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Abstract—A theory of biexcitons (formed from spatially separated electron and holes) in nanosystems that
consist of zinc-selenide quantum dots synthesized in borosilicate glassy matrices is developed. The depen-
dences of the total energy and the binding energy of the singlet ground biexciton state in such a system on the
spacing between the quantum-dot surfaces and the quantum-dot radius are derived by the variational
method. It is shown that biexciton formation is of the threshold character and possible in nanosystems, in
which the spacing between the quantum-dot surfaces is larger than a certain critical spacing.
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1. INTRODUCTION

The optical properties of quasi-zero-dimensional
semiconductor nanosystems that consist of spherically
shaped semiconductor quantum dots (QDs) grown to
aradius of a = 1—10 nm in transparent insulator matri-
ces are defined to a large extent by the energy spectra
of charge carriers localized close to the QD surface
[1—11]. In [6, 7], the optical properties of borosilicate
glassy samples containing ZnSe QDs were studied
experimentally. The average radii of such QDs were in
the range of a = 2.0—4.8 nm. At a small QD content
(x=0.003 and 0.03%), at which the optical properties
of the samples were determined mainly by those of the
individual QDs, it was found [6, 7] that the maxima
(peaks) of the absorption and low-temperature lumi-
nescence spectra were shifted to shorter wavelengths
(with respect to the band gap E, of the ZnSe single
crystal). In [8] (and [6, 7]), it was found that an elec-
tron could be localized in a polarization well near the
external QD surface, while a hole was in motion
within the QD. It was theoretically established [12]
that the shift of the low-temperature luminescence
spectral peak in such a nanosystem was due to quan-
tum confinement of the energy of the exciton
ground state (formed from a spatially separated hole
and electron).

In [6, 7], a shift of the spectral peak of the low-tem-
perature luminescence was observed also for samples
with a QD content of x ~ 0.6%. It was noted [6, 7] that,
at such a QD content in the samples, one must take
into account the interaction between charge carriers
localized above the QD surfaces. Therefore, in this
study, we develop the theory of a biexciton (formed
from spatially separated electrons and holes) in a
nanosystem that consists of ZnSe QDs synthesized in
a borosilicate glassy matrix. Using the variational

method, we obtain the total energy and the binding
energy of the biexciton singlet ground state in such
system as functions of the spacing between the QD
surfaces and of the QD radius. We show that the biex-
citon formation is of the threshold character and pos-
sible in a nanosystem, in which the spacing between
the QD surfaces exceeds a certain critical spacing. It is
established that the spectral shift of the low-tempera-
ture luminescence peak [6, 7] in such a nanosystem is
due to quantum confinement of the energy of the biex-
citon ground state.

2. HAMILTONIAN OF A BIEXCITON
IN A QUASI-ZERO-DIMENSIONAL
NANOSYSTEM

We consider a model nanosystem that consists of
two spherical semiconductor QDs, A and B, synthe-
sized in a borosilicate glassy matrix with the permittiv-
ity €,. Let the QD radii be a, the spacing between the
QD centers be L, and the spacing between the spheri-
cal QD surfaces be D. Each QD is formed from a semi-
conductor material with the permittivity &,. For sim-
plicity, without loss of generality, we assume that the
holes 4(A) and A(B) with the effective masses m,, are in
the QD (A) and QD (B) centers and the electrons e(1)

and e(2) with the effective masses mil) are localized

near the spherical QD (A) and QD (B) surfaces,
respectively (r5 is the distance of the electron e(1)
from the QD (A) center; rpy, is the distance of the
electron e(2) from the QD (B) center; ry(y, is the dis-
tance of the electron e(2) from the QD (A) center; g
is the distance of the electron e(1) from the QD (B)
center; r, is the distance between the electrons e(1)
and e(2) (see Fig. 1)). The above assumption is reason-

1626



BIEXCITONS FORMED FROM SPATIALLY SEPARATED ELECTRONS AND HOLES

able, since the ratio between the effective masses of the
electron and hole in the nanosystem is much smaller

than unity: mil)/mh < 1. Let us assume that there is

an infinitely high potential barrier at the spherical
QD—matrix interface. Therefore, in the nanosystem,
holes do not leave the QD bulk, whereas electrons do
not penetrate into the QDs.

For such a nanosystem model, we study the possi-
bility of the formation of a biexciton from spatially
separated electrons and holes. (Holes are located in
the QD (A) and QD (B) centers, and electrons are
localized near the spherical QD (A) and QD (B) sur-
faces.) The characteristic lengths of the problem are
determined by the quantities

2 2
e h e h
p= 2=, P = 2 (1)
2 (1 2
mye m,’ e
0 28182 hz
G = —2 2 )
g1+ & e

Here, a, and ail) are the Bohr radii of holes and elec-

trons, correspondingly, in the semiconductor with the
permittivity €, and in the matrix with the permittivity €;

agx is the Bohr radius of a two-dimensional (2D) exci-

ton localized above the planar interface between a
semiconductor with the permittivity €, and a matrix
with the permittivity €, (the hole is in motion within
the semiconductor, whereas the electron is in the

(N
matrix), e is the electron charge, p, = (1’7)1—e is

(me +mh)

the reduced 2D-exciton effective mass. The fact that
all of the characteristic lengths of the problem

(1) 0
a, L, D, A, Ay, gy > a (3)

are much larger than the interatomic spacing a, allows
us to consider the motion of electrons and holes in the
nanosystem in the effective mass approximation [1, 9].

In the context of the adiabatic approximation and
effective mass approximation, the Hamiltonian of a
biexciton (formed from spatially separated electrons
and holes) in the center-of-mass system can be written as

if = 1A1A(|)+1:1]3(2)+1:11m. (4)

Here Ha(iy describes the Hamiltonian of an exciton
formed from an electron and a hole spatially separated
from the electron (the hole 2(A) is in the QD (A) cen-
ter and the electron e(1) is localized above the QD (A)
surface) [12]:

2

- f
Haqy = - ZLA(U + Voynay(Taciy Trea)) (5)
+ U(rac1y Triay @) + Vo) (Faqy) + Vigay(Faay) + E,-
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Fig. 1. Schematic representation of a nanosystem consist-
ing of two spherical ZnSe QDs, QD (A) and QD (B) of
radii a. The holes 4(A) and A(B) are located in the QD (A)
and QD (B) centers, and the electrons e(1) and e(2) are
localized near the QD (A) and QD (B) surfaces (ryjy is the

distance of the electron e(1) from the QD (A) center;
() is the distance of the electron e(2) from the QD (B)

center; rp(y) is the distance of the electron e(2) from the
QD (A) center; rpy) is the distance of the electron e(1)
from the QD (B) center; ry, is the spacing between the

electrons e(1) and e(2); L is the spacing between the QD
centers; D is the spacing between the QD surfaces; e'(1),
e'(2) and /'(A), h'(B) are the image charges of the electrons
and holes).

In (5), the first term is the kinetic energy operator
of the exciton; the energy of Coulomb interaction
Vo) between the electron e(1) and the hole A(A) is
described by the formula

(1,1 e
Veynay = —‘(— + —) — (6)
2\e; & [Ty~ Ty
the potentials
0, rya<a
Vh(A)("h(A)) = { (7
O,  Fuay>a,
Ve(l)(rA(l)) =0, Iyp<a ()

describe the motion of quasiparticles in the nanosys-
tem in the model of an infinitely deep potential well,;
and E, is the band gap in the semiconductor with the
permittivity €,.

In [12], in the context of the modified effective
mass method [9], the theory of an exciton formed
from an electron and a hole spatially separated from
the electron was developed (the hole was in motion
within the QD and the electron was localized on the
outer side of the spherical QD—matrix interface). In
[12], the energy of the polarization interaction of the
electron and hole with the spherical interface with the
relative permittivity € = €,/g; > 1, U(r(y, Ty, @), 18
represented as the algebraic sum of the energies of
interaction of the hole #(A) and the electron e(1) with



1628

their own (Vyaways Veyerqy) and foreign (Vma)s
Vi) images:

U(”A(1), Th(ay a)= Vh(A)h'(A)(rh(A)h'(A)a a)
+ Ve y(Facy @) + Viaye ) (Faays Faciy @) )

+ Ve (Faqy Fray @)

e2[3 a
Vicayway = 2871 ﬁ"'ﬁ , (10)
—Th(a)
2 4
Ve = —~L— 8 (1n)
(De'(1) Zslari(l)(rf\(l)—az)
e’ a
Vh(A)e‘(l) = 3 , (12)
282arA(l)|rh(A)_ [(a/rA(l)) ]/rA(l)‘
2 2
e a
Ve(l)h'(A) = —2 B (13)

2 2 :
81a"h(A)"’A(l)‘(a/”h(A)) rh(A)‘

Here ry4, is the distance of the hole from the QD (A)
center.

In the biexciton Hamiltonian (4), Hg) is the
Hamiltonian of an exciton formed from an electron
and a hole spaced from the electron (the hole A(B) is
located in the QD (B) center and the electron e(2) is
localized above the QD (B) surface). The Hamiltonian

I;VB(Z) has a form similar to that of the Hamiltonian
Haay in (3):

A ﬁ2

Hy(o) =~ 2_“A(2) + Veyne) (FB2y Fam)) (14)
+ U(rB(2)7 Tn(B)> a)+ Ve(2)(rB(2)) + Vh(B)(”h(B)) + E,.

The terms entering into the Hamiltonian (14) are
expressed by formulas similar to the corresponding
formulas in the Hamiltonian (5). Let us write the

expression for the Hamiltonian Hin:

Hine = Vag(D, @) + V,1y8)(Fa(1) Fi(8))

+ Ve Tay Fuiay) + Veyey(F12)-

(15)

Here, V,g(D, a) is the energy of the interaction of
charge carriers (the electrons e(1) and e(2) and the
holes #(A) and A(B)) with polarization fields induced
by these charge carriers at the QD (A) and QD (B) sur-
faces,

Vas(D, a) = Vh(A)h(B)(D, a)+ Vh(A)h'(B)(Da a)
+ Ve @) sy @) + Veye)(Faqy Fs2y @)
+ Ve(l)h'(B)(rB(l)v a)+ Vh(B)h'(A)(Dv a)

+ Vh(B)e'(l)(rB(l)v a)+ Veye(y(FB2y Facy @)

+ Vo) (Fagy @);

(16)
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Veynes) is the energy of interaction of the electron e(1)
with the hole A(B); and V,, is the energy of inter-
action of the electron e(2) with the hole A(A). The last-
mentioned energies are described by the expressions

2

e
Ve(l)h(B)(rB(l)) = - ) (17)
€171
o
Ve(z)h(A)(”A(z)) = - . (18)
SN

The energy of Coulomb interaction between the
electrons e(1) and e(2), V. (r12), is determined by
the formula

2
e

Ve(l)e(2)(”12) = -,

i

19)

and the energy of interaction between the holes /#(A)
and A(B) is described by the expression

2

¢ (20)

Vh(A)h(B)(D: a) = —m~

According to [12], the major contribution to the
energy of the ground state of the exciton (formed by
an electron and a hole spatially separated from the
electron) is made by the average energy of the Cou-
lomb interaction between the electron and hole
<~R0(rA(1)a a)) Ve(l)h(A)(rA(l)yRO(rA(])a a)) (or (Ro(”B(z),
)|V n)(82)) | Ro(Fp2)> @))) on the basis of the Cou-
lomb-shaped variational wavefunctions Ry(ra), @):

Ry(raiy @) = Aexp(—fi(@)(rac)/ag))-

Here, fi(a) = (p(a)/m,) is the variational parameter

(21)

(n(a) is the reduced exciton effective mass, m, is the
electron mass in vacuum) and the normalization con-
stant is
;1 _ n—1/2 aO =3/2 -3/
(@) M (22)
- - - -12
x exp(Ra)[2(Ra)’ +2(fa) + 11",

where a = (a/ agx) is the dimensionless QD radius.
The above-mentioned feature allows us to retain only
the energies of the Coulomb interaction between the
electron and hole V) (Facy) (6) and Vo)) (rp2))
determined by a formula similar to (6), correspond-
ingly, in the Hamiltonians Ha1) (5) and Hp(2) (14) and
to retain only the energy of the interaction between the
holes 4(A) and A(B) Vjaue)(D, a) (20) in the interac-
tion energy V,g(D, a) (16). At the same time, the
energy V,p(D, a) is determined by the formula (20):

2

Vi(D, a) = V, Da)=-—%__ . (23
AB( ) h(A)h(B)( ) e (D +2a) (23)
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With the above assumptions, the exciton Hamilto-
nians Ha(y (5) and Hg(2) (14) take the form

h2

Haqy = - ZLA(I) + Veynay(Faay) + Egs (24)
~ hZ
Hgo) = - 2_lle(2) + Veoynm) (Fp2) + E, (25)

In this case, the biexciton Hamiltonian H (4)
involves the exciton Hamiltonians Ha(1) (24) and Hg(2)

(25) as well as the Hamiltonian I;fim (15), in which
the interaction energy V,g(D, a) is determined by
formula (23).

3. ENERGY OF THE BIEXCITON GROUND
STATE IN THE NANOSYSTEM

On the assumption that the spins of the electrons
e(1) and e(2) are antiparallel, we write the normalized
wavefunction of the biexciton singlet ground state as a
symmetric linear combination of the wavefunctions
Yi(raqy, e and Ya(ra@), 1)) [13—151:

~12
Wi(racy Fa@y ey Te2) = [2(1 + SY(D, a))] (26)
X [W1(raciy a2) + Ya(ray 1)) -

Assuming that the electrons e(1) and e(2) move
independently of each other, we represent the wave-
functions ¥ (ra1), 7'a2)) and W,(rae), 75(1)) as a product
of the one-electron wavefunctions @u(rsq)) and
¢®p2)(rp)) and a product of Pa)(Fa@) and Qg (rp1))
[13—15]:

lPl("A(l)a "B(z)) = (pA(l)(rA(1))(pB(2)(rB(2))a (27)

IPz("A(z), rB(l)) = (PA<2)(”A(2))(PB(1)("B(1))- (28)

We represent the one-electron wavefunctions
Oa)(Faq)) and @p)(rp()) that describe, correspond-
ingly, the electron e(1) localized above the QD (A) sur-
face and the electron e(2) localized above the QD (B)
surface and the wavefunctions @ )(7a¢2)) and @gy(rp.1))
that describe, correspondingly, the electron e(2) local-
ized above the QD (A) surface and the electron e(1)
localized above the QD (B) surface as variational Cou-
lomb-shaped wavefunctions (21):

Pacy(Fay) = Aexp(-l(@)(ry)/a)).  (29)
Pu(ra) = AeXp(-[i(@) (15 /), (30)
Pac(ra) = AXD(-i(@)(rra/ae)). (31
Pu(ray) = Aexp(-fi(@)(ry/as)).  (32)

Because of the identity of the electrons, the wave-
function Wy(ra(), 75(1y) (28) is equivalent to the wave-
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function W (ra1), ) (27). In (26), the overlapping

integral S(D, p(a, D), a) is determined by the for-
mula

S(ba ﬁ(gl, b), Zl) = J.drl(PA(I)(rA(l))(PB(l)(rB(l))a (33)

where dt, is the volume element of the electron e(1),

D= (D/ agx) is the dimensionless spacing between the
QD (A) and QD (B) surfaces.

In the first approximation, the energy of the biexci-
ton singlet ground state is defined by the average value

of the Hamiltonian H (4) on the basis of states
described by the zero-approximation wavefunctions ‘P
(26) [14, 15]:

E(D, i(a, D), a) = <\Ps(”A(1)’ Fa2y B(1) "B(z)) (34)
X |HYY ((Fa1y Fac2) FB(1) TB(2)))-

With the explicit form of the wavefunctions
(26)—(32), the energy functional of the biexciton sin-
glet ground state takes the form

Ey(D, {i(a, D), a) = 2E,(a, fi(a))
J(D. [i(a, D), a) + K(D, [i(a, D), a)
1+ 8D, i(a, D), a)

(35)

Here, E,,(a, [i(a)) is the energy functional of the exci-

ton ground state (for the exciton formed from an elec-
tron and a hole spatially separated from the electron):

Eex(5: ﬁ(a)) = <WA(1)("A(1))|HA(1)|\I’A(1)("A(1))>- (36)
In the functional determined by formula (35),
J(D, fi(a, D), a) is determined by the expression

J(D, ﬁ(a, D), ‘3) = <\VA(|)(”A(|))\I’B(z)(rB(z))

R (37)
X | Hint|[Wacy(Fa) We2)(F82)))-

The functional J(D, fi(a, D), @) (37) can be repre-
sented as the algebraic sum of the functionals of the
average energies of Coulomb interaction:

4
i=1
With formulas (15) and (23), the functionals J; take
the form
J = <(PA(1)("A(1))(PB(2)("B(2))|Vh(A)h(B)|
X (pA(l)(rA(l))(pB(Z)(rB(2))>
82 E'gx

- 2(e1+€)a(1 +(D/2a))

(39)
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J, = <(PA(1)(rA(1))(PB(Z)(rB(Z))| Ve(l)h(B)|

x (PA(1)(”A(1))(PB(2)("B(2))> (40)
= <\VA(1)("A(1))|Ve(l)h(B)("e(l)h(B))|(PA(1)(”A(l)»,
Jy= <(PA(1)("A(1))(PB(2)(”B(2))| Ve(2)h(A)|
X (PA(1)(rA(1))‘~PB(2)(rB(2))> (41)
= <<PB(2)(”B(2))| Ve(2)h(A)(re(2)h(A))|(PB(2)(rB(2))>:
Jy = <(PA(1)("A(l))(PB(z)(”B(z))| Ve(l)e(2)(r12)| (42)

X (PA(l)("A(1))@3(2)("3(2)»-

In the sum (38), expression (39) for J, defines the
functional of the average energy of Coulomb interac-
tion between the holes A(A) and A(B); expression (40)
for J, describes the functional of the average energy of
Coulomb interaction between the electron e(1) and
the hole A(B); expression (41) for J; describes the
functional of the average energy of Coulomb interac-
tion between the electron e(2) and the hole #(A); and
expression (42) for J, describes the functional of the
average energy of Coulomb interaction between the
electrons e(1) and e(2).

Because of the identity of the electrons e(1) and
e(2), we have the equality

J2(Da FL(ZZ: D)a a) = JS(D: Fl'(a, D), a)
= JO(07 g(&a D): a)
With (43) taken into account, the functional
J(D, i(a, D), a) (38) takes the form

J(D, {(a, D), a) = J,(D, a) + 2J,(D, [i(a, D), a)
+J,D, i(a, D), a).

(43)

(44)

In the functional described by (35), K(D, i (a, D), a)
is determined by the formula

K(D, ﬁ(fz, D), a) = <(PB(1)(”13(1))(PA(2)("A(2))|Hint|
X (PA(I)(rA(l))(PB(Z)(rB(Z)»'

The functional K(D, fi(a, D), @) (45) can be rep-
resented as the algebraic sum of the functionals of the
average energies of the exchange interaction:

(45)

4
K(D, i(a, D), a) = > K(D, i(a, D), a).

i=1

(40)

POKUTNYI

Taking into consideration formulas (15) and (23),
we write the functionals K; as

K, (D, FL(ZZ’ D), ZZ) = <(PB(1)(PA(2)|Vh(A)h(B)|(PA(1)(PB(2)>

_ & S(Djia, D), a)E, “7)
2(e+€)  a(l1+(D/2a))
Ky(D, (a, D), a
2( b “(a’ )’ a) (48)
= <‘~PB(1)(pA(2)| Ve(l)h(B)|(pA(l)(pB(2)>s
Ky(D, (a, D), a
3( 7“(a: )9 a) (49)
= <(PB(1)(PA(2)| Ve(2)h(A)|(PA(1)(PB(2)>a
K,(D, i(a, D), a

= <(PB(1)(PA(2)|Ve(l)e(z)(”lz)|(PA(1)(PB(2)>-

In the sum in (46), expression (47) for K, describes
the functional of the average energy of exchange the
interaction between the holes 4#(A) and A#(B) and the
electrons e(1) and e(2); expression (48) for K, describes
the functional of the average energy of the exchange
interaction between the electron e(1) (which simulta-
neously is partially in the state @4 ,(r5(1)) (29) and par-
tially in the state @g;)(rp(1y) (32)) and the hole 4(B);
expression (49) for K; describes the functional of the
average energy of the exchange interaction between
the electron e(2) (which simultaneously is partially in
the state @a)(ra2) (31) and partially in the state
®p)(rpe) (30)) and the hole 4(A); and expression
(50) for K, describes the functional of the average
energy of the exchange interaction between the elec-
trons e(1) and e(2).

Because of the identity of the electrons e(1) and
e(2), we have the equality for the functionals

K2(D7 Fl(aa D)a ZZ) = K3(Da ﬁ(a: D)a Zl)
= KO(D, ﬁ(a, D)a a)
With (51) taken into account, the functional
K(D, fi(a, D), a) takes the form

K(D, ii(a, D), a) = K,(D, fi(a, D), a)
+2K,(D, [i(a, D), @) + K,(D, fi(a, D), a).

Taking into consideration formulas (44) and (52),
we can write the functional of the energy of the biexci-

(51

(52)

ton ground state Eo(i), i(a, D), a)as

J(D, @) +2Jy(D, i(a, D), a) + J,(D, i(a, D), a)

Ey(D, i(a, D), a) = 2E,(a, i(a)) +

S
1+S°(D, fi(a, D), a) (53)

.\ K,(D, [i(a, D), a) + 2K,(D, ii(a, D), a) + K,(D, [i(a, D), a)

1+ S*(D, fi(a, D), a)

SEMICONDUCTORS  Vol. 47 No. 12 2013
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With the explicit form of the electron functions (29)
and (32) taken into account, the overlapping integral
(33) takes the form

S(D, {i(a, D), a) = [(Ft(Zz,~D202 43 +(g(2i’ D) ,3) 1]
2(p(a, D)a) +2(p(a, D)a) +1
x exp(~fi(a, D)D). (54)

The dependence of the energy Eo(b, a) of the biex-

citon ground state on the spacing between the QD (A)
and QD (B) surfaces can be calculated by minimizing
the functional (35):

OEy(D, fi(a, D), a) _

At 0. (55)
o1 (a, D)

Omittingthe cumbersome expressions for the first
derivative of the functional, we present the numerical
solution of Eq. (55) in the form of a table. From the
table, it follows that the solution of Eq. (55) is the
function fi(a, D), which slightly steadily varies within
the limits defined by the inequality

0.27 < fi(a,, D) <0.33 (56)

(for a QD of radius @ = a; = 3.88 nm (a, = 6.77)), as

the spacing D varies in the range defined as

524<D<286 or 3nm<D<164nm. (57)

As the spacing D between the QD surfaces is
increased (so that D > agx or D > 1), the function

ii(a,, D) takes the value fi(a,, D) = 0.33 (at D = 28.6)
(see table). The reduced exciton effective mass
ii(a,, D) (56) in the nanosystem only slightly differs
from the reduced exciton effective mass (for the exci-
ton formed of an electron and a hole spatially sepa-

rated from the electron) (u,/my) = 0.304 [12]. As D is
varied in the range defined by (57), the relative differ-

ence is (|[fi(a;, D) — (Ho/mo)l/(1o/mo) < 0.11.

As the spacing D between the QD (A) and QD (B)
surfaces in the nanosystem under consideration is

increased (so that D > agx), the electrons e(1) and e(2)

become localized above the QD (A) and QD (B) sur-
faces, respectively. Thus, in this case, excitons (formed
from spatially separated electrons and holes) become
localized above the QD (A) and QD(B) surfaces. In
this case, the interaction between the excitons and the
interaction of the excitons with the polarization fields
induced by these excitons at the QD (A) and QD (B)
surfaces can be disregarded. Then the functional (53)
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The variational parameter fi(a, b) as a function of the spacing
D= (D/agx) between the QD (A) and QD (B) surfaces at a
QD radius of a; = 3.88 nm (D, nm is the spacing between

the QD surfaces, agx = 0.573 nm is the Bohr radius of a 2D
exciton (2))

D fi(a, D)
5.24 0.27
6.0 0.282
7.0 0.292
8.0 0.30
10.0 0.312
12.0 0.319
15.0 0.323
20.0 0.327
25.0 0.329
28.6 0.330

of the energy of the ground state of the nanosystem
takes the form

Eo(a, (@) = 2E(a, fi(a)),

where the functional E,,(a, fi(a)) of the energy of the

ground state of the exciton localized above the QD (A)
(or QD (B)) surface is determined by formula (36) (see
also [12]).

As the spacing D between the QD (A) and QD (B)
surfaces is decreased, the overlapping integral S(D,

fi(a, b), a) (54) of the electron wavefunctions (29)
and (32) and the energy of the exchange interaction of

the electrons e(1) and e(2) with the holes #(A) and
h(B) substantially increase. Therefore, a coupled state
of two excitons is formed in the nanosystem; i.c., a
biexciton (composed of spatially separated electrons
and holes) is formed. With formulas (35), (36), and
(58), the functional of the biexciton binding energy is
determined by the expression
Ey(D, [i(a, D), a) = E\(D, i(a, D), a) - Eq(a, i(a))
_ J(D.[(a, D).a)+ K(D.i(a, D).a) ~ ©
1+ 5%(D, i(a, D), a)

Substituting the values of the variational parameter
fi(a, D) (56) from the table (for a QT of radius a = a, =
3.88 nm) and the corresponding values of D from
the range defined by (57) into the functionals E,(D,
fi(a, D), a) (35) and E,(D, fi(a, D), a) (59), we
obtain the energy Ey (D, a) of the biexciton ground

(58)
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Fig. 2. Dependence of the binding energy (E.(a) — E,) of
the ground state of an exciton (formed by an electron and
a hole spatially separated from the electron) localized
above the QD surface on the ZnSe QD radius a [12]. Here
Eg = 2.823 eV is the band gap of the ZnSe single crystal,

0 1.5296 eV and agx = 0.573 nm (2) are, correspond-

E =
ex

ingly, the binding energy of the ground state and the Bohr

radius of a 2D exciton (formed by an electron and a hole

spatially separated from the electron) [12].

state and the binding energy Eb(b , a) of the biexciton
ground state in the nanosystem as functions of the
spacing D between the QD (A) and QD (B) surfaces
and of the QD radius a:

E«(D,a) = 2E.(a) + E,(D, a). (60)

Here, the binding energy E. (a) of the ground state of

the exciton (formed from an electron and a hole spa-
tially separated from the electron) localized above the
QD (A) (or QD (B)) surface is determined by the
functional (36). For the nanosystem under study, the

values of the binding energies E,,(a) are calculated in
[12] for the experimental conditions of [6, 7] (Fig. 2).
In this case, the values of the binding energy E, (a) of
the exciton ground state in the nanosystem satisfy the
inequality

(Eex — Ep) < AW(a) (3a)
under variations in the QD radius a in the range
defined as 3.84 nm < ¢ < 4.4 nm (Fig. 2). In (3a),
AW(a) is the depth of the potential well for an electron

in the QD. For a wide class of II—VI semiconductors
and for QD dimensions a no larger than 30 nm, the
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value of AV(a) is (2.3—2.5) eV [8]. In the derivation of
the binding energy of the exciton ground state in the
nanosystem in [12], the condition (3a) presumably
enables us to disregard the effect of the complex struc-
ture of the QD valence band on the binding energy of
the exciton ground state in the nanosystem and to
describe the motion of a hole within the QD in the
model of an infinitely deep potential well.

With consideration for formula (59), we write the
biexciton binding energy E,(D, a) as

_ J(D, &)+ K(D, a)
1+ 84D, a)

Ey(D, a) 61)

Here, in accordance with formulas (44) and (52), the
energies J(D, a) and K(D, a) are

J(D,a) = J(D,a)+2Jy(D,a)+J,(D,a), (62)

K(D,a) = K\(D,a)+2K,(D,a)+KyD,a), (63)

In expressions (62) and (63), the energies J, (Z), a),

Jo(D, a), and J,(D, a) are defined by the correspond-
ing functionals (39), (43), and (42), and the energies
K\(D,a), Ky(D, a), and K,(D, a) by the functionals
(47), (51), and (50).

The variational method used here for the calculat-
ing the binding energy Eb(b, a) (61) of the biexciton
ground state in the nanosystem is appropriate, if the
biexciton binding energy Eb(b, a) is small compared

to the binding energy E. (a) of the exciton ground
state [12] (Fig. 2). In other words, the inequality

Ey(D, a)/Ey(a) <1 (64)

must be satisfied. The validity of this approach is justi-
fied by the results of variational calculation.

The results of variational calculation of the binding

energy Eb(l~), a) of the biexciton ground state in the

nanosystem of ZnSe QDs with average radii of a, =
3.88 nm synthesized in a borosilicate matrix are shown
in Fig. 3. Such a nanosystem was experimentally stud-
ied in [6, 7]. In [6, 7], the borosilicate glassy samples
doped with ZnSe to the content x fromx = 0.003to 1%
were produced by the sol—gel technique. Ata QD con-
tent of x = 0.6%, one must take into account the inter-
action of charge carriers localized above the QD sur-
faces.

The binding energy Eb(b, a) of the biexciton

ground state in the nanosystem containing ZnSe QDs
with average radii of a; = 3.88 nm has a minimum of

Ef,l)(D~1, a,) = —4.2 meV (at the spacing D, = 3.2 nm)

SEMICONDUCTORS  Vol. 47 No. 12 2013
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(Fig. 3). (The value of E(bl) corresponds to the temper-
ature T; = 49 K.) From Fig. 3, it follows that a biexci-
ton is formed in the nanosystem, starting from a spac-
ing between the QD surfaces of D> DEI) ~2.4nm. The

formation of such a biexciton is of the threshold char-
acter and possible only in a nanosystem with QDs with

average radii a, such that the spacing between the QD

surfaces D exceeds a certain critical spacing Dil).

Moreover, the biexciton can exist only at temperatures
below a certain critical temperature: 7, = 49 K.

As follows from the results of variational calcula-
tion ([12], see also Fig. 2), the binding energy of an
exciton (formed from an electron and a hole spatially
separated from the electron) localized above the sur-
face of the QD (A) (or a QD (B)) with an average

radius of @, = 3.88 nm is E.(a,) = —53.9 eV. In this
case the energy of the biexciton ground state Eo(b, a)

(60) takes the value Eo(b, a,;) ~ —112 meV. It should

be emphasized that the criterion (64) of the applicabil-
ity of the variational method used here for calculating

the biexciton binding energy E b(b, a) (61) is satisfied
(the corresponding ratio is E,(D, a)/E.(a) <1).
From the results of variational calculation of the

biexciton binding energy F b(b, a) (61), it follows that
the major contribution to the binding energy (61) is

made by the average energy |K(D,a)| (63) of the
exchange interaction of the electrons e(1) and e(2)
with the holes #(A) and A#(B). At the same time, the
energy of Coulomb interaction (62) makes a much
smaller contribution to the exciton binding energy

E,,(b, a) (61) (i.e., the corresponding ratio is
J(D, a)/K(D, a)| <0.18).

The major contribution to the exchange-interac-
tion energy |K(b, a)| (63) is made by the energy
12 Ko(b, a)| of the exchange interaction of the electron
e(1) with the hole #(B), as well as of the electron e(2)
with the hole 4#(A). In this case, the energies | K (b, a)|
and |K4(l~), a)| provide only small additions to the
energy |K(b, a)| (63) (i.e., the corresponding ratios
are |K,/2K)| < 1 and |K,/2K,| < 1).

The major contribution to the Coulomb-interac-
tion energy |J(b, a)| (62) is made by the energy
|2J0(b, a)| of Coulomb interaction of the electron e(1)
with the hole 4#(B) as well as of the electron e(2) with
the hole /#(A). In this case, the energies |J l(b, a)| and
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Fig. 3. Dependence of the binding energy E,(D) (61) of the

singlet ground state of a biexciton (formed from spatially
separated electrons and holes) in the nanosystem consist-
ing of two spherical ZnSe QDs, QD (A) and QD (B), of

average radii @, = 3.88 nm on the spacing D between the

QD (A) and QD (B) surfaces. Here, agx =0.573 nm (2) is

the Bohr radius of a 2D exciton (formed by an electron and
a hole spaced from the electron).

|J4(b, a)| provide only small additions to the energy

|J(b,21)| (63) (i.e., the corresponding ratios are
|/,/2Jo| < 1 and |J,/2J| << 1).

The contribution of the energy \ZJO(b, a)| to the
average Coulomb-interaction energy |J(Z), a)| (62) is
approximately the same as the contribution of the
energy |2K,(D, a)| to the average exchange interaction

energy |K(b, a)| (63). However, in the Coulomb inter-

action |J(ﬁ, a)| (62), the energy J.(D, @), which is the
energy of Coulomb interaction between the electrons
e(1) and e(2), is substantially larger than the energy

K4(Z), a) of the exchange interaction between the elec-

trons e(1) and e(2). In addition, the energy Jl(b, a) of

Coulomb interaction between the holes #(A) and A(B)
is substantially larger than the exchange interaction

energy Kl(b, a) (since according to (47), the energy
Kl(b, a) involves the squared overlapping integral

S2(l~), a) (54) which is much smaller than unity).

Thus, the average energy |K4(b, a)| (63) of the
exchange interaction of the electrons e(1) and e(2)
with the holes A#(A) and A(B) is substantially larger
than the average energy |J(D, a)| (62) of Coulomb

interaction of the electrons e(1) and e(2) with the
holes A(A) and A(B).
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As the spacing D between the QD (A) and QD (B)

surfaces is increased, starting from D > DEZ) ~ 16.4 nm
(Fig. 3), the average Coulomb-interaction energy
J(D, a) (62) substantially decreases. In addition,
because of the decrease in the overlapping of the elec-
tron wavefunctions (29) and (32), the average
exchange interaction energy K(D, a) (63) substan-
tially decreases as well. As a consequence, the average

Coulomb-interaction energy J(b, a) (62) and the

average energy |K(D, a)| (63) of the exchange interac-
tion of the electrons e(1) and e(2) with the holes 4(A)
and A#(B) sharply decrease in comparison with
the exciton binding energy E.(a) [12] (i.e., the cor-

responding ratios are |J(b, a)/E.(a)] < 1 and

|K(D, a)/E,(a)| < 1), resulting in decomposition of
the biexciton in the nanosystem into two excitons
(formed of spatially separated electrons and holes)
localized above the QD (A) and QD (B) surfaces
(Fig. 3).

Thus, in a nanosystem composed of ZnSe QDs
with the average radii a,, the formation of a biexciton
is of the threshold character and possible in a nanosys-
tem, in which the spacing D between the QD surfaces
is defined by the condition DE,I) <D< Dﬁz). Moreover,

the biexciton can exist only at temperatures below a
certain critical temperature 77 = 49 K.

4. CORRELATION OF THE THEORY
WITH EXPERIMENTS

Bondar and Brodyn [6, 7] observed a low-temper-

ature luminescence peak at £ =~ 2.716 ¢V (at a temper-
ature of 7= 4.5 K) in samples with a ZnSe QD content
of x ~ 0.6%; this peak was below the band gap (£, =

2.823 eV) of the ZnS single crystal. The shift of the E
low-temperature luminescence peak with respect to

the band gap of the ZnSe single crystal was AE = E —
E,=—103 V.

Comparing the energy E,(D, @) (60) of the biexci-
ton ground state with the shift AE = —103 eV of the
luminescence spectral peak, we obtain the average
spacing D, ~ 4.48 nm between the QD (A) and QD (B)
surfaces (at an average QD radius of @, = 3.88 nm). In

this case, the biexciton binding energy is Ef,z) (D, a,)
—3 meV (corresponding to a temperature of 7, =
35 K), and the value of a, = 3.88 nm is in the range of

the average ZnSe QD radii (a = 2.0—4.8 nm) studied
in the experimental conditions of [6, 7].

112
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Thus, the experimentally observed shift AE of the
low-temperature luminescence peak in the samples
containing ZnSe QDs with a content of x~ 0.6% [6, 7]
is due to the dependence of the energy £,(D, a) (60) of
the singlet ground state of a biexciton (formed from
spatially separated electrons and holes) on the spacing
D between the QD surfaces and on the QD radius a.

It should be noted that the calculations of the bind-

ing energy |E, b(b, a)| (61) of the biexciton ground state

in the nanosystem are variational, and therefore, can
apparently yield understated estimates of the biexciton

binding energy |E,,(b, a)| (61). It seems likely that the
calculated maximum value of the biexciton binding

energy |E§,1)| is underestimated as well.

5. CONCLUSIONS

In this study, the theory of biexcitons (formed from
spatially separated electrons and holes) in a nanosys-
tem that consists of ZnSe QDs synthesized in a boro-
silicate glassy matrix is developed within the context of
the modified effective mass approximation.

The dependences of the total energy and the bind-
ing energy of the biexciton singlet ground state in the
nanosystem on the spacing D between the QD surfaces
and on the QD radius are derived by the variational
method. It is shown that the major contribution to the
biexciton binding energy is made by the energy of the
exchange interaction of electrons with holes and this
contribution is much more substantial than the contri-
bution of the energy of Coulomb interaction between
the electrons and holes.

It is established that, in a nanosystem composed of
ZnSe QDs of an average radii of a,, the formation of a
biexciton is of the threshold character and possible in
a nanosystem, in which the spacing D between the QD
surfaces is larger than a certain critical spacing Dil). It
is shown that an increase in the spacing D between the

QD surfaces from D> Df_,z) yields decomposition of the

biexciton into two excitons (formed from spatially
separated electrons and holes) localized above the QD
surfaces. Thus, a biexciton can be formed in the nano-

system under the condition D\"” < D < D, In addi-
tion, the biexciton can exist only at temperatures
below a certain critical temperature 7, = 49 K. In the
ZnSe single crystal, the biexciton is formed with the
binding energy E, = 0.45 meV corresponding to the
temperature 5.2 K [16]. At the same time, the exciton

binding energy E(bl) in the nanosystem is about an
order of magnitude higher than E,.
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It is established that the experimentally observed
shift of the low-temperature luminescence spectral
peak in the samples with the ZnSe QD content x ~ 0.6%
[6, 7] is due to the dependences of the energy of the
ground singlet state of biexcitons (formed from spa-
tially separated electrons and holes) on the spacing D
between the QD surfaces and on the QD radius a.
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