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Abstract—Within the context of the model of effective masses and rectangular potentials, the theory of active
electronic conductivity is proposed for a three-barrier resonant-tunneling structure in a dc electric field, as
the active element of a quantum cascade laser. It is shown that the chosen geometrical parameters of the active
regions in the first experimentally fabricated quantum cascade lasers are most optimal and the experimental and
theoretical values of the radiation energies correlate with each other with an accuracy of up to a few percent.
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1. INTRODUCTION

Asis known, the operating principle of a laser based
on quantum transitions between the resonance levels
of quantum wells, proposed in theoretical works by
Kazarinov and Suris [1, 2], was first experimentally
implemented in quantum cascade lasers (QCLs) by
Faist and Capasso with collaborators [3—5]. Since the
main structural elements of QCLs (active region,
injector) and quantum cascade detectors [6—S8] are
planar resonant-tunneling structures (RTS) with
nanoscale layers, further significant efforts of
researchers have focused on studying the properties of
different types of open nanosystems.

Despite active theoretical studies of the physical
phenomena and processes in multilayer RTSs, a the-
ory adequately explaining them and completely con-
sistent with experimental results has not yet been
developed.

Among the theoretical studies in which various
properties of multilayer RTSs were most thoroughly
and deeply studied, the works by Pashkovskii and
Golanta [9—12] and also Elesin with collaborators
[13—15] should be noted. Although the active elec-
tronic conductivity of electron fluxes through RTSs
was studied mostly in the ballistic mode in the series of
mentioned works, and the &-barrier model of multi-
layer nanosystems was studied in most cases, the theo-
retical models and methods developed there appeared
to not only adequately explain many QCL properties,
but also made it possible to determine at least the qual-
itatively predictable properties of some nanodevices in
the case of the use of a model with rectangular wells
and barriers [16].

The objective of this study is to develop the theory
of the active conductivity of electrons of a three-bar-
rier RTS (TBRTS) in a dc electric field, based on the

model of effective masses and rectangular potentials.
Since such a system played the role of the active region
in the first QCLs [3—5], analysis of the active conduc-
tivity properties depending on the TBRTS geometrical
parameters allows estimation, on the one hand, as to
how optimal the selected sizes of the layers of the
experimental nanosystems were; on the other hand, to
what extent the results of theoretical calculations of
the laser radiation energy are consistent with the
experiment.

2. THEORY OF THE ACTIVE CONDUCTIVITY
OF ELECTRONS OF A THREE-BARRIER
RESONANT-TUNNELING STRUCTURE

We consider a planar TBRTS in a uniform dc elec-
tric field with the strength F' (Fig. 1), onto which a
monoenergetic flux of non-interacting electrons with
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Fig. 1. Geometrical and energy diagrams of the three-bar-
rier resonant-tunneling structure. The quantum well (b,, b,)
and barrier (A~, A, A1) widths are indicated. mgand m; are

the electron effective masses in the quantum well and bar-
rier layers.
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ON THE ACTIVE CONDUCTIVITY

the energy E and the concentration #, is incident from
the left perpendicular to its layers (coordinate z). The
known geometrical parameters are shown in Fig. 1.
Such a problem can be considered as the one-electron
problem. An insignificant difference between the lat-
tice constants of well layers and barrier layers of RTSs
allows study of the system in the model of known
effective masses

m(z) = mo{e(—z) + 3 [0(z-255 1) - 0(z - 25)]
p=1
oY)

2

+ 9(z—z5)}+ m; Y [0(2=25) = 0(2 = 2341)]

r=0

and rectangular potentials

2
U) = U [0(z-2,) - 0(z-25,,D]. ()
p=0
Here, 6(z) is the Heaviside unit-step function.

The one-dimensional Schrodinger equation for an
electron in such a system is written as

,-ha%?’) = [Hy(z) + H(z, D]¥(z. 1),  (3)
where
R
Hy(2) = -5 o5 U@ (4)

—eF{z[0(2) - 0(z—25)] + 2:0(z—z5) }

is the Hamiltonian of the steady-state problem whose
solution is known,

5
¥(2) = ¥ (0)0(-2) + 3 ¥ (2)

p=1

x[0(z-2,1) - 0(z-2,)]+ ¥ (2)0(z - z5)

o o - (6)
_ (elk z+B(O)e*’k Z)e(_z)+A(6)€lk ze(Z_Zs) ©)

+ z [A(P)Ai(g(P)) + B(p)Bi(a(p))]
p=1

x[0(z-2,.1)-0(z-2,)],

where Ai(€) and Bi(§) are Airy functions and e is the
electron charge,
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The unknown coefficients B®, A©® A® BP (p =
1-5) are determined from the boundary conditions

¥(z,) = Y (z,),
1 d¥Y " (z)

ml(o) dz

(7

()
_l_‘if_o_ (p = 0-5),

Moy dz

=g, =g,

which entirely uniquely defines the wave function
W,(z) in all regions of the system and makes it possible
to perform an accurate analytical calculation of the
distribution function of the probability of finding the
electron in the TBRTS,

b

WE) = 5 [l dz. ®)
0

This function, in contrast to the transmittance,
makes it possible to determine the spectral character-
istics (resonant energies and resonant widths, hence,
the lifetime) of quasi-steady states (QSSs) of the elec-
tron in the TBRTS with arbitrary geometrical param-
eters and in any energy region [17]. The second term
in Eq. (3),

H(z, 1) = —ee{z[0(2) —0(z—b)] + bO(z - b)}

iot s
% (el(A) +e IUJI)’

)

is the Hamiltonian of the electron interaction with
a time-variable electromagnetic field with the fre-
quency o and the strength amplitude e of its electrical
component.

Considering the high-frequency electromagnetic
field amplitude to be small, we seek the solution to
Eq. (3) in the single-mode approximation of perturba-
tion theory,

+1
LCORIDIE FOTE

n=-1

(0, = E/R). (10)

To determine the corrections W¥,,(z) to the wave
function, retaining the quantities of the first order of
smallness in (3), we obtain the inhomogeneous equa-
tions

[Hy(2) = (0,1 @)W, (2) (11)
—ee{z[0(2) - 0(z-b)] +b60(z-b)}W(2) = 0,
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whose solutions are superpositions of the functions
V.1(2) = Yi(2) + D.(2). (12)

The functions ¥,(z) as the solutions to homoge-
neous equations are sought in the form

¥,(2) = ¥(2)0(-2)

5
+ S W0 -2,) -0 -2)]+ V()0 - b)

t+z

13)

= B"e " 0( z)+A(6) 6(z—b)

+ Z [APAi(EL) + BYBi(E)]
=1
x[0(z-2,_1) - 0(z—-2z,)],
where
kY = 17 2my(E£ Q),
KD = 17 am[(E£ Q)+ 7],
Q= tho,
NG U—(EiQ)_i)
- p ( V )

14
(1) 3) _ 0 (14)
= Gt

= Gt

E+Q
(iZ) = E_r4) = —p(z)(—V + i) .

The partial solutions of the inhomogeneous equa-
tions (11) have the exact analytical form

(r)

D,(2) = “%i{Bi(i(f)) | (n - p“’)—q(—%_—f )

p=1

< A= p 2 () - Ai(e?)
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< | (n E p(”)U(Z)T_E ) Bi(n F p(”’%) W’ (n)dn }

1
< [0(2 -3, )= 0(z -] 5 SS2¥(0)0( - b).

The continuity conditions such as (7) of the total
wave function W(z, ) and corresponding fluxes at all
heterojunctions at any time ¢ lead to boundary condi-
tions for the functions Y,,(z), from which the

. 0 6
unknown coefficients Bi ), Ai ), B(ip), A(ip) @ =0-5),

hence, the total wave function W(z, ) can be uniquely
determined.

Then, having analytically calculated the electron—
electromagnetic field interaction energy as the sum of
the energies of the electron waves emerging from both
sides of the TBRTS, we will define the real part of the
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active conductivity o(m) in the quasi-classical approx-
imation in terms of the flux densities of the electron
waves (see [10]) emerging from both sides of the
TBRTS,

{[/(E+Q z2=b)—j(E-Q,7=D)]
e€ (16)
~[(E+Q,z2=0)—j(E-Q,z=0)]},

which, according to quantum mechanics, are defined
by the total wave function,

c(Q, F) =
2bee

ehn,

2m(z)

_WH(E, z)agZ‘I’(E, z)]

J(E, 7) = <2 [ (£~ T*(E 2)

(17)

As a result of calculation of the real part of the
active conductivity, it can be written as two terms

6(Q,E) =6 (QE)+c (Q, E) (18)
which have the exact analytical form
_ hQ
o (0, B) = — 2|8V - k2B, (19)
2bme

o (QE) = %(kf)\Ai6)lz—kf)\Bf)\2) (20)

and are partial components of the total active conduc-
tivity, caused by electron fluxes interacting with the
high-frequency electromagnetic field, facing forward
(o%) and backward (o~) with respect to the initial
direction of the flux incident on the TBRTS.

3. PROPERTIES OF THEACTIVE
CONDUCTIVITY OF LASER THREE-BARRIER
RESONANT-TUNNELING STRUCTURES

Based on the theory developed in the previous sec-
tion, we calculated the spectrum, lifetimes, and active
conductivity of electrons in two TBRTSs composed of
the active operating elements of quantum cascade
lasers experimentally studied in [4, 5]. The physical
and geometrical parameters of both TBRTSs are: U =
516 meV, n, = 3 x 107 cm=3, m = 0.08m,; (I) F =
70kV/cm, A~ =6.8nm, b; =4.8 nm, A=2.8nm, b, =
3.9nm, At =2.7 nm; (II) F=85kV/cm, A~ =6.5 nm,
by=45nm, A=2.8nm, b, =3.5nm, A" = 3.0 nm.

Before analyzing the obtained results, it should be
noted that we took into account two important factors
in the calculation. First, since the thicknesses of all the
layers are very small in the RTSs under study, the effec-
tive mass approximation in each individual layer a pri-
ori should be and is indeed rougher than the chosen
effective mass averaged over all three components
(GaAs, AlAs, InAs). Second, the positions of the

SEMICONDUCTORS  Vol. 46

No. 10 2012



ON THE ACTIVE CONDUCTIVITY

(a)
F=70kV/cm
300 -
3
S 200 |-
[5] E32 = 2619 meV
=
N E,
w100 -
E21 =21.2 mem
0 B .—// |
E 6.8/4.8/2.8/3.9/2.7 nm
_100 : | 1 1 |
0 2 4 6 8
b, nm
6
7,=0.13ps et
4L
T, = 1.38ps
oL 1n‘t2

Int,

_+
InGy,

1 _t
nc31’

1307

(b)
F=85kV/cm

300

> 200 Ey, = 289.3 meV
g
100
Ez] =249 meV
0 —/ I o
7 6.5/4.5/2.8/3.5/3.0 nm
_]00 ! | | | | |
0 2 4 6 8
b, nm
6
1, =0.17ps eV
4
T, = 1.68 ps
oL 1]’1T2
< 73=0.11ps ~ N\ e
i
=

4pew 6 8
by, nm

Fig. 2. Dependences of £, Int, InG5, and In G5, on the width of the input potential well 5| for TBRTS I (a) and II (b). (1) In 6;1,

(I")In 6;1, (2)In 6;2, 2)In 6;2. The values of 1, and G,,,. corresponding to the experimental values of bTXP are given.

interfaces between both neighboring cascades and
between the injector and active region (TBRTS) of
each individual cascade are rather conditional, since
they are not well defined within the input and output
barriers.

Therefore, in the calculation, we varied the sizes of
the edge TBRTS barriers so that the ratio of their

SEMICONDUCTORS  Vol. 46 No. 10 2012

thicknesses would correspond to the experimental val-
ues. It was found that, as the thickness of the smaller
(output) barrier is varied by a factor of 1.5—2, all the
RTS parameters under study vary within only a few
percent. Therefore, we chose such thicknesses of the
external TBRTS barriers (indicated in Fig. 2), which
correspond to best agreement with the experiment.
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As is known from [4, 5], the QCL was designed so
that the electron flux from the injector region with the
width AE = 230 meV would be incident on a TBRTS
with the energy E corresponding to the resonant
energy E; of the third QSS. Due to electron interac-
tion with the electromagnetic field, they transfer to the
second QSS (energy E,). In this case, laser radiation
with the energy E;, = E; — E, and a power propor-
tional to the active conductivity (G3,) arises. To pro-
mote electron escape from the second QSS, the geo-
metrical parameters of the active region (of the
TBRTS) were selected so that the difference between
the resonant energies (£, — E,) would be comparable
to the energy of phonons, due to interaction with
which electrons from the second QSS transferred to
the first QSS (£,) and left the active region.

To clarify, whether the choice of the geometrical
parameters of the active region in the experimental
QCLs [3—5] is optimal from the viewpoint of the
developed theory, we calculated the spectral parame-
ters of the first three QSSs and active conductivities
and their partial terms depending on the position of
the internal barrier between the external barriers of the
TBRTS.

Since the electron flux from the injector region is
nonmonochromatic under experimental conditions, it
is considered that its electrons are uniformly distrib-
uted over energies within the injector region width
(AE = 230 meV [4, 5]); hence, the average maximum

active conductivity G,, (and its partial components
G, and G, ) is calculated by the formula

AE

5, (Q) = ﬁ [o(. ByaE.
0

The results of calculating the resonant energies (E),)
and logarithmic lifetimes (Int,) in the first three QSSs

and the logarithmic active conductivities (In G, ) and

their partial components (In c_sfnv) at quantum transi-
tions from the third to the second and first QSSs as
functions of the position (b,) of the internal TBRTS
barrier between the external ones are shown in Fig. 2.

We can see that, since the physical and geometrical
parameters of the active regions of both RTSs (I, II)
are close, the dependencesof £, _ , 3, Int,_; , ;and

In 6?2 , In 6;11 on b, not only qualitatively, but also
quantitatively differ slightly.

Since the dc electric field F applied to the TBRTS
decreases the potential energy from the input to the
output from the system, forward electron fluxes signif-
icantly exceed the backward ones; therefore, indepen-
dent of the position (b,), as seen in Figs. 2a and 2b,
Gy, ~ Gy, > Gy, and Gy = G4, > Gy, We can also see
that, as the input well width (b,) increases from zero to

TKACH et al.

~b/4, the low conductivities G;, and G, gradually
increase, initially 65, > G5, and then G5, = Gy;.

In the range of input well widths 1.5 < b, <2 nm,
where 64, = 1-10 S/cm, G;, > Gy, it is possible that
the QCL could also operate in the range of energies

lower than E3)” at the 3 —= 2 transition. In this case,
due to short electron lifetimes in both working QSSs
(1, = 13 £ 0.1 ps), the 2 — 1 transitions due to
phonons would be not so significant.

Upon a further increase in the input potential well
width within b/4 < b, < b;;, QCL operation would be
impossible because of low active conductivities; how-

. —+ —_—
ever, since G;, ® Gy, due to commensurate forward

and backward electron fluxes, the laser would not
operate efficiently.

As the internal barrier position changes with
respect to the external ones in the range b, < b, < b,
QCL operation becomes either inefficient or impossi-
ble. Indeed, although large G;, significantly exceeds

G5, in the range b,, < b, < 3b/4), which actualizes the

3 — 1 transition, in this case, G;; = 6;; therefore,
the forward and backward fluxes are almost compen-
sated. Furthermore, the lifetime in the first QSS is too
large, due to which dissipative processes can violate
the coherent state. In the range 36/4 < b, <b, QCL oper-
ation at the 3 — 2 transition is inefficient due to almost

total compensation of opposite fluxes (6;2 R Gy, ).

As seen in Fig. 2, there exists only a rather narrow
range b;; < b, < by, in which a change in the internal
barrier position with respect to the external ones opti-
mizes the TBRTS operation as an active element of
the QCL.

Indeed, if the internal barrier position is in the
range b,,;< b, < b,,, optimal conditions are satisfied for
TBRTS operation in the active-region mode, since

Gy, > G, Oy, i.€., the forward electron flux at the

3 — 2 transition significantly exceeds the backward
one and both fluxes at the 3 — 1 transition. In this

case, the conductivity G, value defining the intensity

(or power) of the laser radiation is sufficiently large;
furthermore, the electron lifetimes in all three
working QSSs are small, which facilitates coherent
state retention.

In both experimental QCLs [4, 5], the geometrical
parameters of the active region (TBRTS) were chosen
so that both devices operated at the 3 — 2 transition,
emitting an electromagnetic field with the wavelength

A = 4.6 pm corresponding to the energy E3, =

270 meV. Theoretical calculation of the energies, life-
times, and active conductivities of the TBRTS with
parameters corresponding to the experimental imple-
mentation of active regions shows that the radiation
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energies at the 3 — 2 transition ((I) £, =261.9 meV,
(IT) E5,=289.3 meV) are in agreement with the exper-
imental value to within 3—4%. The energy differences
between the second and first QSSs ((I) £,; =21.2 meV,
(IT) E,;, =24.9 meV) correlate with the energies of bulk
and interface phonons (€, 30 meV), which,
according to the idea of the authors of [3—5], facili-
tates rapid electron escape from the second QSS
through the first one, minimizing the effect of dissipa-
tive processes which violate coherence.

4. CONCLUSIONS

The developed theory of the active conductivity of
electrons in a TBRTS in a dc electric field adequately
explains the physical processes in the active region of
the QCL.

It was shown that the choice of the geometrical
parameters of TBRTSs as active regions of experimen-
tal QCLs provided optimal conditions for the emission
of electromagnetic waves with A = 4.6 um, since the
active conductivities appeared largest in this case, and
the lifetimes in the working QSSs appeared short
enough, which minimized the effect of dissipative pro-
cesses.

Since the theoretical and experimental values of
laser radiation energies satisfactorily correlate with
each other, it can be expected that the developed the-
ory of active conductivity of a TBRTS can be applica-
ble in optimization of the geometrical configuration of
multilayer QCL cascades.
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