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Abstract—The effect of the motion of a Wannier—Mott exciton in semiconductors with a superlattice formed
by heterojunctions on the exciton binding energy and wave function is analyzed. This effect arises as a result
of the fact that the dispersion laws of the electron and hole that form an exciton in a superlattice differ from
the quadratic law. The investigated one-dimensional superlattice consists of alternating semiconductor layers
with different energy positions of the conduction and valence bands, i.e., with one-dimensional wells and
barriers. The exciton state in a superlattice consisting of quantum dots is analyzed. It is demonstrated that the
closer the electron and hole effective masses, the greater the dependence of the binding energy on the exciton
quasi-momentum. The possibility of replacing the tunneling excitation transfer between superlattice cells
with the dipole—dipole one at certain exciton quasi-wave vector values is investigated.
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1. INTRODUCTION

This study is aimed at elucidation of the effect of
motion of the Wannier—Mott exciton center of inertia
in semiconductors with a superlattice (SL) formed by
heterojunctions on the exciton binding energy and
wave function. Consideration of this effect arises
because the dispersion laws of the electron and hole
that form an exciton in the SL are significantly differ-
ent from quadratic law. First, we consider a one-
dimensional (1D) SL consisting of alternating semi-
conductor layers with different energy positions of the
conduction and valence bands, i.e., with one-dimen-
sional wells and barriers. Then, we generalize our anal-
ysis to a three-dimensional (3D) SL consisting of
quantum dots (QDs). We demonstrate that the binding
energy and structure of the exciton strongly depend on
its motion as a whole.

2. LAYERED SUPERLATTICE

Here, we discuss a semiconductor structure con-
sisting of alternating semiconductor layers with differ-
ent band gaps, which form a periodic sequence of
potential wells and barriers for electrons and holes.
Hereinafter, we investigate a SL with barriers that are
high enough to limit the consideration to the ampli-
tudes of tunneling between only the nearest potential
wells for both holes and electrons.

We seek the exciton wave function in the form!
W(Xe Pes X P1)

(1)
= Z CD(nea Pes My, ph)we(xe - ane)wh(xh - a”h)'

N, By

! For the sake of briefness, here we assume the hole wave function
to be scalar.

Here, x, and x, are the electron and hole coordinates
along the SL axis, respectively; a is the SL period;
p. and p, are the electron and hole coordinates in the
SL-layer plane; w,(x, — an,) and w,(x;,, — an,,) are the
Wannier functions [1] of an electron and a hole local-
ized in layers with numbers n, and n,, respectively; and
O(n,, p.; 1y, Py is the envelope function describing the
relative motion of an electron and a hole in an exciton
and its motion as a whole.

We assume the motion of an electron and a hole
along the SL layers to be free and described by respec-
tive the effective masses m, and m,,.2

In the nearest neighbor approximation, the equa-
tion for the envelope function acquires the form

V(pe —Pp N nh)

S,
x q)(nw Pes My, ph) + _[2CD(nev Pes My, ph)
2 )

- (D(ne + 1’ Pes My ph) - CI)(ne_ 19 Pes My, ph)]
J
+ -211[2@(”6’ pe; Ry, ph) - q)(nea pe; ny + 17 ph)

- q)(ne’ Pes Ny — 17 ph)] = (E_ EG)cD(ne’ Pes My, ph)

Here, J, and J, are the electron and hole resonance
integrals, which relate the neighboring wells and Ej; is
the energy gap. The energy scale was chosen so that in
the absence of interaction the energies of an electron
and a hole with zero quasimomenta were equal to E;

2 We note that these masses, especially the hole mass, may depend
on the thickness of the quantum wells that form the SL.
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and zero, respectively.3 The potential describing the
Coulomb attraction between an electron in the well
with the number #, and the in-plane coordinate p, and
a hole in the well with the number 7, and the in-plane
coordinate p,, is

2
V(pe =Py o= my) = =< | [dx,d,
€
1 2 2(3)
x wo(x, — an,)’wy(x, - an,)’.

Jox—x)2+ (po—py)’

For the sake of briefness, here we disregard varia-

tions in the permittivity e from layer to layer* because
of their relative smallness in heterostructures based on
ITI-1V compounds.

Obviously, at distances smaller than or comparable
to the thickness of the quantum wells that form the SL,
the amplitude of this potential is smaller than that of
the Coulomb potential due to smearing of the electron
and hole charges, which is described in expression (3)
by the squared Wannier function.

By virtue of the translational invariance of Eq. (2)
in the SL plane, we can, as usual, separate the coordi-
nates of the center of mass and the relative motion

+
R:’/M1 and P =P.— Ps
m,+ m,
Then, the envelope function acquires the form

D (M P My Py) = € (Mg, 115 P)- (4)

By virtue of the periodicity of the SL, the equation
for the envelope is invariant relative to an identical
shift in the site numbers for an electron and a hole by
an integer number of periods N

{nsny,y —= {n.+ N,n,+ N}. Q)
It is convenient to seek the envelope in the form

i[0/2-y(O)]n, +i[Q/2 +v(Q)]n,,

o(n,, ny; p) = e Yo(n; p), (6)

where n =n, — n,,.

Upon translation (5), the wave function (6), as it
should, acquires the phase factor ¢@¥. Thus, parame-
ter Q plays the role of dimensionless quasi-momentum
of the center of mass of the exciton in the SL-axis
direction and lies between —r and nt. The y(Q) phase
should be selected so that the obtained equation for
the function y(n, — n,; p) is dependent only on the

3 Naturally, the value depends on the quantum-well width and
barrier thickness and height.

4 The effect of the difference between permittivities on the exciton
binding energy in thin films was studied in [2, 3].
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difference n, — n,. Substituting function (6) into
Eq. (2), we see that we should choose

v(Q) = arctan (u’ tan Q) .
Je+J, 2

Substituting this into Eq. (2), we obtain the follow-
ing equation for the function y,(n; p) describing an
exciton in the system of relative coordinates of an elec-
tron and a hole:?

{———2 - Vp, n)}xg(n; p)+ J(QTW

X [2x0(n; p)—xo(n+ 15 p)—yo(n—-1; p)] (7

_ P’ , .
_ [E—EG— S~ KO3, Jh)]xg(n, p).

Here, the resonance integral

JQ: Jody) = (o +0,) =201 - cosQ)  (8)

describes the relative motion in the electron—hole pair
with the quasi-momentum Q/a along the SL axis. The
kinetic energy of the electron—hole pair with the
quasi-momentum Q/a of the center of mass along the
SL axis is

K(Q: 'Iev ']h)

)
= J, 4 dy = J(J+ 0, = 20,0,(1 - cosQ).

The kinetic energy of motion of the center of mass
in the plane of SL layers with momentum P is, as

m,my
m,+m,

usual, P?/2(m, + m,) and m, = is the reduced

mass in the layer plane.

First, let us discuss expression (9) for the kinetic
energy of exciton motion along the SL axis. At small Q
values, we obtain

a9

K(Q; J,,J)=-—=a"| =] . 10

Qs e )= 5775 (10)

It is worth noting that, in the nearest neighbor

approximation, the kinetic energy of motion of an

electron (hole) with the quasi-momentum ¢/a along
the SL axis is

Ko@) = Joyl1 — cos(q)].
Therefore, the components of the electron and
hole effective masses along the SL axis near the bottom
of the miniband (|g| <€ ) are

m = 1/0,a°, m=1/4,d"

5 Hereinafter Planck’s constant is assumed to be A = 1.
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Thus, the kinetic energy of exciton motion along
the SL axis at small momenta (10) acquires the rather

natural form
1 1 2
K(0; Jo )~ 21— (9),
2m) + my, @

(1

which involves the resulting electron and hole mass.

At the boundary of the SL Brillouin zone (Q = £m),
we have

K(Q9 Je’ ']h) = Je + Jh - |Je - Jh|7

i.e.,

KQ; J,, J,) =2min{J,, J,} = %min{il, i}
a m, m,

Thus, it is the heavy particle that determines exci-
ton motion along the SL axis at all values of the quasi-
momentum Q/a, which is completely natural. It is also
natural that at J, << J, the exponent in wave function (6)
with regard to the expression for y(Q) transforms into

iQn . . . .
e ", which corresponds to coincidence of the coordi-

nate of the center of inertia with the coordinate of the
heavy particle, i.e., hole. If J, = J,, i.e., the compo-
nents of the electron and hole masses along the SL axis

i 2
are equal, then y(Q) = 0 and the exponent elQ("”"”)/

corresponds to the coordinate of the center of inertia
at the same distance from both of them.

Now, let us pass to resonance integral (8) which

describes the relative motion of an electron and a hole
along the SL axis in the exciton. At Q = 0, we have

JO; J,, J) =J,+J,,

or, with (11) taken into account,

JO0; J,, J,) = (i“ ; i”) L
m, my a
Thus, at Q = 0, the relative motion along the
SL axis is determined by the longitudinal component
of the reduced mass. As the momentum of the center
of mass is increased, the resonance integral decreases
and at Q = £m,
I T g = |4 - &
m, my,

1

5"
a

If the resonance integrals and, consequently, the
electron and hole masses are similar, then the relative
motion along the SL axis becomes difficult. In the
limit of equal masses,® both the electron and hole of
the exciton appear localized, each in its own SL well.
The dependence of the resonance integral J(Q) in

® This is attainable in a structure where the barrier separating the
wells is lower for holes than for electrons.

SEMICONDUCTORS  Vol. 49 No. 6 2015

809

J(Q, Jes Jh)/']e
20

0 | | |
—4 -7 -2 0 2 T

1
4
0
Fig. 1. Dependence of the resonance integral J(Q; J,, /) in

units of J, on the quasi-momentum for three values of the
Ju/J, ratio.

units of J, on the quasi-momentum for three values of
the ratio J,/J, is presented in Fig. 1.

3. EXCITON BINDING ENERGY
IN A LAYERED SUPERLATTICE

The exciton binding energy is determined as the
eigenvalue of the Hamiltonian

(oltodny = [ 2
n excn>_ - —_—z_V(pan) 8"’”'
2m,pp
(12)
+W(ZS”M'_6n+l,n_8”’1’"‘)’

where 0, ,, is the Kronecker symbol. We should con-
sider two limiting cases.

3.1. Exciton with Blocked Motion along the SL Axis
(J(Q; J,, Jy) = 0)
The eigenfunctions of Hamiltonian (12) at zero
resonance integral J(Q; J,, J;,) have the form’

o (m:p) = 8, i, v(p), (13)
where Vv is the set of eigenvalues of the axial moment

and number of the state and the eigenfrequencies EVN

depend on the number N of periods separating the
electron and hole and playing the role of a quantum
number. The wave functions y, \(p) in (13) are the

7 It should be noted that set of functions (13) forms a complete
system in the framework of the one-miniband approximation for
electrons and holes:

N N ,
X Xy (m3P)xy (15 9) = 8, ,8(p—p).
v, N
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Binding energy (3D effective Rydbergs)

N(a/ap)

Fig. 2. Dependence of the binding energy of an exciton on
the distance between the electron and hole of the exciton
along the SL axis for the first three values of the angular
momentum in the SL-layer plane [5].

eigenfunctions of the two-dimensional (2D) Hamilto-
nian

which describe the excitons in the eigenstate with

quantum numbers v. In the limit of a very deep and

narrow well, potential (3) can be replaced with

e 1

Vp. N) = & —x.

€ /pz + &N
At N = 0, we deal with a 2D exciton, the binding

energy of which at N=0is4E}, where the Bohr energy

of the 3D exciton is

(14)

EB = .
26’1
The binding energies of the ground and excited
states of the exciton are [4]

Eg/(s—1/2)°,

where s = 1, 2, 3 is the main quantum number (s = 1
corresponds to the ground state). Due to the well-
known degeneracy of a system with Coulomb interac-
tion at N = 0, the binding energy is independent of the
angular momentum. We note that, in the general case
of potential (3), this degeneracy is lifted [5].
Obviously, in this approximation, eigenfunction (13)
and the eigenenergy of relative motion are indepen-
dent of the momentum of the center of inertia, since
we disregarded the term with J(Q; J,, J,) in (12). The
sequence of values N = 0, 1, 2,...corresponds to an
exciton consisting of an electron and a hole in the

same SL potential well (N = 0) and spatially indirect
excitons in which the electron and hole are separated
by one (N = 1), two (N = 2), etc. barriers. It is clear
that the larger the N value, the lower the binding
energy £, y of the exciton.

Figure 2 shows the dependences of energies E1Vv of

several lower states of the exciton on the parameter
(a/ag)N in the SL [5] in the limit of a very deep and
narrow well, when the potential of the electron—hole
interaction can be presented in form (14). It can be
seen that at N # 0, the degeneracy by the angular
momentum is lifted and the levels are split [5].

At nonzero values of the resonance integral J(Q; J,, J,),
the term nondiagonal in terms of # can be taken into
account using perturbation theory, if the distances
between the energy levels exceed its value. For highly
excited exciton states and/or large N values, this is
incorrect and the possible resonances of states should
be taken into account.

3.2. “Three-Dimensional” Exciton J(Q; J,, J,) #0

We assume that a three-dimensional (3D) exciton
is an exciton with a wave function along the 1D SL axis
that is much longer than its period. In this case,
Hamiltonian (12) can be reduced to the continuum
limit

~ 2 . 2 2
H.. = _L%_Ma__ V(p,2). (15)
2mrap 2 812

In expression (12), we replaced the number n of the
SL cell multiplied to the period a by the continuous
coordinate z directed along the SL axis and the differ-
ence operator in the latter parenthesis of (12), with the
second derivative in respect to z multiplied to the
squared period. It can be seen from expression (15)
that the value M = 1/J(Q; J,, J,)a? plays the role of a
component of reduced mass along the SL axis. It differs
from the reduced mass in the plane (as a rule, exceeds the
latter).

The problem with the Coulomb bound state of a
particle with anisotropic mass has a long history. It was
considered in relation to the donor states in germa-
nium and silicon, where the isoenergy surfaces for
electrons are extended ellipsoids of revolution [4].

If the reduced mass along the SL axis far exceeds
that along the layers, we can use the adiabatic approx-
imation and obtain the energy of the exciton ground
state with the lowest correction by the mass ratio, as
was done in [4] for the donor states in Si and Ge,

Ey = ~4E,[1-258(mJa)'").

In the same approximation, the characteristic
extent of the wave function along the SL axis is

) m g™
cra\Tx )
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The essence of the approximation used in [4] and
reformulated for a exciton consists in the fact that the
rapid relative motion forms a 2D exciton and slow
motion along the SL axis is quantized in a triangular
well formed by a 2D charge with the edge effect disre-
garded. The latter is applicable, since the length of
localization along the SL axis is much smaller than the
2D exciton radius. On the other hand, the continuum
approximation is valid if this length exceeds the
SL period,

a<z<ag/2,

or, with regard to the fact that for the ground state in
the purely 2D case, aéD = ag/2 and Elng = 4F,
(index 2D indicates the 2D exciton),

2 2
a o J (cﬁ) )
ay’  8Ey N d

These conditions can be met only if the SL period
is much smaller than the Bohr radius of the 2D exci-

(16)

ton, a/ aéD < 1, and the ratio between the miniband

width and the Bohr energy lies in a rather narrow
range. We note that, although the dependence of the
resonance integral J on a is of the power-law type, the
exponential dependence of this integral on the height
and thickness of the barrier separating the potential
wells is the most important. Therefore, we consider the
resonance integral as an independent parameter.

4. SUPERLATTICE COMPOSED
OF QUANTUM DOTS

Now, let us briefly discuss the properties of excitons
in a SL composed of quantum dots (QDs) using the
one-miniband approximation once again. The wave
function of the electron—hole pair should be presented
in the form

lIJ(re’ rh) = Z CD(Res Rh)we(re - Re)wh(rh - Rh)

R, R,

17)

where r, and r), are the electron and hole coordinates,
respectively; ®(R,, R,) is the envelope function of the
electron—hole pair; R, and R,, are the coordinates of
QD sites in the SL; and w,(r, — R,) and w,(r, — R,) are
the Wannier functions.

For the sake of briefness, we limit consideration to
a simple cubic or square (in the 2D structure) SL com-
posed of QDs, taking into account tunneling ampli-
SEMICONDUCTORS Vol. 49

No. 6 2015
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tudes only between the nearest neighbors. Then,
Eq. (2) for the envelope acquires the form

[-V(R,-R,)]DO(R,, R,) + Z%[N)(Re, R,)

— ®(R, +ae, R,) - D(R,—ae, R
( e i h) ( h)] (18)

J
+ 2-2—”[2CD(R63 Rh) - CD(Rw Rh + aei)

—O(R,, R, —ae)] = (E- Eg)P(R,, Ry).

Here, J,; is, as previously, the electron (hole) reso-
nance integrals, a is the SL period, and e; are the uni-
tary vectors along the SL axes (i =x, y, zori=x, y for
the 2D structure).

The Coulomb interaction potential is

¢’ 1
V(R,-R,) == | |dr,dr,——
( e /1) € J-J. e h‘

r,— rh’

(19)
xw,(r,—R,)'w,(r,— R;)".
Similarly to (6), we present the envelope in the
form

i[Q/2-v(Q)IR, +i[Q/2+7(Q)IR,
(R, Rh):el[ /2-v7(Q)IR, +i[Q/2+7(Q)]R,

X XQ(Re -R,)

and arrive at the equation for the components of
parameters y,(Q), which ensure the dependence of the
function yo(R, — R,) only on the difference between
the site coordinates R, — R;:

(20)

7(Q) = arctan(#tan—Q—’). (21)

+J, 2
As in the 1D SL case, we obtain the equation for
Xo(R):

J(Q; Jo J1)

[V(R)Ig(R) + 3=

(22)
x [27o(R) — 2o(R + ae,) — xo(R—ae))]

= [E-E;-K(Q; J,, J,)110(R).

Here, the ith component of the resonance integral is

J(Q: T d)) = J(+0,) =2J,0,(1 - cosQ). (23)

and the kinetic energy of motion of the center of
energy of the exciton with quasi-momentum Q/a is

K(Qz Jea Jh) = 3(Je+‘]h)

24
S+ T = 20,0,(1 - cos0)). @9
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At small |Q|, the energy of motion of the center of
mass of the exciton (23) is described by the quadratic
dispersion law with the resulting electron and hole

mass (J, + J;, a2

Q2a2
KQ; JoJp) = —34—.
20, + )

Regarding the components of integral (23), we
should emphasize their dependence on the compo-
nents of the vector of quasi-momentum of the center
of mass, which becomes more pronounced at close J,
and J), values. Therefore, the binding energy is sensi-
tive both to the value of vector Q and to its direction,
i.e., to the direction of motion of the exciton as a
whole. For example, if J, = J, and Q, = *m, then
J(Q; J,, J;) = 0 and the SL transforms into a set of 2D
SLsin the layers normal to the z axis and not related to
one another by tunneling.

In the continuum approximation, when the differ-
ence operator in parentheses in the second term
in (22) is replaced by the second derivative and R is
considered as a continuous variable, Eq. (21) acquires
the form of the ordinary Schrodinger equation with
anisotropic effective mass

_ JI(Q’ Je’ Jh)az_@_z_ R) - V(R R
I sy
= [E-E;—-K(Q; j, Jh)]XQ(R)-

It is noteworthy that the components of the effec-
tive mass

(25)

i

mi = 1/J(Q; J,, J,)a’

depend on both the value and direction of the dimen-
sionless quasi-momentum Q of the center of inertia of
the exciton.

The continuum approximation is valid, in as far as
the extent of the wave function yo(R) exceeds the SL
period. In this case, the potential V(R) can be replaced
with (e?/€)(1/|R]) and Eq. (25) can be made dimen-
sionless by choosing as the unit length the smallest of
the values

eJ(Q; J, J)a" c
2 _

e m¥(Q; J,, J,)e

which corresponds to the Bohr radius of a particle with
reduced effective mass along the ith SL axis m*(Q; J,, J,).

Obviously, the continuum approximation is valid at
eJ(Q; J,, J)a*/e*> a or J(Q; J,, J,) > €*/ea, i.e., if
the smallest resonance integral is larger than the
energy of the Coulomb interaction at a distance of one
SL period. If, in one of the directions, the continuum
approximation is inapplicable, the problem should be
considered as in the case of a layered SL at a small res-

SURIS

onance integral. If, in the 3D SL, the resonance inte-
grals along two axes are small, then we deal with
weakly coupled quantum wires. They are considered
similarly to the analysis of the 2D system with sites
from the quantum wires the exciton spectrum of which
was described, e.g., in [6]. We note that the previous
investigation is obviously generalized to second-order
heterostructures where electrons and holes are spa-
tially separated.

Now, let us discuss the possibility of the transfor-
mation of the thus far investigated Wannier—Mott
exciton to the Frenkel exciton in a semiconductor SL.

For this purpose, the amplitude of excitation trans-
fer from one SL site to another due to the dipole—
dipole interaction should be larger than the tunneling
one. The first of them is a value of about p?/ea®, where
u is the dipole moment of the exciton transition. Thus,
the inequality

2
£ > 0Q; 7. 7))
€ea

should be valid.

Thus, an interesting feature can arise in a semicon-
ductor SL. If the resonance integrals of electrons and
holes have the similar values, then in certain directions
of quasi-momentum Q and at its values larger than a
certain value, the key role in the transport will be
played by the dipole—dipole interaction. Thus, the sit-
uation can be implemented in which the exciton is
simultaneously of Frenkel and Wannier—Mott types.8
Generally speaking, the same change in the transport
mechanism can occur in a layered SL under a condi-
tion similar to (26).

(26)

5. CONCLUSIONS

It was shown that the resonance integral that deter-
mines the tunnel coupling of the Wannier—Mott exci-
ton in neighboring SL cells depends on the quasi-
momentum of the center of inertia of the exciton. The
closer the resonance integrals of the electron and hole,
the stronger this dependence is. Consequently, both
the binding energy of the exciton and its wave functions
in a semiconductor with a SL depend on the quasi-
momentum of the center of inertia of the exciton.

In the continuum approximation, the exciton
problem is reduced to the well-known problem of the
Coulomb center for a particle with anisotropic mass
solved by Kohn and Luttinger for donor states in ger-
manium and silicon in 1955 [4]. The determined range
of parameters in the limit of which the continuum
approximation is applicable was shown to be rather
narrow.

The properties of excitons in a semiconductor with
a SL were briefly analyzed. It was demonstrated that

8 Frenkel excitons in the SL of QDs were investigated in [7].
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the continuum approximation is applicable if, which is
natural, the Coulomb energy at a SL period is smaller
than the width of the miniband for the exciton as a
whole.

It was shown that, at similar electron and hole
masses and an exciton quasi-momentum close to the
Brillouin-zone boundary, the transport of the exciton
from one site to another in the direction of this quasi-
momentum should occur due to dipole—dipole inter-
action, as in the case of Frenkel excitons.
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