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Abstract—The specific features of spin-transfer torque in vacuum tunnel structures with magnetic electrodes
are investigated using the quasi-classical Sommerfeld model of electron conductivity, which takes into
account the exchange splitting of the spin energy subbands of free electrons. Using the calculated voltage
dependences of the transferred torques for a tunnel structure with cobalt electrodes and noncollinear mag-
netic moments in the electrodes, diagrams of stable spin states on the current–field parameter plane in the
in-plane geometry of the initial magnetization are obtained.
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At present, tunnel spin-valve structures are being
intensively studied as promising materials for applica-
tion in new solid-state nonvolatile memory cells and
nanoscale microwave generators [1–3]. Tunneling
spacers are formed from MgO insulators, which
enhance the spin-dependent tunneling and polariza-
tion of a passing current. To achieve a large value of
this effect, it is important to form high-quality inter-
faces of the dielectric spacers, since the features of
spin-torque tunnel transfer greatly depend on crystal-
structure matching and homogeneity of the transition
layers between the insulator and magnetic electrodes.

Investigation of the specific features of tunnel
structures with a dielectric barrier is complicated by
spin-dependent scattering at interlayer interfaces [4]
and the possible formation of additional tunneling
channels caused by impurities and defects in the
dielectric layer [5]. In addition, such tunnel structures
are limited by a breakdown voltage, which, in turn,
restricts the transmitted current. Moreover, the densi-
ties of field-emission currents transmitted without
destroying the electrodes overlap the range of thresh-
old spin-state-switching current densities in magnetic
tunnel structures (106–108 A/cm2) and it is not neces-
sary to match layers at the magnetic-electrode bound-
aries. Therefore, tunnel structures with a vacuum gap
are interesting for studying the main features of the
I−V characteristics and spin-switching thresholds. In
a vacuum structure, higher voltages can be applied,
which leads to new features of spin-transfer torque.

Original high-vacuum scanning tunneling micros-
copy experimental results on the magnetization

switching of magnetic nanoislands by a spin-polarized
current and the field features of the tunneling magne-
toresistance were reported in [6, 7]. In addition, ther-
mal-assisted magnetic recording based on spin-trans-
fer torque in vacuum structures is considered to be an
alternative method for creating a new generation of
disc storage devices [8].

In this study, we analyze the spin-transport effects
in structures with a vacuum gap in the tunnel and
field-emission modes.

INITIAL EQUATIONS OF MACROSPIN 
MAGNETODYNAMICS 

We investigate a vacuum tunnel structure consist-
ing of a thick hard magnetic electrode with fixed mag-
netization Mp and a thin-film soft magnetic electrode
with unfixed magnetization M, which are separated by
a tunneling spacer (insert in Fig. 1).

Let us consider the in-plane geometry of the mag-
netization of this structure. In a vacuum structure, the
hard-magnetic electrode serves as a spin polarizer of
the incoming current and set the spin direction of
electrons tunneling through the vacuum gap. As a
result of tunnel spin-torque transfer to the thin-film
electrode by conduction electrons, the magnetization
vector m = M/MS, where MS is the saturation magne-
tization, can lose its stability. This ultimately leads to
switching of the soft-magnetic layer. To analyze the
stability of the magnetic state in the vacuum tunnel
structure, we will use the Landau−Lifshitz equation
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generalized by Slonczewski with Gilbert damping in
the presence of both spin-torque components

, (1)

where   is the magnetic constant;  is the
gyromagnetic ratio;  is the Gilbert damping coeffi-
cient;  is the thickness of the unfixed soft-magnetic
layer;  is the effective magnetic
field including external magnetic field H, anisotropy
field , and demagnetizing field ; and 
are the parallel and perpendicular spin-torque compo-
nents, respectively.

Components  and  of the transferred torque
can be presented in the form

,

where  is Planck’s constant, J is the current density, e
is the electron charge,  is the normalized vector of
magnetization of the polarizer layer, and 
are the spin efficiency parameters depending on the
mutual orientation of vectors  and .

SPIN TORQUE 
The transferred torque T will be calculated using

the thermodynamically averaged quantum-mechani-
cal expression for the density of the total spin f low
between semi-infinite magnetic electrodes

. (2)
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Here,  and  are the spin f low of elec-
trons tunneling from the left to the right and from the
right to the left, respectively, thermodynamically aver-
aged with regard to the energy density of free electrons
in the magnetic electrodes on the basis of the Fermi
distribution

,

where  is the electron energy,  is the Fermi energy
in the corresponding electrode,  is the Boltzmann
constant, and  is the temperature.

The angular brackets in (2) indicate the quantum-
mechanical and thermodynamic averaging in the
phase space of wave numbers of tunneling electrons.

According to the quantum-mechanical definition,
spin-flow components  for tunneling electrons,
where , are calculated using the formula

,

where m* is the effective mass,  is the elec-
tron spin projection,  is the conjugate component
of the spinor wavefunction,  is the corresponding

Pauli matrix, and  is the spinor wavefunction of
tunneling electrons.

Wavefunction  is determined by solving the
quantum-mechanical problem of electron tunneling
across a tunnel structure for the potential shown in
Fig. 1. This potential makes allowance for the energy
barrier related to the work function and voltage drop at
the vacuum gap. In the calculation of the spin f low, we
shall restrict our consideration to the low-temperature
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Fig. 1. Schematic of the potential-barrier shape for the vacuum tunnel structure in the transverse direction (along the OX axis):
EFL(EFR) is the Fermi level (chemical potential) for the left (right) magnetic layer, ΔL(ΔR) is the exchange splitting in the left
(right) magnetic layer, φL(φR) is the electron work function for the left (right) magnetic layer, V is the applied voltage, and d is
the tunnel barrier thickness. The insert shows a cross section of the vacuum tunnel structure with in-plane magnetization geom-
etry.
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limit of the Fermi-energy distribution for conduction
electrons and use the expression for the density of
states, as in the free electron model, but with regard to
the exchange splitting of the spin subbands.

According to Slonczewski theory for a magnetic
tunnel junction [9], the spin efficiency parameters 
and  in the limit  are determined by the bulk
spin polarization  as

, , (3)

where  is the angle between vectors  and  and 
is the coefficient of the proportionality of the spin-
efficiency parameters.

Parameters  and  are independent of the volt-
age applied to the structure and, consequently, of the
flowing current. However, calculation of the spin f low
shows that with increasing voltage these parameters
significantly change, which greatly affects the regions
of stability of spin states in vacuum tunnel structure
and their switching thresholds.

To calculate the voltage dependence of the trans-
ferred spin-torque components, we use parameters
corresponding to the Co(Fe)–vacuum–Co(Fe) struc-
ture [10], i.e., the Fermi level eV,
exchange splitting in ferromagnetic electrodes

eV, work function eV,
and the thickness of vacuum gap nm.

Solving the quantum-mechanical problem of elec-
tron tunneling through the vacuum spacer and subse-
quent thermodynamic averaging of the charge and
spin f lows lead to the dependences of the spin-torque
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components on the bias voltage (Fig. 2). Calculation
was performed for the mutually perpendicular orienta-
tion of vectors  and  in the ferromagnetic layers of
structure.

The results obtained show the presence of highly
nonmonotonic areas related to different tunneling
modes in the low- and high-voltage regions with
asymmetric sign variation. The latter is due to a
change in the difference between the densities of states
free for tunneling for majority and minority electrons
in the case of varying voltage sign and value. This
result greatly differs from Slonczewski theory for the
spin efficiency (3) of spin-transfer torque, where it is
independent of the applied voltage. In view of this, it is
important to establish the effect of strong asymmetry
of the voltage dependence of the torque on spin-state
instability threshold currents calculated within the
framework of Slonczewski theory and the theory tak-
ing into account a change in the spin-efficiency coef-
ficients upon voltage variation.

ANALYSIS OF THE SPIN-STATE STABILITY 
OF THE UNFIXED (FREE) MAGNETIC LAYER 

We analyze the equilibrium spin state of the free
layer by studying the evolution of its magnetization m
in the macrospin approximation near critical points of
the initial dynamic system, where we can use linear-
ization of the matrix system of equations (1) describ-
ing this system in terms of projections onto the x, y,
and z axes. We perform the calculation for the in-plane
geometry of the free magnetization of a vacuum mag-
netic tunnel structure.

For the chosen magnetization geometry, we
assume the vector of polarization of the layer with

m Pm

Fig. 2. Dependence of torques (a) T|| and (b) T⊥ transferred by the spin current on voltage V. The insert shows the region
from –1 to +1 V.
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fixed magnetization mP to be directed along the OX

axis and the magnetization m of the free layer to be ini-
tially collinear to the vector mP and directed along the
easy axis of the in-plane magnetic anisotropy. In this
case, the resulting effective field is written in the form

where  ;

; .
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It follows from Eq. (1) that the equilibrium state
 of the free layer is its stationary point.

After linearization of system (1) with respect to the
small deviations , we obtain a characteris-
tic equation. Analysis of its roots allows us to establish
the type of approaching equilibrium for the trajectory
of the magnetization motion. The threshold current
densities of equilibrium state switching can be deter-
mined from the condition of the occurrence of the
negative real part of these roots. The calculation will
yield the next formulas for the threshold current den-
sities needed to switch the parallel and antiparallel
equilibrium states

, (4)

, (5)

where  are the spin-efficiency components for

the parallel (P) equilibrium state and  are
the spin-efficiency components for the antiparallel
(AP) equilibrium state.

In contrast to the expressions obtained in [11], for-
mulas (4) and (5) take into account the contribution of
the perpendicular spin-torque component to the gen-
eral magnetodynamics of the free layer.

According to the described analysis of stable spin
states, it follows from the calculation that at a fixed
spin polarization of  [12] typical for the
cobalt electrodes, the phase diagram determining
regions of instability of equilibrium configurations of
the magnetization of the tunnel structure on the cur-
rent−field parameter plane in the framework of the
Slonczewski model of spin-transfer torques is deter-
mined by the fixed parameters of the spin efficiency
(3) and has the form presented in Fig. 3. The calcu-
lated parameters are , ,

nm, Oe, , ,
and .

The calculated diagram of macrospin states on the
current−field parameter plane in the presence of volt-
age dependences of the spin-torque components T||(V)
and T⊥(V) (Fig. 2) is shown in Fig. 4 for the calculated
parameters used in the previous model. The I−V char-
acteristic of the investigated vacuum tunnel structure
is shown in the insert in Fig. 4.

The obtained diagram is significantly different
from the diagram for constant torques. At low volt-
ages, the phase diagram repeats the behavior of a dia-
gram calculated from analytical expressions for coeffi-
cients  and  corresponding to the Slonczewski
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Fig. 3. Current–field phase diagram of magnetic states of
the free layer for in-plane geometry of the vacuum tunnel
structure without regard for the voltage dependence of the
spin torque. P and АР are regions of parallel and antipar-
allel states, respectively and P/AP is the hysteresis region.
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Fig. 4. Current–field phase diagram of magnetic states of
the free layer for the in-plane geometry of magnetization of
the vacuum tunnel structure with regard to the voltage
dependence of the spin torque. The insert shows the I−V
characteristic of the vacuum tunnel structure.
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theory [9]. The perpendicular spin-torque component
greatly affects the kink of side lines limiting the hyster-
esis region (P/AP). The specific features of the calcu-
lated voltage dependences of the spin-torque compo-
nents are the most pronounced in the phase diagram
at voltages close to the field-emission mode. In partic-
ular, the threshold line has an inflection toward
negative external magnetic fields. This is due to rapid
growth of the parallel spin-torque component  under
positive voltages and variation in the sign of both
torque components under negative voltages. The
threshold line is characterized by a weak effect
of the perpendicular torque component  on the
characteristics of the transition in the weak-field
region, while in the range , where  is the
magnetic anisotropy field, one can observe a signifi-
cant change in the critical line that determines the
threshold values related to the external-magnetic-field
variation.

Thus, in the vacuum tunnel structure high voltage
asymmetry of the spin-transfer torque is observed,
which is caused by different changes in the density of
levels free for tunneling in the second order of voltage
upon voltage-sign variation. As was shown in [13], this
effect is related to asymmetry of the spin polarization
of current. This asymmetry is retained in the vacuum
structure. Here, as in tunnel structures with a dielec-
tric barrier, an important role in switching the mag-
netic state of the free layer can be played by the fairly
large transverse torque component.

The calculated features of the voltage dependences
of the spin-torque components for field-emissionon
magnetic structures allow us to state that, in contrast
to tunnel structures with a dielectric spacer, the hys-
teresis of magnetic-state switching cannot be observed
at a fixed magnetic field and varied field-emission cur-
rent, at least for the considered parameters of the free
magnetic layer. Upon a variation in the field-emission
current, only the transition from the static magnetiza-
tion state to spin precession can occur.

The results obtained can be used in the spin-polar-
ized microscopy study of spin-transfer torques in vac-
uum tunnel structures and in the development of new
devices based on current transfer of the spin in
nanoscale tunneling heterostructures.

ACKNOWLEDGMENTS
This study was supported by the Russian Foun-

dation for Basic Research, project no. 13-07-12405,
and by the Ministry of Education and Science of the
Russian Federation, project no. 14.578.21.0001 (id
RFMEFI57814X0001).

REFERENCES
1. T. Shinjo, Nanomagnetism and Spintronics, 1st ed.

(Elsevier Science, UK, 2009), p. 1.
2. K. A. Zvezdin, M. Yu. Chinenkov, A. F. Popkov, et al.,

Inzh. Fiz., No. 10, 27 (2012).
3. A. F. Popkov, K. A. Zvezdin, M. Yu. Chinenkov, et al.,

Inzh. Fiz., No. 9, 19 (2012).
4. A. Manchon, S. Zhang, and K.-J. Lee, Phys. Rev. B.

82, 174420 (2010).
5. J. Zhang and R. M. White, J. Appl. Phys. 83, 6512

(1998).
6. G. Herzog, S. Krause, and R. Wiesendanger, Appl.

Phys. Lett. 96, 102505 (2010).
7. H. F. Ding, W. Wulfhekel, J. Henk, et al., Phys. Rev.

Lett. 90, 116603 (2003).
8. H. Xi, J. Stricklin, H. Li, Y. Chen, et al., IEEE Trans.

Magn. 46, 860 (2010).
9. J. Slonczewski, Phys. Rev. B 71, 024411 (2005).

10. P. Ogrodnik, M. Wilczyński, R. Świrkowicz, and J. Bar-
naś, Phys. Rev. B 82, 134412 (2010).

11. J. Grollier, V. Cros, H. Jaffris, et al., Phys. Rev. B 67,
174402 (2003).

12. J. Mathon and A. Umerski, Physics of Low Dimensional
Systems, Ed. by J. L. Morán-López (Springer US,
USA, 2001), p. 363.

13. D. Datta, B. Behin-Aein, S. Datta, and S. Salahuddin,
IEEE Trans. Nanotech. 11, 261 (2012).

Translated by E. Bondareva

P AP
CJ

→

||T

AP P
CJ

→

T⊥

KH H≥ KH


		2015-12-07T16:43:01+0300
	Preflight Ticket Signature




