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It was shown previously [1] that the current-carry-
ing state of a Field Effect Transistor may become unsta-
ble against spontaneous generation of plasma waves in
the transistor channel, provided there is an asymmetry
in the boundary conditions at the source and at the
drain. An extreme case of such asymmetry is the ac
short-circuit condition at the source and the ac open cir-
cuit at the drain. For submicron gate lengths, the fre-
quencies of the plasma oscillations are in the terahertz
range; thus the FET can, in principle, serve as a gener-
ator of terahertz radiation. The nonlinear properties of
the electron fluid in the transistor channel can also be
used for detection and frequency mixing in the tera-
hertz domain [2].

Experimentally, both terahertz emission [3–5] and
detection [6] in nanometric transistors were demon-
strated. Figure 1 presents experimental data [7] for a
GaAlN/GaN HEMT at 4 K clearly showing the emis-
sion threshold at a certain source-drain voltage (or cur-
rent) and a typical broad emission spectrum in the tera-
hertz domain. Contrary to the prediction of [1], the
spectrum depends neither on the gate length nor on the
gate voltage. Similar results for terahertz emission were
obtained at room temperature [5].

It is not firmly established that the observed emis-
sion is indeed related to the instability predicted in [1]
(see [5]). However, one cannot directly compare the
theory with the experiments, because the experimental
geometry is very different from the one-dimensional
model adopted in [1]. In the standard experimental sit-
uation, the width of the gate 

 

W

 

 is much larger than the
gate length 

 

L

 

; typically 

 

W

 

/

 

L

 

 ~ 100 (see Fig. 2, left).
Under such conditions, the one-dimensional model,

where the plasma density and velocity depend on the
coordinate 

 

x 

 

only, is not appropriate, since obviously
oblique plasma waves with a non-zero component of
the wave vector in the 

 

y

 

 direction can propagate. In such
a geometry, the gated region is not a resonator, but
rather a waveguide with a continuous spectrum of
plasma waves (see Fig. 2, right).

The purpose of this work is to extend the analysis of
stability of the steady-state flow [1] to the more realistic
geometry of Fig. 2. Since 
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, we will consider the
limit of a strip infinite in the y direction. It will be dem-
onstrated that in such a geometry a new mode of insta-
bility dominates, which is localized near the gate
boundaries. Moreover, a similar instability should exist
in the limit 

 

L

 

  

 

∞

 

, i.e., near a single boundary of cur-
rent-carrying two-dimensional plasma.

Within the hydrodynamic approach the electrons in
a gated 2D channel can be described by the following
equations [1]:

(1)

(2)

where 

 

V

 

(

 

r

 

, 

 

t

 

) is the electron hydrodynamic velocity,

 

U

 

(

 

r

 

, 

 

t

 

) is the gate-to-channel voltage swing, 

 

r

 

 is the vec-
tor in the 2D plane, and 

 

e

 

 and 

 

m

 

 are the electron charge
and the effective mass respectively. Equation (1) is the
Euler equation, and Eq. (2) is, in fact, the continuity
equation since the electron density in the channel, 

 

n

 

, is
related to the voltage swing, 

 

U

 

, by the relation

(3)

where 

 

C

 

 is the gate to channel capacitance per unit area.
This equation holds if the scale of the variation of the
potential in the channel is large compared to the gate-
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Abstract

 

—It was shown previously that the current-carrying state of a Field Effect Transistor with asymmetric
source and drain boundary conditions may become unstable against spontaneous generation of plasma waves [1].
By extending the analysis to the two-dimensional case we find that the dominant instability modes correspond
to waves propagating in the direction perpendicular to the current and localized near the boundaries. This new
type of instability should result in plasma turbulence with a broad frequency spectrum. More generally, it is
shown that a similar instability might exist, when a strong enough current goes through a single boundary
between the gated and ungated regions.
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to-channel separation 

 

d

 

 (the graduate channel approxi-
mation).

Collision processes give an additional term –

 

V

 

/

 

τ

 

 in
the right-hand side of Eq. (1), where 

 

τ

 

 is the momentum
relaxation time. In the following, this term will be
neglected; however, it should be understood that the
instabilities studied below will practically exist only if
the instability increment is greater than 1/

 

τ

 

, a condition
that determines the instability threshold for the drift
velocity, similar to the situation in the one-dimensional
model [1].

We chose the 

 

x

 

 axis in the direction from source
(

 

x

 

 = 0) to drain (

 

x

 

 = 

 

L

 

) and, following [1], we impose
the asymmetric boundary conditions of a fixed voltage
at the source and a fixed current at the drain: 

 

U

 

 = 

 

U

 

0

 

 at

 

x

 

 = 0 and 

 

j

 

x

 

 = 

 

j

 

0

 

 at 

 

x

 

 = 

 

L

 

, where 

 

j

 

x

 

 is the x component of
the current density. Because of Eq. (3), the latter condi-
tion can be rewritten as (

 

UV

 

x

 

)
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= 

 

L

 

 = 

 

U

 

0

 

v

 

0

 

, where 

 

v

 

0

 

 =

 

j

 

0

 

/

 

en

 

 is the electron drift velocity.

It was pointed out in [1] that Eqs. (1) and (2) are
identical to the equations describing the so-called
“shallow water” in conventional hydrodynamics [8],
plasma waves in the channel being analogous to water

waves in the case when the wavelength is much larger
than the water depth. Furthermore, it was shown that
the current-carrying steady state described by the sta-
tionary solution of Eqs. (1), (2) with the above bound-
ary conditions, 

 

U

 

 = 

 

U

 

0

 

, 

 

V

 

x

 

 = 

 

v

 

0

 

, is unstable against
spontaneous generation of plasma waves with a growth
increment given by

(4)

where 

 

s

 

 = (

 

eU

 

0

 

/

 

m

 

)

 

1/2

 

 is the plasma wave velocity.

This result followed from a one-dimensional analy-
sis; e.g., small perturbations of the steady state were
assumed to be independent of the coordinate 

 

y

 

 in the
direction perpendicular to the current. As we shall see,
the extension of the analysis to 

 

y

 

-dependent perturba-
tions not only gives corrections to Eq. (4) but, some-
what unexpectedly, gives a new mode of instability
which always dominates.

We study the time dependence of small perturba-
tions of the steady state. Accordingly, we put 

 

U

 

 = 

 

U

 

0

 

 +
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u

 

, 
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 = 
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 + 
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, and 

 

V

 

y

 

 = 

 

v

 

y

 

 and we linearize Eqs. (1),
(2) with respect to the small quantities 

 

u

 

, 

 

v

 

x

 

, and 

 

v

 

y

 

.
The boundary conditions become

(5)

(zero ac voltage at the source and zero ac current at the
drain). We look for the solutions of the linearized equa-
tions with 

 

u, vx, vy ~ exp(–iωt + ikx + iqy), where k and
q are the components of the wave vector in the x and
y directions, respectively. This procedure gives

(6)

(7)
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Fig. 1. Experimental results for THz emission from an
AlGaN/GaN HEMT at 4.2 K [7]. (a) The drain current (right
scale) and the emission intensity (left scale), as functions of
the source-drain voltage, Usd. Note the pronounced thresh-
old for emission. (b) the emission spectrum at Usd = 3 V.
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Fig. 2. Left panel: the geometry of the gate. The width W is
much greater than the length L. Right panel: the plasma
wave spectrum in a strip; z = 2Lω/s is the dimensionless fre-
quency, p = 2qL/s is the dimensionless wave vector in the
y direction, and s is the plasma wave velocity.
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(8)

The dispersion relation for the plasma waves follows

(9)

the term kv0 taking into account the Doppler shift due
to the motion of the electron fluid. For given ω and q we
find two values for the x-component of the wave vector,
corresponding to oblique waves propagating down-
stream and upstream:

(10)

For q = 0 this reduces to k1 = ω/(s + v0), k2 = –ω/(s – v0).
The general solution for u and vx can be found using
Eq. (6):

(11)

(12)

where A and B are constants.

The boundary conditions, Eq. (5), along with
Eq. (10) give the relation

(13)
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which can be rewritten in the form

(14)

where the dimensionless variables for frequency, wave
vector, and drift velocity are introduced:

(15)

Equations (14), (15) define the complex frequency
ω = ω' + iγ as a function of the drift velocity v0 and the
wave vector q. For q = 0 one obtains the previous one-

dimensional result [1] with ω' = πl(s2 – )/(2sL),
where l is an odd integer, and the increment ω'' = γ
given by Eq. (4).

In the general case Eq. (14) can be solved only
numerically. However, an analytical solution can be
obtained for drift velocities small compared to the
plasma wave velocity (β � 1). For β = 0 the solution of
Eq. (14) is z = (l2 + p2)1/2, or in dimensional units ω =
s((πl/L)2 + q2)1/2, which represents the spectrum of
plasma waves in an infinite strip with the assumed
boundary conditions at x = 0 and x = L (Fig. 2). The lin-
ear in β correction to this value is purely imaginary:

(16)

Thus, as q increases and becomes comparable to or
larger than the quantized value of k = πl/L for the l-th
mode, the instability increment decreases from its value
v0/L given by Eq. (4) for v0 � s. The correction to the
real part of ω is of second order in β.

However, in addition to this predictable result,
another solution of Eq. (14) exists, for which z (or ω) is
purely imaginary. For v0 � s this solution can be found
analytically by assuming that |z| � p and (z2 – p2)1/2 ≈ ip.
This gives z = iβp  or, in dimensional units,
ω' = 0 and

(17)

For large qL this gives γ = |q|v0; thus, in contrast to the
result given by Eq. (16), the growth increment of this
new mode increases at large q, so that this mode of
instability is the dominant one. The numerical solutions
of Eq. (14) for β = 0.5 are presented in Fig. 3, along
with the approximate result for β � 1 given by Eq. (17).

It can be seen that for qL � 1 the new mode is local-
ized near the boundaries at x = 0 and x = L on a distance
~1/q. For example, in the case β � 1, qL � 1 we have
k1 ≈ –k2 ≈ iq (see Eqs. (9), (10)). Thus the instability
mode is formed by waves which are evanescent in the
x direction.

Since for large |q|L the growth increment for the new
mode does not depend on L, and since in this case the
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Fig. 3. The instability increment z'' as a function of the
transverse component of the wave vector p in dimensionless
units for β = v0/s = 0.5 (Eqs. (14), (15), numerical calcula-
tion). 1, 2, 3, for normal modes with l = 1, 3, and 5, respec-
tively; 4, for the new mode of instability; 5, approximation
given by Eq. (17). 
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mode is localized near the boundaries, it seems plausi-
ble that a similar instability of the steady-state flow
should exist for a single boundary of an infinite (both in
the y and the x directions) two dimensional current-car-
rying plasma. We now show that this is indeed the case.

Let a steady current with the drift velocity v0 flow
across the boundary (x = 0) of a semi-infinite sample
situated at x > 0. The general boundary condition at x = 0
is defined by the impedance ζ relating the ac voltage
and the ac current (compare with Eq. (5)):

(18)

The boundary condition at x = ∞ corresponds to the
vanishing of the small perturbations, u = vx = vy = 0.

The impedance ζ will be considered as purely imag-
inary: ζ = iλ/s, where λ is the dimensionless parameter
proportional to the effective capacitance. (The exist-
ence of a finite resistance, described by the real part
of ζ, will obviously introduce damping of the initial
perturbations and, if it is large enough, any instability
will be suppressed.)

To insure the boundary condition at x = ∞, we now
keep only one exponent in Eqs. (11), (12), with the
wave vector k, whose imaginary part is positive. These
equations, with Eq. (18), give

(19)

Inserting this relation in Eq. (9), we find the value of the
wave vector k = i|q|(1 – α2)–1/2, where the sign of the square
root should be chosen so that its real part be positive.

Finally, from Eq. (19) one finds ω. Its imaginary part γ
defines the instability increment:

(20)

Note that the values of q in Eqs. (17), (20) are lim-
ited by the condition q < 1/d, where d is the gate-to-
channel separation. For larger q the graduate channel
approximation used in deriving Eqs. (1), (2) breaks down.

The dimensionless coefficient G depends on the
value of λ, defining the boundary impedance, and on
the flow velocity v0 (see Eq. (19)). For λ � 1, we have
G = 1 and Eq. (20) coincides with Eq. (17) for large |q|L.
With increasing λ the coefficient G decreases (see
Fig. 4), reducing the instability increment, which, how-
ever, always remains positive.

Thus, if the condition |q|v0 > 1/τ is satisfied, the cur-
rent-carrying steady state is unstable against small per-
turbations, and the region of instability is localized near
the boundary. This is similar to what one observes in a
river, when the water flows with sufficient velocity
across an abrupt step in the waterbed: waves with wave
vectors perpendicular to the flow are excited, while the
wave vectors in the direction of the flow are purely

u ζ v 0u s2
v x+( ).=

ω kv 0– αsk, α iλ
1 iλβ–
-----------------.= =

γ G q v 0, G
1
β
---Re

α β+

1 α2–
-------------------⎝ ⎠

⎛ ⎞ .= =

imaginary, which accounts for the localization of the
turbulent region near the step.

Certainly, the linear theory cannot predict the out-
come of this instability. However, since the spectrum of
plasma waves is continuous, it seems likely that the
instability will result in a turbulent motion of the elec-
tron fluid near the boundary of the gated region. The
spectrum of the plasma oscillations should be broad,
similar to what is observed in experiments (Fig. 1). The
width of the spectrum is expected to be limited by the
value ωmax ~ s/d, where d is the gate-to-channel separa-
tion (see above).

The present theory can also be applied to the
ungated electron fluid (analogous to the “deep water” in
conventional hydrodynamics). It was shown [9] that a
one-dimensional instability similar to the one described
in [1] should exist in the ungated case too, under appro-
priate boundary conditions. It can be easily shown that
the boundary instability considered here will also occur
in the ungated region, if the drift velocity is directed
inside this region, similar to the results given by
Eqs. (17), (20) for the gated electron fluid. Thus, at the
boundary between the gated and ungated regions, the tur-
bulence should always appear on the downstream side.

It appears that the above concept accounts for the
most important experimental observations [3–5]: the
sharp threshold for terahertz emission and the broad
emission spectrum that does not depend on the gate
length and only weakly depends on the gate potential.
A possible check of the proposed explanation would be
to isolate the emission coming from one gate edge and
to verify that the emission intensity (and possibly its
spectrum) depends on the direction of the drift velocity.
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Fig. 4. The coefficient G in Eq. (20) for β = v0/s = 0.5 as a
function of the dimensionless parameter λ defining the
boundary condition at x = 0 (the boundary impedance is pre-
sented as ζ = iλ/s). For large λ, G ~ 1/λ3.
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On the theoretical side, the very difficult issue of the
true conditions at the boundary between the ungated
and gated regions should be elucidated. (From the
hydrodynamical point of view this is the problem of
what happens for a flow across the boundary between
deep and shallow water.) Also, the role of the viscosity
of the electron fluid, which may suppress the instability
for large wave vectors q, remains to be understood.

I thank Wojciech Knap, Nina Dyakonova,
Michael Shur, and Maria Lifshits for numerous help-
ful discussions.
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