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1. INTRODUCTION

Spin–orbit coupling (SOC), being relativistic in
nature, leads to the appearance of gyrotropy in two�
dimensional (2D) semiconductor systems and spin
splitting in the energy spectrum of quasiparticles in the
absence of external magnetic field. This splitting for
states near the bottom of the conduction band is linear
in quasi�momentum and is associated with the lack of
an inversion center in the system. Spin splitting in
2D systems based on III–V semiconductors is caused
by two main terms in the effective Hamiltonian. This
effect is also known as Rashba [1] and Dresselhaus [2]
SOC. The former contribution appears in quantum
wells (QWs) with different barriers or asymmetric
potential profiles and in the presence of an external
electric field (structure inversion asymmetry, SIA).
The latter contribution is caused by the absence of a
spatial inversion center in the unit cell of the materials
used to grow the 2D structure (bulk inversion asym�
metry, BIA).1 

The Dresselhaus SOC Hamiltonian in bulk III–V
semiconductors for states near the bottom of the con�
duction band is given by

(1)

1 In addition to the contributions caused by SIA and BIA, the
SOC Hamiltonian in 2D systems also contains a contribution
associated with the symmetry and structure of heterojunctions
in QWs (interface inversion asymmetry, IIA) [3]. Consideration
of the contribution of heterojunctions to the SOC Hamiltonian
in the absence of magnetic field leads only to renormalization of
the Rashba and Dresselhaus contributions [3–5].
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where γ is the Dresselhaus coupling constant,  and

 (i = x, y, z) are the Pauli matrices and operators of
generalized momentum components. The x, y, z axes
are oriented along the cubic crystal axes [100], [010],

and [001], respectively. We note that ( ) differs
from the Hamiltonian obtained in [2]. The form of
Eq. (1) for the Dresselhaus SOC takes into account
the regular order for generalized momentum compo�
nents in the presence of a uniform magnetic field [6].

In 2D systems, due to the size quantization of the
momentum component along the growth axis, e.g.,
the z axis, is replaced in the Hamiltonian by –i∂/∂z.
The SOC Hamiltonian can be obtained by averaging
over adiabatically rapid motion along the growth axis.
Performing such averaging and taking into account

that  = 0 and  ≠ 0, where angle brackets mean
quantum�mechanical averaging over the wave func�
tion of size quantization, it is easy to obtain the 2D
form of the Dresselhaus SOC [7] which, in addition to

the term ( , ) linear in  and , contains a

component cubic in quasi�momentum, ( , ),

(2)

where β = –γ  is the 2D Dresselhaus constant

depending on the QW width. The term ( , ) is
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often neglected supposing that  � , where kF =

 is the Fermi wave vector (nS is the 2D electron
density). Recent experiments [8–10] show an impor�
tant role of the cubic term in the Dresselhaus SOC in
2D systems even at very low electron�gas densities.

The use of electron spin resonance (ESR) for mea�
suring the SOC constant was first proposed in [11, 12].
Due to the extraordinary sensitivity to SOC and high
accuracy when determining the absorption�line posi�
tion, the ESR was efficiently used to determine the
Rashba SOC constant in 2D systems [13–17]. The
Dresselhaus SOC in QWs placed in a magnetic field
leads to the anisotropy of spin splitting of the elec�
tronic levels, described as the anisotropy of the effec�
tive g�factor in the 2D�system plane [18, 19]. The in�
plane anisotropy of the g�factor in the GaAs/AlGaAs
QWs, determined by ESR measurements was experi�
mentally observed in [20, 21].

In addition to the fact that the SOC leads to g�fac�
tor anisotropy in strong magnetic fields and an
increase in the ESR energy in weak magnetic fields,2 it
also causes additional renormalization of the ESR
energy in the 2D system, associated with the electron–
electron (e–e) interaction (Larmor theorem violation
[22]. The effect of the e–e interaction on the ESR
energy was studied in detail for 2D systems with
Rashba SOC [22–24] and for QWs based on narrow�
gap semiconductors such as InAs and InSb [25–30].

The present paper is devoted to studying ESR energy
renormalization caused by the e–e interaction in a 2D
electronic system with the Dresselhaus SOC cubic,

( , ), and linear, ( , ), in momentum.
In this case, nonparabolicity and disorder effects are
disregarded.

2. THEORY

Let us consider a 2D system in the absence of dis�
order, placed in a magnetic field directed along the
z axis perpendicular to the system plane. To calculate
the energies and wave functions of single�electron
states, instead of momentum operators in the (x, y)
plane, it is convenient to introduce the “ladder opera�
tors” as follows

2 In zero magnetic field, the ESR energy is defined by the spin
splitting of the carrier energy spectrum.
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where aB =  is the magnetic length and B is the
magnetic induction. As a result, the Hamiltonian for
describing single�particle states can be written as

(3)

where m* and g* are the electron effective mass and g

factor, μB > 0 is the Bohr magneton, ωc = eB/m*c,  =

, and  = γ/ . The term  in Eq. (3)
appearing from the anisotropic part of the cubic

Dresselhaus SOC term ( , ) has the form

(4)

It is easy to see that the dispersion relation of 2D
electrons in the absence of term (4) is isotropic and the
single�particle problem can be solved analytically. The

eigenvalues of the “reduced” Hamiltonian  – 
have two branches denoted a and b,

(5)
and

(6)
where

It is convenient to present the corresponding wave�
functions in the form

(7)

where |n – 1, k〉 corresponds to the normalized wave�
function of the harmonic oscillator [31],
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The electron spin resonance corresponds to the
transition between the (n, a) and (n + 1, b) levels. In

weak magnetic fields at large n such that  ≈ 2n/ ,
the ESR energy takes the form

(9)

where the  = 2βkF and  = 2γ  are the energy�
spectrum splittings in zero magnetic field, corre�
sponding to the linear and cubic parts of the Dressel�
haus SOC.

The anisotropic term  in the energy and wave�
functions of single�particle states was considered
according to perturbation theory with an accuracy up
to the second order in wavefunctions (7). The direct
diagonalization of  in the basis of eigenfunctions

of the “reduced” Hamiltonian  –  at m*, g*,
β, and γ characteristic of 2D structures based on
GaAs/AlGaAs shows that the corresponding contri�

bution of  does not exceed 1–2% even in weak

magnetic fields (at which  ≈ 2n/ ), which validates
the use of perturbation theory. We note that the appli�
cation of perturbation theory in calculating the ener�
gies and wavefunctions of single�particle states instead
of numerical diagonalization of  makes it possible
to save a significant amount of calculation time in
solving the many�body problem.

The total Hamiltonian of the 2D system, taking
into account the e–e interaction, Hint, in the second�
ary quantization representation is written as

(10)

where r = (x, y) is the radius vector in the system plane,
V(r1 – r2) is the Coulomb potential, the superscript “+”
corresponds to the Hermitian conjugate. In Eq. (10),
the field operators Ψ(r) and Ψ+(r) containing the fer�

mion creation and annihilation operators an, k, i, ,

and the wave functions  and  of sin�

gle�particle states, calculated taking into account ,

(11)
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where i = a, b. The use of the Fourier transform for the
Coulomb potential,

(12)

makes it possible to reduce calculation of the matrix
elements of the e–e interaction Hint on the wavefunc�

tions  and  to calculation of the

matrix elements 〈n1, k1|eiqr|n2, k2〉 [24].

The Fourier transform  of the Coulomb
potential in the 2D system has the form

(13)

where ε is the dielectric constant of the system, F(q) is
the geometrical form factor taking into account the
nonzero thickness of the 2D system along the z axis
and the fields of electrostatic images. Then we disre�
gard electron motion along the z axis, setting F(q) = 1.

After certain calculations, we can obtain the fol�
lowing expressions for H(0) and Hint

(14)

where  are the energy eigenvalues of the Hamilto�

nian ; in the matrix element  ∝ 
of the e–e interaction, terms to within the second

order of smallness in the matrix element  are
retained.

To find the ESR energy taking into account the e–e
interaction, it is convenient to use the exciton repre�
sentation [32–34]. During the electron transition
between Landau levels in the 2D system, quasielec�
tron–quasihole pairs are generated (quasielectrons
over the Fermi level and quasiholes under the Fermi
level) which results in the ground�to�excited state
transition of the system. To describe the excited state
of the 2D system, formed by an electron transferred to
an unoccupied or partially occupied Landau level (n, i)
and an effective hole appearing at the previous level
(n', i'), we define the creation operator of the magnetic
exciton with momentum k as

(15)
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which satisfies the following commutation relation

(16)

The energy Eex of this magnetic exciton, measured
from the ground state energy |0〉 of the system satisfies
the equation

(17)

To calculate the commutator on the right�hand side
of Eq. (17), it is convenient to rewrite expression (14) in
the form

(18)

Then, using the commutation relations between
the exciton operators and retaining only the terms
proportional to the product of the fermion creation
and annihilation operators on the right�hand side of
expression (17), multiplying this product by the oper�
ator of the number of particles, and taking into
account that

(19)

where  is the Landau�level (n, i) filling factor, we

find the following expression for [Hint, ] (see
also [24–26])

(20)

An1 n2 i1 i2, , ,

+
k1( ) An3 n4 i3 i4, , ,

+
k2( ),[ ]

=  An1 n4 i1 i4, , ,

+ k1 k2+( )e

i
2
��aB

2
k1 k2×( )

z

–

δn2 n3, δi2 i3,

– An3 n2 i3 i2, , ,

+ k1 k2+( )e

i
2
��aB

2
k1 k2×( )

zδn1 n4, δi1 i4, .

EexAn n ' i i ', , ,

+ k( ) 0| 〉 En
i( ) En '

i '( )–( )An n ' i i ', , ,

+ k( ) 0| 〉=

+ Hint An n ' i i ', , ,

+
k( ),[ ] 0| 〉.

Hint
1
2
�� d

2q

2π( )2
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In expression (20), the matrix element 
is defined as

(21)

We can see that the second and third terms in
expression (20) provide mixing of all possible states of
the 2D system, containing magnetic excitons.

Let us dwell on the magnetic�exciton excitation
associated with the electron transition between Lan�
dau levels (n, a) and (n + 1, b), whose energy in the
long�wavelength limit corresponds to the ESR energy.
It can be shown that in strong magnetic fields such that
B > Bcr, where Bcr is determined from the condition

(22)

mixing of the quasielectron–quasihole pair excitation
between Landau levels (n, a) and (n + 1, b) with other
magnetic excitons can be disregarded (see, e.g., [24]).
Thus, the ESR energy taking into account the e–e
interaction takes the form

(23)

where the correction to the ESR energy , caused
by manyparticle effects, is given by

(24)

It is easy to show that, in the absence of SOC, i.e.,

at β = 0, γ = 0,  = 0, the ESR energy, in full com�
pliance with the Larmor theorem, is g*μBB [35].

3. RESULTS AND DISCUSSION

To illustrate the obtained theoretical results, in this
section, we consider a “model” 2D system with the
dielectric constant ε = 12.5, the effective electron
mass m* = 0.067m0 (m0 is the free electron mass), and
the g factor varying in the range from –0.4 to 0.4,
which are characteristic of 2D structures based on
GaAs/AlGaAs [8–10, 20, 21]. The 2D electron den�
sity is set to nS = 4.0 × 1011 cm–2. From the results of
various experimental studies of 2D structures based on
GaAs/AlGaAs, it is known that the constant γ is in the
range between –3 and –35 eV Å3 [10, 36–40]. In the
present study, according to [10], γ is set to –11 eV Å3.
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Figures 1 and 2 show the results of calculations of
the ESR frequency as a function of the magnetic field
at various g factors. The dotted curves correspond to
the single�electron approximation, solid curves are the
results of calculations taking into account the e–e
interaction. The insets in Figs. 1 and 2 show the “sin�
gle�electron” ESR frequencies with (solid curve) and
without (dotted curve) consideration for the cubic
term in the Dresselhaus SOC. Arrows indicate the
magnetic fields corresponding to integer Landau�level
filling factors. We note that the performed calculations
disregard excitation mixing between Landau levels (n, a)
and (n + 1, b) with other magnetic excitons, i.e., are
bounded by the magnetic�field region B > Bcr, where
Bcr is determined from condition (22). At the chosen
parameters for the model 2D system, the value Bcr ≈
0.16 T for the Landau level nF intersecting the Fermi
level was reached at nF ~ 50. At a fixed magnetic field,
nF was calculated from the condition

(25)

As seen in Figs. 1 and 2, the behavior of the “single�
electron” ESR frequency in the magnetic field is con�
trolled by the 2D electron g�factor sign. At g* > 0, the
dependence of the ESR frequency on the magnetic
field is U�shaped (Fig. 1); at g* < 0, the dependence
is V�shaped (Fig. 2), and the ESR frequency vanishes
under the condition

(26)

where A is defined as in expression (22).
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magnetic fields, the “single�particle” ESR energy
tends to the Zeeman energy. The features of the “sin�
gle�electron” ESR frequency, appearing at even Lan�
dau�level filling factors, are related to Fermi�level
oscillations in the magnetic field. As the magnetic field
increases, the Fermi level jumps from one Landau�
level pair split in spin to a lower�lying pair whose spin
splitting depends on the Landau�level number n due to
the SOC; as a result, a spin�splitting jump at the Fermi
level corresponding to the ESR frequency occurs.

Consideration of the e–e interaction leads to sig�
nificant renormalization of the ESR frequency in the
magnetic�field region where the Dresselhaus SOC has
a significant effect on the Landau�level splitting. The
data of Figs. 1 and 2 show that the contribution to the
ESR frequency, caused by the e–e interaction depends
on the effective g�factor sign in the 2D system. We can
see that the e–e interaction at positive g�factors results
in a decrease on the ESR frequency at arbitrary mag�
netic fields and Landau level filling factors. At g* < 0,
the contribution of the e–e interaction to the ESR fre�
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on the magnetic field. In the region of weak magnetic
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mined from condition (26)), the e–e interaction
results in a decrease in the ESR frequency in compar�
ison with “single�electron” values. In strong magnetic
fields such that B � B0, the e–e interaction leads to an
increase in the ESR frequency in comparison with
“single�electron” values. In the vicinity of B ≈ B0, the
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in the single�electron approximation (dotted curve) and
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curve) and 0 eV Å3 (dotted curve).
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dependence of the ESR frequency on the magnetic
field has a complex behavior.

The oscillatory behavior of the “many�body” cor�
rection in the magnetic field is associated with oscilla�
tions in the difference between the filling factors of the
Landau levels involved in the transition corresponding
to the spin resonance. At zero temperature in the
absence of disorder in the 2D system, the densities of
states at Landau levels are described by Dirac δ�func�
tions, and the spin�split Landau levels are not over�
lapped, which leads to pronounced oscillations of the
“many�body” ESR frequency even in weak magnetic
fields. In the case of consideration of the finite Landau
level width (see, e.g., [41]), ESR frequency oscilla�
tions should be spread with decreasing magnetic field
due to an increase in the overlap of the densities of
states of spin�split Landau levels (nF, a) and (nF + 1, b).
Furthermore, an additional ESR frequency shift can be
expected, which is associated with the random poten�
tial of impurities in the 2D system with SOC [42].

Figure 3 and 4 show the results of calculations of
the corrections to the ESR frequency, associated with
the e–e interaction with (solid curve) and without
(dotted curve) consideration of the term cubic in terms
of the wave vector in the Dresselhaus SOC Hamilto�
nian. Arrows indicate the magnetic fields correspond�
ing to integer Landau�level filling factors. We can see

that the consideration of ( , ) in the Dressel�
haus Hamiltonian (2) results in a decrease in exchange
corrections to the ESR frequency. Since γ < 0, the
cubic term in Eq. (2) is partially compensates the con�

tribution of the linear term ( , ) and results in
a decrease in the total contribution of SOC to the ESR
frequency. The decrease in the contribution of the
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SOC to the ESR frequency according to the Larmor
theorem causes a decrease in corrections associated
with the e–e interaction.

It follows from expression (9) that the Dresselhaus
spin splitting in zero magnetic field is almost lacking at

β = –γ /4; in weak magnetic fields, the “single�elec�
tron” ESR energy is defined as g*μBB with an accuracy

up to terms . As seen in Fig. 5, consideration of
the e–e interaction in this case leads to only insignifi�
cant renormalization of the ESR energy whose value
does not exceed 1% at magnetic fields of > 0.5 T.
In this case, at positive (negative) g factors, the ESR
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frequency decreases (increases) in the entire mag�
netic�field range.

4. CONCLUSIONS

Violation of the Larmor theorem was theoretically
studied, and corrections to the spin�resonance energy
in a 2D system with Dresselhaus spin–orbit coupling,
caused by the e–e interaction, were calculated. The
oscillatory dependence of the “many�body” ESR fre�
quency on the magnetic field, associated with Fermi�
level oscillations in the magnetic field was presented.
It was shown that the many�body corrections to the
ESR energy depend not only on the interrelation of
linear and cubic terms in the Dresselhaus SOC, but
also on the electron g�factor sign in the 2D system.
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