonding bridges between fibers or layers in the mate-
rial were disregarded; this requires a more complex
model.

⎛−
= − +⎜⎜ − − −⎝

⎞+
− − ⎟− ⎠

−= −�

7 22

4 7 8 2 3 2 2 2

2

3 47

(1 ) 8 34 59
24 (1 ) (1 ) 1

11533 ln ,
2 1

2 1 6 .

e
J

a e e e e

e
e

e

eJ J
a

a c= c

1 2 1
1 , 2, 3, 4.

( 1 2)
n n nJ J n

n a
− −= = =

−
�

1 2,e e

′ ′λ ≈ λ + − − +
+ − + −

+ − =

0
1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

2
1 2 1 2

[1 ( )( )

( ) ( )

(2 ) ], 1, 2, 3,

j j j j j

j j j j j j j j

j j j j

q A A e e

q A q B e q A q B e

q A A C e e j

0
0 0,
( ) ( )

j mm
j j

m j j m m j j m

q
L L

′ε − εε′λ = =
′ ′ε + ε − ε ε + ε − ε

0 2 2
1 2[1 ],

, 1, 2, 3,
j j j jf

j j jf f

z y

j

′ ′λ ≈ λ + σ + σ
′ ′ ′κ = ε λ =

2 2 2 2
1 1 2 2, .j j j j j j j j j jz q A q B y q A q B= − = −

1 2 3, ,a a a , ,x y z



SEMICONDUCTORS  Vol. 49  No. 13  2015

ANALYTICAL APPROACH 1723

Fig. 1. Frequency dependences of the (a) real and (c) imaginary parts of the component (εe)11 and (b) real and (d) imaginary parts
of the component (εe)33 of the model of porous silicon with spheroidal prolate inclusions at various ratios of semiaxes a:b:c. Inclu-
sion orientation and shape spreads are lacking; the inclusion volume fraction is 0.1.
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sion orientation and shape spreads are lacking; the inclusion volume fraction is 0.1.
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Fig. 3. Frequency dependences of the (a) real and (b) imaginary parts of the component (εe)11 and (c) real and imaginary parts

of the component (εe)33 of the models of porous silicon with spheroidal prolate inclusions with a semiaxis ratio of 1:1:20 at various

inclusion-orientation spreads. The orientation distribution is CND-type. Shape spread is lacking. The inclusion volume

fraction is 0.1.
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The objective of the simulation is to study the effect
of the average inclusion shape, orientation and shape
spreads on the dielectric characteristics of porous sili-
con. The dependence of the silicon permittivity on the
electromagnetic-field frequency at low frequencies is

written as , where σs = 0.435 ×
10–3 Ω–1 m–1 is the static conductivity of silicon and
εs = 11.7 is the static permittivity [15]. Some results of

calculations are shown in Figs. 1–5.

The frequency dielectric characteristics of porous
silicon (Figs. 1 and 2) at a fixed inclusion shape and
orientation show that the characteristics of the princi-

pal components  and  of the tensor  differ
significantly from each other. For porous silicon with
the fibrous structure (see Fig. 1), the real and imagi-

nary parts of component  significantly exceed

the corresponding parts of component  in magni-

tude. In turn,  (Fig. 1b) and  (Fig. 1d)
depend on the ratio of the semiaxes a:b:c. They
increase with the ratio c:a. The real (Fig. 1a) and

imaginary (Fig. 1c) parts of the component  also
depend on the ratio c:a; however, this dependence is

opposite. The frequency characteristics of 

and  have maxima whose values and positions
depend on the ratio c:a. For the model of porous sili-
con with the layered structure (see Fig. 2), similar

dependences of  and  on the ratio c:a are

observed; however,  has larger values than 
in this case.

The dependences (Fig. 3) for the model of porous
silicon with the fibrous structure show that the
appearance of orientation spread causes the mixing of

“pure” components of the tensor , corresponding to
the case of strictly oriented inclusions. For example, a

( ) 4s siε ω = ε + πσ ω

11( )eε 33( )eε eε

33( )eε
11( )eε

33Re( )eε 33Im( )eε

11( )eε

11Im( )eε
33Im( )eε

11( )eε 33( )eε
11( )eε 33( )eε

eε

maximum corresponding to  appears in the

dependence of  and grows as the inclusion-

orientation spread  increases (Fig. 3b). The change in

the dependences of  and  with

increasing  is much less distinct (Fig. 3c). This is
explained by the fact that “pure” components

 and  far exceed  and

 in magnitude. As shape variance appears (see

Fig. 4), both parts of components  and  of
the model of porous silicon with the fibrous structure
slightly increase, and the maxima of the imaginary
part slightly shift, which is especially pronounced for

 (Fig. 4d). Similar changes are observed in the
simulation of the systems with the layered structure
as well.

We note that components  and  have
identical characteristics in all cases (see Figs. 1–4).
First, this due to the fact that the average inclusion
shape is spheroidal; second, the coordinate axes 
are equivalent for CND-type orientation distribu-
tions (11); third, the root-mean-square deviations of

the inclusion semiaxes were set equal,  in
all cases.

The frequency dependences of  and 

for the case  (see Fig. 5) slightly dif-

fer from each other; therewith ,

despite the fact that the semiaxis  is fixed, while the

semiaxis  exhibits random variation. This phenome-
non of the pronounced effect of random variation of

the semiaxis  on  has a simple physical

interpretation: let , , , .

Restricting the expansion (13) of the geometrical fac-
tors to second-order terms, we obtain an even distribu-

tion of the relative deviation  of the semiaxis ;
therefore, the volume fraction of inclusions with semi-

axis  will be equal to the volume fraction of

inclusions with  at any admissible . Let

us compare the ratios of the larger of the semiaxis 

and  to the smaller one in the first and second cases,

,

i.e., the relative “prolateness” of inclusions toward the

semiaxis  in the second case is larger than toward the

semiaxis  in the first case; the relative “oblateness”

toward the semiaxis  in the first case is less than

toward the semiaxis  in the second case; in combina-

tion, these factors cause higher values of .

Thus, the effective permittivity tensor  of a het-
erogeneous textured matrix-type material with inclu-
sions of random ellipsoidal shape is calculated by for-

mula (6). The average components of tensors  and 
in the system  related to the material texture at ran-
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Fig. 5. Frequency dependences of the imaginary part of

components (εe)11 (solid curves) and (εe)22 (dashed

curves) of the model of porous silicon with random prolate
inclusions with an average semiaxis ratio of 1:1:20 at vari-
ous inclusion-orientation spreads β. The orientation dis-
tribution is CND-type; the inclusion-semiaxis spreads

are σ1 = 0, σ2 = 0.3; the inclusion volume fraction is 0.1.
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dom distribution of inclusion orientations are deter-
mined by formulas (10), (14), (16)–(18). In the case of

central normal distribution of the SO(3) group, the 
components are calculated by formulas (12).

The method proposed in this paper can be used to
predict the dielectric properties of heterogeneous sys-
tems in an alternating electromagnetic field, which
can find application in the development of materials
with desirable physical properties and in the develop-
ment of methods for analyzing the results of dielectric
spectroscopy, e.g., in geophysics and related fields.
The model of a heterogeneous textured material, con-
structed in this paper, can be used as a basis for the
development of sophisticated models reflecting the
structure of studied materials in more detail.

An important advantage of the developed method
is its low computing resource use from the viewpoint
of time and memory size.

However, it should be noted that this method can-
not be applied to the study of the optical properties of
composites with randomly shaped metal inclusions,
since the term with respect to which the expansion is
performed in formula (15) becomes unacceptably
large near the plasmon resonance.
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