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The problem of magnetoresistance (MR) in metal
and semiconductor structures has been intensively dis-
cussed in the literature over the past three decades.
A large number of both theoretical and experimental
papers on this subject have been published. Most of
these works were devoted to the case of the degenerate
two dimensional electron gas where electrons move in
the plane perpendicular to the magnetic field and scatter
on a random impurity potential, so that only electrons
with energy close to the Fermi energy participate in
conductance. The simplest theoretical description of
such a situation is based on the Boltzmann equation,
which yields the well-known expressions for the com-
ponents of the conductivity tensor
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The resistivity tensor, which can be obtained by invert-
ing the conductivity tensor, has an even simpler form:
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 < 0 is the Hall coefficient. Thus, in the
frame of the Boltzmann approach, 
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xx

 

 and 
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 do not
depend on magnetic field 
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. Experimental measure-
ments of 

 

ρ

 

xx

 

 and 
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 are widely used to find 
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tr

 

 and 

 

n

 

.

It is known that Eqs. (2) may become invalid due to
a number of effects of both quantum and classical
nature. The most remarkable of them is the quantum
Hall effect. Another quantum effect, weak localization,
leads to the decrease of 

 

ρ

 

xx

 

 with 

 

B

 

, concentrated in the
region of weak magnetic fields [1]. Furthermore, the
dependence of 

 

ρ

 

xx

 

 on 

 

B

 

 appears due to quantum effects
related to electron–electron interaction [2] (see also [3]
for review). At the same time, both weak localization
and electron–electron interaction (in standard Altshuler–
Aronov theory) do not result in any dependence of 

 

R

 

 on

 

B

 

 (see [4] and [2, 4–6], respectively), though such a depen-
dence arises in the regime of strong localization [7].

The dependence of 
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 on 
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 may also be caused by
classical memory effects (ME) which are neglected in
the Boltzmann approach. Such effects arise as a mani-
festation of the non-Markovian nature of electron
dynamics in a static random potential. Physically, a dif-
fusive electron returning to a certain region of space
“remembers” the random potential landscape in this
region, so its motion is not purely chaotic, as is
assumed in the Boltzmann picture. For 

 

B

 

 = 0, non-
Markovian corrections to kinetic coefficients are usu-
ally small. In particular, in the case of hard-core scatter-
ers of radius 

 

a

 

 randomly distributed with concentration 

 

n

 

0

 

,
the ME-induced relative correction to the resistivity is
proportional to the gas parameter 
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(here, 

 

l

 

 = 

 

v

 

F

 

τ
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 is the Fermi velocity, and 

 

τ

 

 is the mean
free time). However, for 

 

B

 

 

 

≠

 

 0, the role of ME is dra-
matically increased due to a strong dependence of the
return probability on 

 

B

 

. In particular, two years prior to
[1] there appeared a publication [8] where a classical
mechanism of strong negative magnetoresistance was
discussed. The mechanism was investigated by the
example of a gas of non-interacting electrons scattering
on hard disks (antidots). It was shown that with increas-
ing magnetic field there is an increasing number of
closed electron orbits which avoid scatterers and there-
fore are not diffusive (see also recent discussions [9–11] of
this mechanism). Electrons occupying these orbits do
not participate in diffusion (so-called “circling elec-
trons”). As a result, the longitudinal resistance turns
out to be proportional to the factor 1 – P, where P =
exp(–2π/ωcτ) is the probability of the existence of the
circular closed orbit (here ωc is the cyclotron frequency,
τ is the scattering time). Another classical mechanism
was presented in [12], where the MR due to non-Mark-
ovian dynamics of electrons trapped in some region of
space was discussed.

Notwithstanding these developments, the role of
classical effects in magnetotransport was underappreci-
ated for a long time. A new boost to the research in this
direction was given by [13], where it was shown that, if
electrons move in a smooth disorder potential and in a
sufficiently strong magnetic field, a phenomenon called
“classical localization” occurs. This phenomenon leads
to the exponential suppression of the longitudinal resis-
tance: most electrons are trapped in localized equipo-
tential trajectories and do not participate in diffusion.
This work was followed by a series of works [14–21]
discussing different aspects of classical magnetotrans-
port in 2D systems. It was shown [15] that for lower
magnetic fields near the onset of the classical localiza-
tion, the magnetoresistance is positive; i.e., the longitu-
dinal resistance grows with increasing magnetic field.
In [16, 17] the combination of smooth disorder and
strong scatterers (antidots) was considered. It was
shown that in this system under certain conditions there
are several regimes of the behavior of magnetoresis-
tance depending on the strength of the magnetic field:
first the longitudinal resistance decreases with growing
field, then it saturates and then begins to grow. The role
of non-Markovian effects in the cyclotron resonance
was also discussed [18].

In [8–18] magnetoresistance was studied in a situa-
tion where the magnetic field is classically strong, that
is where, the parameter β = ωcτ is large. Recently, the
region of classically small magnetic fields β � 1 was
investigated numerically [19, 20] for the case of elec-
trons scattering on strong scatterers. It was shown [19]
that memory effects due to double scattering of an elec-
tron on the same disk lead to a negative parabolic mag-
netoresistance (in [8], where these processes were not
taken into account, exponentially small MR was pre-
dicted). The numerical simulations [20] discovered a
low-field classical anomaly of the MR. The anomaly

was attributed to the memory effects specific for back-
scattering events. The simulations were performed for
the 2D Lorenz gas, which is a system of 2D electrons
scattering on hard disks randomly distributed in the
plane with average concentration n. Magnetotransport
in this system is characterized by two dimensionless
parameters: β = ωcτ, and the gas parameter β0. The
anomaly was observed in the case β � 1, β0 � 1. Both
the numerical simulations and the qualitative consider-
ations [20] indicated that at zero temperature the MR
can be expressed in terms of a dimensionless func-
tion f(z) via

(3)

where ρ is the resistivity for B = 0. The analytical the-
ory of the effect was developed in [21], where it was
shown that the function f(z) has the asymptotics

(4)

and can be well approximated by the linear function

(5)

in the interval 0.05 � z � 2.
In spite of large number of publications devoted to

the study of the influence of non-Markovian effects on
the ρxx, the dependence of R on B induced by such
effects was investigated (to the best of our knowledge)
only in the context of “circling electrons” [8]. It was
found that though the existence of circling orbits leads
to a strong dependence of ρxx on B in the region of clas-
sically strong B (ωcτtr � 1), the corresponding dependence
of R on B is very weak in the whole range of B [8].

In this paper, we propose another mechanism of
dependence of R on B. It does not rely upon the exist-
ence of non-colliding electrons but, in contrast,
assumes that transport properties of colliding electrons
are modified by classical ME. The mechanism turns out
to be especially effective in the region of very weak
fields, ωcτtr � β0.

We will study dependence of R on B in 2D degener-
ated electron gas in a system of randomly located clas-
sical scatterers modeled by impenetrable disks of
radius a � λF, where λF = �/mvF is the Fermi wave-
length. The simplest realization of such a system is a
quantum well with random array of antidots. We
restrict ourselves to the case ωcτtr � 1. The electron
dynamics is studied classically. The role of quantum
effects is briefly discussed at the end of the paper.

We start with recalling that in the frame of the Bolt-
zmann approach, the collision with a single scatterer is
described by a differential scattering cross-section σ(θ)
(see Fig. 1a) and the collisions with different scatterers
are independent. Inverting in time the process shown in
Fig. 1a, we get a process shown in Fig. 1a' correspond-
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ing to scattering by the angle –θ. This implies an impor-
tant property of a single scattering, symmetry with
respect to replacement of θ by –θ (reciprocity theo-
rem): σ(θ) = σ(–θ) [22]. This is the property which pro-
vides that R does not depend on B. If, for any reason,
scattering cross-section acquires an asymmetric correc-
tion δσ(θ) ≠ δσ(–θ), the expression for ρxy becomes

(6)

where

(7)

In particular, such an asymmetric correction arises due
to ME specific to processes of double scattering on a
scatterer after return to it (see Figs. 1b, 1b', 1c, 1c').
Though such processes are beyond the Boltzmann pic-
ture, they can be formally included into the kinetic
equation by a slight modification of the Boltzmann col-
lision integral. Specifically, one can introduce a small
change of the scattering cross-section σ(θ)  σ(θ) +
δσ(θ) on the disk where double scattering takes place

ρxy

m ωc Ω+( )
e2n

-------------------------- B R δR+( ),–= =

Ω n0v F dθδσ θ( ) θ,
δR
R

------sin∫–
Ω
ωc

------.= =

(disk 1 in Figs. 1b, 1b', 1c, 1c') [21, 23]. For B = 0, the
cross-section remains symmetric: δσ(θ) = δσ(–θ).
However, for B ≠ 0, the time inversion symmetry is bro-
ken, so that the cross-section becomes asymmetric:
δσ(θ) ≠ δσ(–θ). The point is that the influence of the
magnetic field is different for the processes where the
closed return path is passed counterclockwise (Figs. 1b, 1c)
and clockwise (Figs. 1b', 1c').

The return after one scattering (see Figs. 1c, 1c')
needs special attention, because the probability of such
a process very sharply depends on B due to the “empty
corridor effect” (ECE) [20, 21]. The mechanism of this
phenomenon proposed in [20] is linked to the memory
effects arising in backscattering events. It has a close
relation to the well known non-analyticity of the virial
expansion of transport coefficients [24–28] which we
briefly recall. For B = 0, the leading nonanalytic correc-
tion to resistivity, δρ, is due to the processes of return to
a scatterer after a single collision on another scatterer
(see Fig. 2a). The relative correction, δρ/ρ, is propor-
tional to the corresponding backscattering probability,
given by the product of e–r/ldΦdr/l (which is the proba-
bility of reaching scatterer 2 without collision and scat-
tering in the angle dΦ) and the probability p of return-
ing without collisions from 2 to 1 (here l is the mean
free pass). Assuming p = exp(–r/l) and integrating over
intervals 0 < Φ < a/r, a < r < ∞, one obtains [24–28]

(8)

In [20] it was shown that the probability p is actually
larger than exp(–r/l). Indeed, the exponent exp(–r/l)
can be written as exp(–nS), where S = 2ar. This repre-
sents the probability of the existence of an empty corri-
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Fig. 1. Processes of single scattering by angle θ (a) and –θ (a')
characterized by a scattering cross-section σ(θ) (σ(θ) = σ(–θ)
both for B = 0 and for B ≠ 0), and processes of scattering on
complexes of scatterers (b, b', c, c'), including double scat-
tering on the scatterer 1. Correction to the cross-section due
to multi-scattering processes remains symmetric for B = 0.
Magnetic field bends trajectories as shown in (b, b', c, c') by
dashed lines. As a result, the symmetry with respect to
inversion of θ is broken, so that δσ(θ) ≠ δσ(–θ) for B ≠ 0.
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Fig. 2. (a) Backscattering process responsible for leading
nonanalytic contribution to the resistivity at B = 0. (b) For
B ≠ 0, the overlap area, SB, between two corridors is small
at large B. (c) For Φ = 0, SB decreases with B. (d) For Φ ≠ 0
and small B, the values of SB – S0 for time reversed trajec-
tories have opposite signs.
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dor (free of the centers of the disk) of width 2a around
the electron trajectory from 2 to 1. However, the pas-
sage of a particle from 1 to 2 ensures the absence of the
disk centers in the region of width 2a around this part
of trajectory (from 1 to 2). This reduces the scattering
probability on the way back. The correct value of p can
be estimated as

(9)

where

(10)

is the area of the overlap of the two corridors (see
Fig. 2a). For example, for Φ = 0, we have S0 = 2ar and
p = 1, which reflects the obvious fact that the particle
cannot scatter if it travels back along the same path. Taking
into account the effect of “empty corridor,” we get

(11)

where C is a constant of the order of unity. Thus, for
B = 0, the “empty corridor” effect simply changes the
constant in the argument of the logarithm.

The key idea suggested in [20] was that for B ≠ 0 the
area of the overlap of the two corridors, SB, sharply
depends on B, resulting in the observed MR. Indeed, it
is seen from Fig. 2b that for β � β0 SB  0, resulting
in a sharp negative MR

(12)

The following qualitative explanation of the observed
linear MR was presented in [20]. The value n(SB – S0)
was estimated for φ = 0 (see Fig. 2c) to the first order in
B as –nr2/Rc = –r3/2alRc, where Rc is the cyclotron
radius. Assuming that this estimate also works at φ ≠ 0

and expanding  –  to the first order in B, one
gets δρxx/ρ ~ –l/Rc = –ωcτ.

In fact, the physical picture of the phenomenon is
more subtle. The contribution of any trajectory with φ ≠ 0
is cancelled to the first order in B by the contribution of
the time-reversed trajectory, since the values of SB – S0

are opposite for these paths (see Figs. 2d, 2e). The can-
cellation does not occur only at very small φ ~ β. The
integration in Eq. (12) over φ < β yields δρxx/ρ ~ –β2/β0.
Larger values of φ also give a quadratic in β contribu-
tion to the MR. This contribution is positive and comes

from the second order term in the expansion of  –

 in B. A more rigorous approach [21] demonstrated
that the contribution of small angles is dominant, result-

p R Φ,( ) n S S0–( )–[ ]exp=

=  r/l– nS0 r Φ,( )+[ ],exp

S0 r Φ,( ) 2ar r2 Φ /2–=

δρ
ρ

------ dr
l

-----

a

∞

∫ dΦe
2r/l( )– nS0+

0

a/r

∫ β0
C

2β0
--------⎝ ⎠

⎛ ⎞ ,ln≈∼

δρxx

ρ
---------- dr

l
----- dφe 2r/l– e

nSB e
nS0–( ).

0

a/r

∫
0

∞

∫∼

e
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e
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ing in a negative parabolic MR, and that the parabolic
MR crosses over to linear at very small β ≈ 0.05β0,
which explains why the parabolic MR was not seen in
numerical simulations [20] (see Eqs. (4), (5)).

The calculation of R is quite analogous to the calcu-
lation of ρxx presented in [21]. As was shown in this
paper, the correction to cross-section arises due to four
scattering processes (see Fig. 3). In the process (+, +)
(Fig. 3b) an electron has two real scatterings on a disk
placed at point r. The process (–, –) (Fig. 3c) does not
correspond to any real scattering at point r. It just
allows us to calculate correctly the probability of an
electron passing twice a region of size a around point r
without scattering. To interpret the process (+, –), note
that in the Boltzmann picture, which neglects correla-
tions, electrons can scatter on a disk and later passes
through the region occupied by this disk without scat-
tering (Fig. 3d). The (+, –) correction to the cross-sec-
tion modifies the Boltzmann result by subtracting the
contribution of such unphysical process. Analogous
consideration is valid for the process (–, +) shown in
Fig. 3e. A rigorous method of calculation δσ(θ)
accounting for all four processes was developed in [21].
The calculations yield

(13)

δσ θ( ) 1
4l
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Fig. 3. Backscattering process is parameterized by the
angles ϕ0, ϕf . The magnetic field changes the backscatter-
ing angle φ = φ0 + φf + r/Rc. (a) The solid (dashed) line rep-
resents electron trajectory for B = 0 (B ≠ 0). (b–e) Different
processes contributing to cross-section renormalization.
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Here,  = (π + ϕ0 + ϕf)(mod2π), σ(ϕ) =
(a/2)|sin(ϕ/2)| is the single scattering cross-section,

Θ[…] is the Heaviside step function, φ = Φ + r/Rc, Rc is
the cyclotron radius, and Φ ≈ (a/r)[cos(ϕ0/2) +
cos(ϕf/2)] (see Fig. 1c). Four terms [δ(θ – ) +

δ(θ – π) – δ(θ – ) – δ(θ – )] in Eq. (13) cor-
respond to four types of non-Markovian processes
shown in Fig. 3. Introducing dimensionless variables
T = r/l, z = ωcτ/β0 and using Eq. (7), we get

(14)

Here,

ζ = (cosα + cosγ)/2T + zT/2, s0 = sz → 0. Function g(z)
calculated numerically with the use of Eq. (14) is plot-
ted in Fig. 4. For z � 1, g(z) � 0.064 – 4z2. For z � 1,
g(z) decreases as 0.35/z3/2. It worth emphasizing that
δR/R ~ 1 for z � 1. This means that the correction is not
parametrically small in a gas parameter β0, which
is  usually considered an expansion parameter for
ME-induced corrections.

Next we calculate δR for stronger fields, β0 �
ωcτtr � 1. At such fields, the empty corridor effect is sup-
pressed and returns after one scattering (Figs. 1c, 1c'), and
after a number of scatterings (Figs. 1b, 1b') equally
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0

T

∫=

contributes to δR. In this case, one can also introduce
the effective scattering cross-section [23], which turns
out to be frequency-dependent and for ω = 0 reads2 

(15)

Here, σ0 =  is the total cross-section for single

scattering, (0, ϕ – ϕ') = (r, ϕ, ϕ')|r → 0, (r, ϕ, ϕ') =
G(r, ϕ, ϕ') – Gball(r, ϕ, ϕ'), G(r, ϕ, ϕ') is the Green func-
tion of the stationary Boltzmann equation,

is the Green function of the Boltzmann equation without
the in-scattering term, ϕr is the angle of vector r, and θr =
2 . Substituting Eq. (15) into Eq. (7) and

using the property (0, ϕ, ϕ')sin(ϕ – ϕ') = 0,3 we

get after some algebra

(16)

where σtr = (θ)(1 – cosθ) = 8a/3. Hence, with

increasing B the relative correction decreases according
to Eq. (14), then changes sign and saturates at small
negative values. It is noteworthy that, as follows from
the above derivation, Eq. (16) is valid not only for the
case of impenetrable disks but also for any type of well-
separated scatterers.

Above we discussed an idealized system where only
strong scatterers are present. Let us now assume (see
[29–31]) that in addition to strong scatterers there is a
weak smooth random potential U(r) with the rms
amplitude U and the correlation length d (a � d � l).
The presence of such a potential does not influence the
ECE provided that Λ � l, where Λ ~ d(EF/U)2/3 is the
Lyapunov length characterizing the divergence of the
electron trajectories in the potential U(r). In the oppo-
site limit, Λ � l, one should restrict integration over r

2 Equation (15) is obtained by integration over time Eq. (13) of
[23] and extracting the contribution of the ballistic term. The lat-
ter one represents propagation without collision and, evidently,
can not give any contribution to return processes.

3 To obtain this property we first integrate the Boltzmann equa-
tion (in q-space) over ϕ, which yields (ϕ, ϕ')iqvdϕ = 1.

One can show that integration over ϕ' yields the same result
(ϕ, ϕ')iqv'dϕ' = 1. Using these identities we get

(ϕ, ϕ')sin(ϕ – ϕ') = (ϕ, ϕ')[sin(ϕ –

ϕq)cos(ϕq – ϕ') + cos(ϕ – ϕq)sin(ϕq – ϕ')] = 0.
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Fig. 4. Magnetic field dependence of the relative correction
to the Hall coefficient caused by ECE.
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in Eq. (13) by Λ. In this case, relative correction to R
decreases: δR/R ~ Λ/l. On the other hand, the held
needed for suppression of the ECE increases and can be
found from the estimate ωcτtr ~ β0(l/Λ)2 (at such a field
two corridors corresponding to passage 1  2 and
2  1 (see Fig. 2a) between disks 1 and 2 separated
by a distance r ~ Λ cease to overlap). One can also
show, that at stronger fields the effect of smooth disor-
der leads to appearing of a very weak parabolic depen-
dence of R on B: δR/R ~ –(ωcτ)2(d/l)2(U/EF)2.

Finally, we briefly discuss the role of quantum
effects. As was mentioned in [21], for λF > a2/l the cor-
ridor effect is suppressed by diffraction on the disk’s
edges. In this case, the integration over r in Eq. (13) is
limited by Λ' = a2/λF. Hence, δR/R ~ Λ'/l < 1, and the
field needed for suppression of the ECE can be found
from the estimate ωcτtr ~ β0(l/Λ')2.

To conclude, we have shown that the classical mem-
ory effects might strongly renormalize the Hall coeffi-
cient. The most interesting phenomena arise due to the
empty corridor effect, which leads to a sharp field
dependence of return probability and, in turn, results in
a sharp dependence of R on B. The analytical calcula-
tion of dependence R(B) was presented for a 2D system
with a random array of antidots modeled by hard-core
spherical scatterers. It was demonstrated that the empty
corridor effect leads to a very sharp dependence of R
on B concentrated in the region of very weak fields
(ωcτ � a/l). The total variation of R in this region of
fields is on the order of the Boltzmann value of R.
At larger fields, where a/l � ωcτtr � 1, the ME lead to
a small field-independent correction to R and (in a pres-
ence of smooth disorder) to a very weak parabolic
dependence.
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