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Abstract—The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-fre-
quency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite
height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling
functions in the quantum well and barriers are found. Analytical expressions for polarization currents in
RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization
currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabil-
ities of electron tunneling through the emitter and collector barriers. In the quantum mode, when 6 = & —
g, = hw > T (g is the energy of electrons injected in the RTD, # is Planck’s constant, @ is the ac field fre-
quency, €, and I" are the energy and width of the resonance level, respectively), the active polarization current
in a field of E~ 2.8Aw/ea (eis the electron charge and a is the quantum-well width) reaches a maximum equal
in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emit-
ter barrier is much higher than that through the collector barrier. The radiation-generation power at frequen-

cies of ® = 102—10'3 s~! can reach 10°—10° W/cm? in this case.

DOI: 10.1134/S1063782613120051

1. INTRODUCTION

The development of the physical principles of
amplification, generation, and detection of terahertz
electromagnetic radiation is one of the urgent prob-
lems determining the possibility of the advancement of
solid-state electronics toward ultrahigh performance.
Developments in solid-state devices based on resonant
tunneling effects, characterized by extremely low iner-
tia of the internal electronic processes, seem most
promising in this direction. Based on resonant-tun-
neling diodes (RTDs), the highest results in terms of
performance in solid-state electronics are achieved [1, 2].

A large number of works [3—10] are devoted to the
theoretical study of the interaction of electrons with an
ac electric field in RTD structures. We have indicated
only the most recent works in this field, directly related
to the subject of the present study. We will not dwell on
previous studies in this field, which are listed and ana-
lyzed in [3—10].

In [6—10], the theory of the interaction of electrons
with an ac electric field in RTD structures with
d-functional barriers (infinitely large barrier height V'
and infinitesimal barrier width » while retaining the
constant product Vb = a) was constructed. In [6—10],
it was shown that the amplification and generation of
an ac electric field in a wide frequency range, includ-
ing terahertz frequencies, are possible in such struc-
tures.

The objective of this study is to construct an analyt-
ical theory of the interaction of electrons with a strong
ac electric field in RTD structures with asymmetric
barriers of finite height and width.

2. SOLUTION OF THE SCHRODINGER
EQUATION FOR ELECTRONS IN RTD
STRUCTURES WITH ASYMMETRIC
BARRIERS OF FINITE HEIGHT AND WIDTH
IN A STRONG ac ELECTRIC FIELD

Let us consider a one-dimensional RTD structure
with two asymmetric barriers of finite height and width
(see the figure). An electron flux proportional to g2,
with energy ¢ differing slightly from the energy of the
resonance level €, (¢ — g, = & < g,) is directed to the
diode from the left (x < 0). The RTD region is under
an ac electric field E(r) with the frequency ® and
potential

U(x,t) = Ux)cosmt,

0, x<0 )
Ux) = y—eEx, O0<x<d
—-eFd, x>d.
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Double-barrier resonant-tunneling structure with the res-
onance level g,.

The electron wavefunction satisfies the Schrodinger
equation
o 4

., OV
i— = — — + V(x)¥Y + U(x, )V 2
S = S o YUY, @)

where (see the figure)

m(x) = m(x<0,b,<x<a+b,x>d), 3)

mx) = my(0<x<b,a+b <x<d).

We will solve Eq. (2) in the quasi-classical approxi-
mation in a relatively strong electric field. The condi-
tions of the applicability of such an approximation are
defined by the inequalities

g, >1,hw; g.>eka, 4)

where ¢, and I' are the energy and half-width of the
resonance level. The behavior of the potential V(x) is
shown in the figure.

We present the solutions to Eq. (2) in the emitter
(x < 0), in the first barrier (0 <x < b,), in the quantum
well (b; <x < a + b)), in the second barrier (a + b, <

x < d), and in the collector (x > d), respectively, in the
form [9]

W, (x, 1) = gexp(— iyt + ikx) 5)
+ exp[—imyt —ikx +iS,(x, 1)],
Y. (x, 1) = exp[— iyt — ki x+iS,(vy, x,1)] ©)
+ exp[—ioyt+ ki x+iS|(-v, x, )],
Ydx, 1) = exp[—iogt + ik(x— b)) + iSy(v, x, 1)] ;

+exp[—iwyt—ik(x— b)) +iSy(-v, x, )], @)

CHUENKOV

le(x, t) = CXp [_ l(Dot_ kz(x_ a— bl) + iS2(V2, X, t)]
+exp[— iyt + ky(x—a—b,) +iS,(=vy, x, )],

(®)
Y.(x, 1) = exp[—iogt+ik(x—d)+iS.(x,1)], (9)

where
o, = ¢/h, k= .2me/h, k,= .2m,(V,—¢)/h,
v = hk/m, v, = ibk,/m,, (n=1,2). (10)

Substituting functions (5)—(9) into Eq. (2) for the
x ranges shown in the figure, we obtain the equations

for the functions S,(x, 9, S.(x, 1), S,(xv,, x, ),
Su(Ev, x, 1),
a_Se_Va_Se:(L 8_SC+V8_SCZO’ (11)
ot ox ot ox

+ +
65;1(—;:1’ -xa t)i VnaSn(—a‘;n) x’ t) = e%ccoswt, (12)

0S,(£v, x, t)J_r V@Sw(iv, X, 1) _ @coscot.
ot ox f

(13)

Equations (11)—(13) are only valid if, after substi-
tuting wavefunctions (5)—(9) into the Schrodinger
equation (2), the terms containing the second deriva-
tives (quasi-classical approximation) and the squared
first derivatives (provided that the second inequality
in (4) is satisfied) of the functions S,(x, 7), S.(x, ?),
S, (v, x, 1), S,(xv, x, t) with respect to the coordi-
nate x can be neglected in them. The solutions to
Egs. (11) are the arbitrary functions

(50, sl

of the parenthetical arguments.

(14)

The solutions to Egs. (12) and (13) can be pre-
sented in the form [9]

SuEvx0) = Sy(tvox 0+ $,(+ =010 s)
v

S (£, x, 1) = Sy (£vy, x, t)+sl(i1_t), (16)
14

1

Sy (xvy, x, 1) = Syp(Evy, X, 1)

x—a-b (17)
YR
V2
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where
yum(Ev, x, 1) = JFJ.dx'Lx')cos[w(ix;x' _tﬂ
hV v
bl
= F Syl v, x)cosoot; (18)
iSp(Ev,x, 1) =F|d ix;x'_t:|
iSy(xv, x, 1) = Ix ﬁ|v1|cos[oo( - )
, X)CosS®?; (19)
_ U(x")
SU1(|V1| X) = jdx ﬁ| ]|

ISy (£vy, x, 1) = F J. dx Y& )cos[m(ﬁ%x' - tﬂ

h|v,)| )
a+b,
~ F8,(| vy, x) coswt; (20)
U
= [ x4
) Ixmw

a+b,

are particular solutions to the inhomogeneous equa-

- t) are general solu-

tions (12) and (13), and the functions SW(

Sl(ir X _ z) and Sz(i)f-_—f:—l-’-l
4! \%)

tions (arbitrary functions of the parenthetical argu-
ments) of the homogeneous equations (12) and (13)
(without the right part).

Taking into account Egs. (14)—(20), wavefunc-
tions (5)—(9) are written in the form

W,(x, 1) = gexp(— iwyt + ikx)

2
+ exp(—imyt— ikx)fe(— - t), @D
v

Y. (x, 1) = exp[—iogt—k,x + iSy (v, x, )]f; (— — )
(22)
X

+exp[— iyt + ki x +iSy(—vy, X, t)lf—kl(_ E t),
Vi

Yolx, t) = exp[—iogt + ik(x— b)) +iSyu(v, x, 1)]

ka(x

+iSypl-vox )14~

—b, —t) + exp[—ioyt — ik(x—b,)

x-b, )
_t’
\4
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Wy (x, 1) = exp[—ioyf —ky(x —a—b)) +iSy,(vy, X, 1)]

xsz()%_bl - z) + exp[— imyt + ky(x —a—b,)
? (24)
. x—a->b
+ Sy (=vy, X, 1) ]f—kz(_ — - f),
\4)

P (x, 1) = exp[- im0z+ik(x—d)]F(u —) (25)
v

where Syt v, x, f) and Sy,(£v,,

expressions (18)—(20), and fg(— z_ f) ) fikl(i X f),
v \%|

S N R

are arbitrary tunneling functions whose interrelation is
determined from boundary conditions. Using
Egs. (14)—(20), it is easy to verify that Egs. (11)—(13),
their solutions (14)—(20), hence, the form of wave-
functions (21)—(25), are valid upon satisfaction of the
inequalities 2ka, 2k,b, > 1, and inequalities (4).
Joining the wavefunctions W (x, 7) (see (21)—(25))
and the products W'(x, 7)/m(x) at the barrier bound-
aries, beginning from the boundary of the right (col-
lector) barrier and finishing at the left boundary of the
left (emitter) barrier (as a result, electron fluxes at the
barrier boundaries are joined), we obtain the equation

X, 1) are defined by

. . . b, b
for the single tunneling function F(i 4,714 —2)
v v, Vv

[ -2 o -2 oot ok
r( 4 Speoson{- -2k
R R

)
) )

— k2b2 —

+(S, - S2)cosmt]F(— a_bi,

x exp[— kb, (S, + 85,)cosmr]

xF(—%+€—‘l+i—22—t)+[2—i(é—éln

x [2 + z(él— - §2ﬂexp[k2b2 — kb,

2
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b b where z=—a/v—t, T=a/v,
+(S2—Sl)cosoot]F(——+ 1__2_1)} (26)

v v W

G —4cosh(k,b,)cosh(k,b,)

(L-¢ Xgi ~&,) sinh (k,b,)sinh (k;b,)
2

x exp(—ika + iSycoswt) + {exp[klb1 + k,b, &

(1 . (32)
+2i ?:;— —§&,|sinh(k,b,)cosh(k,b,)
1
+ (S, + Sz)coscot]F(— b b t)
VoV 7 + 2:‘(% - az) cosh(k,b,)sinh(k,b,),
—explk,b, — kyb, + (S, — 5,) coswt] :
(2 ht) R=(L+e)(L+g)sinn(kb)sinn(kby), (33)
vV v, él 52
—explkyb, — kb, + (S, —S5,)coswt] A(?) = exp(=2iSycosmt), (34)
xF(g N ﬁ_ﬁ_t) Y(¢) = 4qexp(ika—iS,cosmt).
VoV v,

When joining wavefunctions (21)—(25) and prod-
ucts ¥'(x, 1)/m(x), a number of relations were also
obtained, which will be used in calculating the RTD
currents, i.e.

+ CXp[— k1b1 - kzbz — (S1 + SQ)COS(,OI‘]

L
xF(—+—+——t Ei+—1&+—
\% V] V2 ! E_,l : E_, fikl(_t) = %Cxp(iklbl)
ika—iS r) =16 (35)
x exp(ika - iSycosoi) = 164, x[( )f( r)+(1+, )f (- z)}
where (see (18)—(20))
_ Mk _ (mb 2 1 k
En = mk - v o) @7 f(-n) = 5[(1_1;%( z)+(1+z )f (- z)} (36)
_ 1U(a) a( b_) 1 k
Sw = Suvath) = 556 O 20 far (1) = 5(1;;‘]?) exp(£kb) (1), (37)
1U b)) b,
S, = SU1(|V1| b)) = ( )00|““‘| (28) 1 k
g = i[(l+i;1)fk( t)+(1—l—) (- t)} (38)
U(d)ob b
S, = S|y d) = _(__)__2(1__2)-
ho |vy 2d | .
1) == —ika+iS He-= —t)
Relations (28) were obtained from (18)_(20)under /(77 = zXP(=ika+iSycosonF =2
the conditions
(1 )
(D_a < 1’ (Db,, < l’ (29) X {|i2 + l(gz - éz :|exp(k2b2) (39)
v |l
which are satisfied in cases of practical interest right up )
to frequencies of ® ~ 10'3 s~!. Under additional condi- + [2 - ’(_ -5 ﬂexp( k1by)
tions
a. b, _ S
e > o kyb, = const, Sy >S5, (30) (=) = ‘l‘exp(ika—z'SWcosoot)F(g —t)
n v
equation (26) takes the form 1 | (40)
" x [i(— + &) exp(—kyby) —i( £ + 2, exp(kzbz)}
GF(z) + Re"™A()F(z+2T) = Y(1), (31) & &

SEMICONDUCTORS  Vol. 47 No. 12 2013
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Following the method used in [4, 5, 9], we present
the function F(z) in the form

F2) = Y 60,0,

= (41)
D,(2) = exp(-inwz)Py(z),
where @(z) satisfies the equation
Dy(z) = A(2)Dy(z+2T). (42)

Substituting (41) into (31), then multiplying by
o/2nexp(ilnz), and integrating over z from 0 to 21/,
we find the expansion coefficients C,

C,=Y,/A,, A, = R+Gexp(-2ika+2inoT),
2n/® (43)
Y, = @ j dZY(—Z)CXp(— 2ika+2inow T+ inwz).
271 Dy(2)
0
Let us write the function ®(z) in the form
Dy(z) = exp{i z bmexp(im(oz)}. (44)

m= -0

Substituting (44) into (42) and finding the coeffi-
cients b,,, we find

o0

Dy(z) = exp{ z exp(inmz)zgn

n=-ow

2n/® (45)
« J'dz,exp(—incoz')lnA(z')
1-—expRinoT) |
0
From (34), we find (see (31))
InA(z') = —-iSy{explion(z + T)] (46)

+exp[-io(z' + T)]}.

Substituting (46) into (45) and taking into account
(28), (29), we obtain

Dy(z) = exp(iK sincoz) ,
ho

(47)

W= %U(a)(l +22)

1
)
Substituting (34) and (47) into (43), we find Y, with
an accuracy up to the terms of the order of (w7)?,

Y, = 4qJn(%) exp(~ika+2inwT), — (48)

where Jn(ﬁl/—g is the Bessel function.
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Taking into account (41)—(48), we write the tun-
neling function F(z) in the expanded form

ka

F(2) = 4q®y(z)e”’

J,(W/ho)
A

(49)
exp(—inowz+2inoT).

n
n=-w

The tunneling function F(z) has a sharp maximum
under the condition that the imaginary part of the res-
onant determinants A, is zero, i.e., provided that
(see (32), (33), (43))

tan(2k,a —2nwT,) = ImG(g,)/ReG(g,)
=L,/D,,

(50)

where

L = 2[(%1-1 ~¢,) cothkyb, + (%1—2 -¢)) cothklle (51)

e=¢g,

) [4cothklblcothk2b2—(§—&J(é—&zﬂ (52)
1 2 e=s,

For symmetric barriers, instead of (50), we obtain

=]
I

tank.a = fa’ cothk,,b,

ar -1
m € 12
e = (B2 k= S (P=)/h
mV-—g

F

(53)

From Egs. (50) and (53) (in the region of terahertz
frequencies nw7,/k,a = nhw/2¢, < 1 at n = 10—100),
the resonance-level energies €, = ﬁzkf/Zm are deter-
mined. Expanding the quantities entering A, in series
(see Egs. (32), (33), (43)) in (¢ — nho — g,) /¢, < 1,
retaining the first nonzero expansion terms, we obtain

-1
4 _ 43 Re A, (g,) +i(e—nho - 8,)[—‘-Z’-ImA”J
A, de e=¢,
R N (54)
i(5—nho)-T
=T, jdz'exp{(r—is +inho)(z+7)},
4
whered =¢ —¢,,
4 4T
r, = = , (59)
’ {d } KK 12112}, -,
—ImA,
de e
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K, = 2coshk,,b,,+i(&_,,,— gi) sinhk,b.,

n

(56)
(2’;” )smhk b,,
&

C=_ ReA,(g,) {|K1||K2|—|Zl||zz|}a=s,

( i A) "4R,,R,,coshk, b, coshk,,b,
de Vi,

l (57)

{k a+ _Z]:zR [ - (én, + gn,) tanhk, b,

-1

= -a)e- tanhzk,,rbn)]} ,

vk b —2r

nr }’l

R, = {Hl(i_
4 &Hl‘

K"~

s 1/2
g”r) tanh’ kn,bn} ,

z|’ = 4.

(58)

Substituting (54) into (49) and using [11], we find
F(z) and |F(z)|? in the integral representation (t, =z — 2),

F(z) = ~qTy®@y(2)e ™ [dr exp[~(T = i8),]

0

X exp[—izsinm(z+ rl)}
ho
(59)
W
IFR)I” = ¢ Fojd'tlexp[ (F—18)11—1—51nc0(z+11)J
ho

o0

X J.drzexp [— (T+id)t, + iK sino(z + 13)}
ho
0

Formulas (59) are similar to those obtained in [5, 9];
however, in our RTD model with asymmetric rectan-
gular barriers of finite height and width, which also
considers the difference of electron effective masses in
the quantum well and barriers, the quantities I, g, &
and their dependences on the structural parameters
are defined by other expressions (see (50)—(58)). In
particular, the terms exp(—k,,b,) enter (50)—(58) (see
also (78)—(80)), which define the probability of elec-
tron tunneling through barriers.

CHUENKOV

3. CALCULATION OF RTD CURRENTS
IN A STRONG ac ELECTRIC FIELD

The electron current / through the wavefunction ¥
is given by the formula

I = —i——{¥Y*V¥Y -¥YVV¥*}, (60)
2m(x)

where i is the imaginary unit, e is the electron-charge

magnitude, A is Planck’s constant, and m(x) is the

electron mass.

Substituting wavefunctions (23), (21), (22), (24),
(25) into (60) and considering relations (35)—(40), we
obtain, respectively, the currents in the quantum well
IyAx, 1), in the emitter [,(¢), in the first barrier /,(¢), in
the second barrier I,(¢), and in the collector 7.(7),

Iy(x, 1) = ev{|F(z)|2 + i(ﬁz + é)z

x sinh2k2b2[|F<z>|2—|F(2)|2]}, (D)
x—a-b, ~ x—a-b,
1= ———f, 7= -1,
v v
1,(t) = I,(¢) = Iy(by, 1), (62)
L(t) = 1.(t) = IL(a+b,1). (63)

It follows from (61)—(63) that the problem is
reduced to calculation of the quantum-well current
IyAx, 1) using formulas (59) which, following the cal-
culations in [9], we write in the form

IF(2)* = 4T, jdr. exp[~(I' —i8)t,]
(64)

X Idrzexp[—(l“ +id)T,]exp[idsinwz + iBcoswz],

0

A= ﬁz[cosm@—cosmrl],

v (65)
B = —-W-[sinmrz—sinoarl].

ho

The active current component proportional to
coswt is calculated using the Fourier transform

21/ ®
Iop(x) = 2 j drcosotl(x, ). (66)
T
SEMICONDUCTORS Vol. 47 No. 12 2013
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Substituting (61), (64), (65) into (66) and using the
formula

2n/®

29 Idtexp(incot)exp(a+eim+afe_im)
T

2n

- 51& [aee™ ewl2(a"a) Peosg +0)] €D
= i”(a—;)n/2.]n[—2i(a+a7)]/2],
a
in which (see (65))
- %(iB—A), 4 = %(iB+A),
(68)

a

E’: = of em = (a:) v

J,[—2i(a*a™)"/?] is the Bessel function (# is the natural
number), we find the expression for the active current
(hereafter, we set evg®> = 1),

Iop(x) = 2iT; J.drzexp[—(F +i8)1,]

0

X J'dﬂ:1 exp[—(I - 1’8)11]J1(2ﬁK sinm‘ﬂ) (69)
®

0

T,+7T, a+b
X { COS® 3 +

—Xo . T,+T
—=sin®-——— ¢,
a T, 2

(Eﬂ ET) sinhszbz.

1 _la

70
Fz 2v ( )

Introducing the variable ¢ = 1, — 1, into (69) and
integrating over t,, we finally obtain

AT,
Iep(x) = 54— 2{2r51—m52
o +4T
(71)
AT Xe oy 2r52)},
a r,
where
P (n+l)n/m
S, = I dte r'Jl(Bsm )smStcos (72)
n=0 un/e
w (n+1)m/o
S, = I dte rtJl(Bsm )smStsm%’, (73)

n= 0 nn/o

SEMICONDUCTORS  Vol. 47 No. 12 2013
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B = —ehﬂl(uzlﬂ), e>0. (74)

(O] a

The expression for the reduced current takes the
form

2
4T,
o+ 4T

Iew =
(75)
« {ZFSI — oS, + %f@(mSl LTS, )}.
2

Using the above method, we also find the reactive
current /gy(x) and the direct current /,(p}) in a strong
ac field,

2
Ty (x) = 40, {®S1+2F52
o’ +4I°
(76)
_‘”'b—l_xﬂ(zrsl_msz)},
a Iﬂz
1—‘2 o (n+1)m/o
I, = FO 2 J' dteirtJO(Bsin%t) cosot. (77)

nn/o

Let us consider some limiting cases.

3.1. Resonant Tunneling in a Strong ac Electric Field

At ® = 6 > I" (quantum mode); §,, << 1, k,,b, > 1
(extremely strong barriers), from (55)—(58), (70),
(72), (73), using [12], we obtain (see (10) and (27)),

8¢,
T = Z[E]exp(=2k,,b,) + &),exp(~2ky,b,)],

I (78)

alr

r/ro_é[i exp(ky,by = ky,by)

2r

(79)
?exp(kl,bl o) |

1r

r/r, = %{1 +(§1r) exp[z(erb2_klrbl)]}s (80)

27

si= 280, s =tam. e

pr nfl
Having substituted (81) into (75), we find the
reduced current in the quantum well,

Iy = “—(EO/F) (4F +® 2l SJ(B)

o + 477

(82)
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For the symmetric barriers (k,,b, = ky,b,),
4

Formula (83) is identical to formula (113) in [9].
At ky,b, = kb, (the collector barrier is stronger than
the emitter barrier; see (78)—(80)),

Iy = EJ?@

At kb, > k,b, (the emitter barrier is stronger than
the collector barrier),

8 2(b
lew = 34(2) 22

V,—¢,
Zy, = V2 exp[-2(k,,b, — ky,b,)].

17 ©r

(83)

(84)

(85)

It follows from (83)—(85) that the reduced current
in the case of a stronger collector barrier is higher than
the reduced current in the case of a stronger emitter
barrier by one—two orders of magnitude (as estima-
tions show) and is two times higher than the reduced
current in the case of strong symmetric barriers.

In all three cases, the current decreases at [§ — 0;
as B increases, the current runs over a number of max-
ima with decreasing height. The maxima are separated
by minima in which the current vanishes. The opti-
mum ac field amplitude at which the first current max-
imum is reached is determined from the equation

dl
_..___....__CW(ZO) = O, JI(ZO) = 2ZOJ2(ZO)5 ZO = E (86)
dz, 2

From (83) and (86), we obtain z, = 1.36 and a max-
imum current

2
Tew(zo) = H1&) _ gy (87)

<o

almost equal (in magnitude) to the constant resonant
current in the case of symmetric potential barriers, i.e.
(see (77)),
I(p=0,6=0,Ty=TI) = 1. (88)
As shown below (see (107)), the current /.y,(z;)
significantly exceeds the reduced current in the classi-
cal mode, the collector current, and somewhat
exceeds the reduced low-frequency current. Hence,
the interference of electrons in the RTD causes signif-
icant amplification and considerable electromagnetic-
radiation generation powers in the terahertz frequency
range ® >1I.

CHUENKOV

Substituting (78)—(81) into (76) and (77), we find
the reduced reactive current I, and direct current

1y(B),

8T, I 2B
Igy= ——2—2of1- )J £
v BF((D2+4F2){®( r 1(2)
(39)
2 2
+MJ2(B)},
nl”
FZ
0@ = 24(8). 90)
At symmetric barriers (see (78)—(80)),
_ 85(B) _ (B
lsw = =5 h(B) = JI(E) On
At ky,by > ky,by,
J
sw= 17?6“2“[(‘3‘@5 I(B) = 4221-]?(@,
(92)

V,—¢,
Zy = Vlfexl)[_z(kzrbz—klrbl)]-

278,

At kb, < kb, (see (85)),

Lsy = %212'1223), I,(B) = 4212J?(§)- (93)

Finally, let us calculate the dependence of the emit-
ter currents /,,, I, and collector currents 7., I, on the
field amplitude E and frequency o. At ® =& > T, it
follows from (62), (63), (76), (78)—(81) that

I = 1(b) = FL(%)EJ@ 94)
o= SLEED ey o9

2
Icc = cw(a + bl) = 16(5\)
Q)

i)
2abc(l - T%arcsinx) J1(Bx) ¢,

=
|
= -
=

2 2
1, = 8(1;)) E'M (97)
o B
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At 3 << 1 (weak field), the emitter and collector cur-
rents tend to zero; at § > 1 (strong field), the currents
decrease in proportion to W? (see (47)); e.g.,

I =_%ﬂg?
ce W

The frequency dependence of the emitter and col-
lector current maxima (3 = 2.8) is described by the fol-
lowing relations

(98)

1,

ce

= const, [

se

2 99
fee(S), peel o2
(O]

= const,

3.2. Non-Resonant Classical Mode (o >T,d;6~1T)

In this case (see (72)—(75)), the reduced active cur-
rent in the quantum well is given by

g2 2
20 2{(2r + m—)(& - 53)
o +4I 2r

+ (”(‘rr—z - 1)(S4 - Sj‘)},

w (n+)mn/o '
= Z J- dtef(rf'ﬁ)'cos%t.ll(ﬁsin%t), (101)

n=0

Iy = -

(100)

nn/o

w (n+1)m/o

S, = Z J‘ dte- T gin

n=0 nn/o

Jl(Bs1nmt). (102)

Summation of series (101) and (102) under the
condition ® > I' = 8, n(I" — id)/®w <€ 1 results in

4 F8
Sy- 85 = Zit (BX)e(x)[1-¢’(x)], (103)
S,— S¥= 4 P FB
(104)
X Jl(BX)cp(X)[l ~¢'(™)],
2 .
¢(x) = 1 - =arcsinx. (105)
i
With sufficient accuracy [9], we can write
1/2
[ -9 ()] = x(1-x") " (106)
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Substituting integrals (103) and (104) calculated
with such accuracy (see [12]) into (100), we obtain

(®> T ~9)
A(E)

J 2n5rr()
U P AN A

Thus, the reduced current in the classical mode has
asmall factor (I'/®)? in comparison with the current in
the quantum mode. At symmetric barriers, the factor
[/T,(Ty/T)? =1 (see (79), (80)), and formula (107) is
identical to formula (119) in [9]; at k,,b, > k,,b,, the
factor I'/T'(I'y/T)? = 2; at k,,b, > k,,b,, the additional
small factor

(107)

r(ro)z V,—¢,
—| =] =2—=—TTexp[-2(k,b,—k,,b,)] <1 (108
rz r Vl—Sr Xp[ ( 1r¥1 2r 2)] ( )

appears in (107). The emitter and collector currents in
the nonresonant classical mode are

:nF8r04J(B)
30 TTHP

_ 8IS T [ - BY o
I, = 3?[3_032{]1(5) —Efz(ﬁ) : (110)

(109)

As follows from (110), the active collector current
changes sign at high frequencies. The reactive current
in the classical mode can be calculated using formu-
las (76), (72), (73), (101)—(106).

3.3. Calculation of Currents
at the Low-Frequency Limit (o <T')

In this case, as follows from (71)—(75),

S, = %Sl <S8, I,= 2r( ) S, (111
where (see [12], p. 721)
S, = Idte_r'Jl(Wt)sinSt
(112)

0

)

_1/4
- go_{a(u ! )l/z—r(l— L
2w J1+a’ J1+a’

g = (=8 + W) +41%", o= 28
-8+ w
AtW<T,
2
s, = rswz, _ 2F08W2‘ 113
(T’ +8%) (I’ +8°)
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AtW>T, (T +8 — )T+ 40
5 CN2Ts 1., = Iy — , (123)
S, =-2 5 = —2(-0) Lo (114) "+3
w L7 p? 22 212,
I (IT"+0 -0)y/T 124
It follows from (111)—(114), (78), (79) that the w = w55 : (124)
current /,,, does not change, if the asymmetric emitter +
and collector potential barriers are interchanged. The At kb, > k,,b, (see (85)),
maximum current /7, at the low-frequency limit for
the case of symmetric barriers is about one third of the +8%+ mz(b -Xx)/a
direct resonant current; for the case of asymmetric Iew(x) = 4lcy > 21 Z,, (125)
barriers, it is a significantly smaller fraction of the "+
direct resonant current. 48 o
I, = 4leyZy, 1, = 4loy—=27, (126)
r+o

3.4. Calculation of Currents in a Weak Electric Field
(eEa <tho, Pl << 1)

The active current in the quantum well is given by
formula (71), in which in the case at hand

Jl(ssin‘%’)zgsm%’, (115)
sl T
2[4+ (8- @) [T+ (3 + ®)’]
5, = B30’
4 (117)
k) RN

: (T + )M+ (8- o) [T+ (5 +0)]

At symmetric barriers (k,,b, = k,,b,), the active cur-
rents in the quantum well, emitter, and collector are
given by the expressions

F+8+o - 20)2x/a

Iew(x) = Icw ) (118)
I"+o
rr+8+o0’
I, = Igy—="2 (119)
'+
r'+s’-o’
R (120)
I+o

respectively, in which the reduced active current in the
quantum well is given by

1"28(1 + 2{’-1) eaE
a

Iow = —— < _ a2
[+ (3 -0) ]+ +0)]
At kyby > ki, by,
ICW(X) = ICW(F2 + 82 — 0)2)1—‘3/1—‘2 + 4@2((1 +b, —X)/a

r’+s (122)

The reactive current in the quantum well is given by
formula (76) in which S} and S, are defined by expres-
sions (116) and (117).

For the case of symmetric barriers, reactive cur-
rents in the quantum well, emitter, and collector are
defined by the expressions (see (121))

02l + (@ =T’ =8)a+b,-x)/a

Tgy(x) = Iey—= )
r "+38 (127)
2 2 2
[, = 1,20t =8, _ 2o ()
WL F2+ 82 CWF2+ 82
At kb, > kb, (see (92)),
2
TgyAx) = ICW—I—OT)
129
. AT’ Zy + (0 -T2 =8)(a+b,—x)/a (129)
’+8
2 2 2 2
L= 122 2t © ST 20) (g5
r |
8
I, = ICW—2 mzzzl- (131)
r'+s
At kb, > kb, (see (84)),
2
Igy(x) = ]Cw-i;c—)le
132)
AT+ (@ - =8 (a+b -x)/a (
I’+8°
2 2 2
[, = I,207, 0 +3" -8 (133)
2 2
I |
8I
Isc = ICW—E——O%ZIZ' (134)
'+
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4. CONCLUSIONS

The electron wavefunctions and tunneling function
were determined in a resonant-tunneling diode with
asymmetric barriers of finite height and width in a strong
electromagnetic field by solving the Schrodinger equa-
tions with boundary conditions expressing the equality
of the wavefunctions and electron fluxes at the barrier
boundaries. Using the tunneling functions, analytical
expressions were obtained for the active and reactive
polarization currents in the resonant-tunneling diode
structures in a strong electromagnetic field in both the
general case and a number of limiting cases (resonant
tunneling at the high-frequency (o = 6 > I') and low-
frequency (0 = & < I') limits and the nonresonant
classical mode (w0 =8 ~T).

It was shown that the dependences of the polariza-
tion currents, energy, and width of the resonance levels
on the structural parameters in the theory of a RTD
with barriers of finite height and width quantitatively
and qualitatively differ from the corresponding depen-
dences obtained in the theory of a RTD with d-func-
tional barriers [6—10].

It was shown that in the quantum mode where 6 =
€ — g, = ho > T, the active alternating current in a
RTD with asymmetric barriers is negative and, at £ =
2.8hw/ea, reaches a maximum equal to 84% (in mag-
nitude) of the direct resonant current, [(E=06=0)=1,
if the probability of electron tunneling through the
emitter barrier is much higher than that of electron
tunneling through the collector barrier. Negative dif-
ferential resistance appears, which makes it possible to
amplify and generate electromagnetic waves. The
response power at the frequency ® = 10'® s~! reaches
in this case (v =35 x 10" cm/s, n = 10" cm™3) P, =
2.8hwvn ~ 10* W/cm?, the generation power reaches
10 W/cm?. For the case of symmetric barriers, the
active alternating current in the quantum mode
reaches a value equal (in magnitude) to 42% of the
direct resonant current.

If the probability of electron tunneling through the
emitter barrier is much lower than that of electron tun-
neling through the collector barrier, the active alter-
nating current becomes lower than the direct resonant
current by 1-2 orders of magnitude; the radiation-
generation power decreases to a similar extent.

At low frequencies (o << I'), polarization currents
in the RTD and the radiation-generation power are
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independent of the ratio of the probabilities of electron
tunneling through the emitter and collector barriers.
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