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Abstract—A multicomponent collisionless magnetized plasma system consisting of cold mobile electron
fluid, hot electrons and positrons following the q-nonextensive distribution, and immobile positive ions is
considered to study nonlinear propagation of electron acoustic waves. The reductive perturbation technique
is used to reduce the basic set of f luid equations to the Laedke–Spatschek equation. By means of Painlevé
integrability and Bäcklund transformation, some analytic solutions of the nonlinear evolution equation are
presented. Furthermore, the effect of different plasma parameters on the characteristics of the nonlinear
waves including single soliton, M-shaped soliton, breather, and periodic and rogue wave-type structures are
graphically discussed.
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1. INTRODUCTION
Nonlinear wave structures are of great importance

among the most fascinating phenomena in the physi-
cal world. Numerous observations in space plasma
region predict the existence of electron acoustic wave
(EAW) in auroral acceleration region, plasma sheet
boundary layer, terrestrial magnetosphere cusp
region, Earth’s bow shock, geomagnetic tail, etc. [1–
5]. EAWs are also observed in the laboratory experi-
ments when the plasma consists of two distinct tem-
perature ensembles of electrons, referred to as cold and
hot electrons [6] and in numerical simulations [7]. It is
basically an acoustic-type wave, in which the inertia
comes from the cold electron fluid and the restoring
force comes from the hot electron thermal pressure
whereas the ions play the role of neutralizing back-
ground. The EAWs have been used to explain several
wave emissions in different regions of the Earth’s mag-
netosphere [8]. It was first applied to interpret the hiss
emissions observed in the polar cusp region in associ-
ation with low energy (~100 eV) upward moving elec-
tron beams [9]. Also, the EA mode was employed to
illustrate the generation of the broadband electrostatic
noise (BEN) emissions detected in the plasma sheath
[10] as well as in the auroral zone [8]. It is worth men-
tioning that EAWs usually suffer stronger damping
because of the higher mobility of cold electrons than
ions. To avoid Landau damping, it is necessary that
the cold electron temperature ( ) should be much
lower than the hot electron temperature ( ) and the

equilibrium density of cold electrons is considered to
be much lower than the equilibrium density of hot
electrons [11]. Physically, for sufficiently low cold
electron density compared to hot electron density, the
damping of EAWs is heavily diminished while the cold
electrons allow the wave to propagate. During the last
few decades, the study of EAWs has been performed to
investigate different types of collective nonlinear
structures such as, solitons, shocks, double layers,
turbulence, wave modulations, etc. [12–17]. The non-
linear propagation of EAWs in a plasma consisting of
a cold electron fluid, hot electrons obeying a
trapped/vortex-like distribution, and stationary ions
was studied in [18]. In [19], a theoretical investigation
for understanding the properties of three dimensional
(3D) EAW solitary waves in a magnetized plasmas
containing stationary ions, magnetized cold electrons
with electron beams, and magnetized hot electrons
obeying a vortex-like distribution was carried out.
Most of these nonlinear structures of EAWs were
observed by several spacecraft missions [20, 21].

In contrast to ordinary two-component electron-
ion plasma, it has been observed that the nonlinear
waves in plasmas having an additional positron com-
ponent behave differently [22]. Electron–positron–
ion (EPI) plasmas occur in different regions of astro-
physical contexts, such as the solar atmosphere [23],
active galactic nuclei, pulsar magnetospheres, and
near the polar cusp regions of the pulsars [24–26] and
they have also been created in the laboratory [27].
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Thus, it is pertinent to investigate the characteristics of
plasma waves in EPI plasma. It is often noticed that the
electrons and positrons are highly energetic particles that
are present in astrophysical and space plasmas and are
often represented by non-Maxwellian particle distribu-
tion. Accordingly, there has been a sustained research
activity on the nonextensive statistical mechanics based
on deviation from Boltzmann–Gibbs–Shannon (B–
G–S) entropy measures to study electrostatic waves in
plasma. Generalization of the B–G–S entropy was
first recognized by Renyi [28] and subsequently Tsallis
[29] extended the standard additivity of entropies to
the nonlinear, nonextensive cases, where the entropic
index q measures the amount of system nonextensiv-
ity. The q-nonextensive distribution has been effec-
tively applied to various problems, including head-on
collision of black holes, gravitational wave emission,
and solar neutrino problem [30, 31]. During the last
two decades, a large number of researches have been
reported to investigate the different linear and nonlin-
ear structures in various plasma physics models using
q-nonextensive distribution of charged particles [32–
35]. The properties of fully nonlinear EA solitary
waves in an unmagnetized and collisionless EPI
plasma with superthermal electrons and positrons
were investigated in [36]. Cylindrical and spherical EA
Gardner solitons and double layers in a two-electron-
temperature plasma with nonthermal ions were stud-
ied [37]. The roles of nonextensive hot electrons and
positrons on nonplanar EA shock waves in EPI plas-
mas were researched [38]. Bansal and Aggarwal [39]
studied EA shock waves in unmagnetized nonplanar
geometry with nonextensive electrons [39].

However, most of the above studies on the nonlin-
ear waves are restricted to unmagnetized plasmas.
Observations of space and astrophysical plasmas
reveal that external magnetic field plays a significant
role in linear and nonlinear plasma dynamics, as well
as it influences the stability criteria of plasma waves.
The model to study the 3D nonlinear waves in various
magnetized plasma systems was presented in [40].
Inclusion of magnetic field in the plasma system com-
pletely changes the propagation dynamics of nonlinear
waves. The 3D EAWs in a magnetized plasma featur-
ing nonthermal hot electrons were investigated [41]
and the propagation of linear and nonlinear electro-
static waves by deriving the Zakharov–Kuznetsov
(ZK) equation in magnetized EPI plasma was studied
[42]. Solitary wave solutions for the nonlinear 3D
modified Korteweg–de Vries–ZK (KdV–ZK) equa-
tion were presented [43] by implementing the
extended direct algebraic and fractional direct alge-
braic methods for nonlinear ion–acoustic waves in
magnetized electron–positron plasma. The basic fea-
tures of nonlinear propagation of electrostatic waves
subjected to an external magnetic field in EPI plasma
in presence of heavy particles were theoretically stud-
ied [44]. EA shock wave structures in EPI plasma
under the influence of external magnetic field and
superthermality were investigated in [45]. Recently,
various nonlinear structures (such as soliton, periodic,
quasi-periodic, and chaos) of collective ion dynamics
in the presence of external magnetic field were theo-
retically investigated [46] by analyzing the novel non-
linear equation [47]. More recently, the propagation
dynamics of EAWs in the presence of an external uni-
form weak magnetic field was studied [48], a general-
ized 3D KdV equation was derived and an exact solu-
tion with the help of Bäcklund transformation was
presented. It may be mentioned here that the presence
of nonextensive electrons and positrons in the pres-
ence of external magnetic field (modifying wave phase
velocity) qualitatively modifies the nonlinear coherent
structures of EAWs. Nonextensive particle distribu-
tions have become increasingly widespread through-
out the physics of space plasma environments as they
provide an efficient modeling of the observed particle
distributions. Study of -nonextensive statistics can
provide a powerful and convenient frame for the anal-
ysis of many astrophysical and cosmological scenarios
like planetary rings, solar winds, cometary tails [49],
dark-matter halos [50], hadronic matter and quark-
gluon plasmas [51], etc. Thus, it is expected that the
presence of nonextensive electrons and positrons
modifies the parametric region where EA nonlinear
structures can exist. The main focus of our paper is to
investigate the influence of -nonextensive hot elec-
trons and positrons, magnetic field strength and posi-
tron concentration on the characteristics of EAWs by
deriving the Laedke–Spatschek equation [47]. The
layout of this article is as follows. The basic equations
and derivation of the nonlinear evolution equation are
provided in Section 2. Verification of Painlevé integra-
bility and analytical solutions of the nonlinear evolu-
tion equation using Bäcklund transformation are
demonstrated in Section 3. Finally, brief conclusions
of our results are presented in Section 4.

2. THEORETICAL MODEL AND NONLINEAR 
EVOLUTION EQUATION

We consider a homogeneous, collisionless and
unbounded plasma medium consisting of inertial cold
electrons, nonextensive hot electrons and positrons,
and immobile positive ions in presence of externally
applied uniform magnetic field , where  is
the unit vector along the z axis. Ions having low energy
and higher mass compared to electrons fail to respond
in the fast timescale of electrons. Thus, the equilib-
rium condition reads , where  is
the unperturbed number densities of the species j
(here, , and i for cold electron, hot electron,
hot positron, and positively charged ion, respectively).
In such a magnetized plasma medium, the governing
equations are given by

(1)

q

q
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(2)

(3)

where  is the number density of the plasma species j,
 and below also , ,  are the cold electron fluid

velocity in x, y, z directions, ϕ is electrostatic wave
potential, and  is the mass (charge) of an elec-
tron.

In order to model the nonextensivity of plasma spe-
cies (hot electrons and positrons), we employ the fol-
lowing q-nonextensive distribution as [32, 52]

(4)

(5)

where the parameter q indicates the strength of nonex-
tensivity,  is the Boltzman’s constant, and  is the
temperature of hot positrons. It can be mentioned
here that in case of , the q-distribution is not
normalizable. In the extensive limiting case ,
the well known Maxwell–Boltzmann distribution is
recovered. For electrostatic plane wave propagation in
a collisionless plasma, the dispersion relation in Tsallis
formalism fits the experimental data very well when

 [53]. For physically realistic Tsallis distribution
function, the present study is restricted to values of q
within the very limited range  [54].

The nonlinear dynamics of EAWs is governed by
the following normalized equations

(6)

(7)

(8)

where the particle densities  and cold electron fluid
velocity  are normalized by  and 

, respectively, ϕ is normalized by ,
space and time scales are normalized in units of hot
electron Debye length  and
cold electron plasma period ,
respectively. Here, , where  is the
cold electron cyclotron frequency, , 
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To study the nonlinear dynamics of EAWs in the
presence of external magnetic field, we introduce the
following stretched space-time coordinates

(9)

where V is the normalized phase speed of the EAWs
and ε ( ) represents the amplitude of the
weakly nonlinear wave. All the dependent variables are
expanded in powers of parameter ε, as

(10)

To incorporate the effect of weak magnetic field on the
nonlinear behavior of EAWs, we employ the scaling

. Substituting (9) and (10) into the equa-
tions (6)–(8), one can obtain different sets of equa-
tions in various powers of ε. In the lowest order of ε,
we obtain the following relations:

(11)

where , , and 

.

Combining all the higher-order terms in  and
using the relations in (11), we obtain the following
nonlinear Laedke–Spatschek equation [46, 47] for
EAWs in nonextensive magnetized plasma

(12)

where , 

with  and .

Depending on the strength of the magnetic field,
various comments of physical interest are as follows
with respect to parameter space. In the absence of
magnetic field, i.e.,  one can recover the
Kadomtsev–Petviashvili (KP) equation [55] and in
the one-dimensional motion ( ), the well
known KdV equation [56] is recovered. Again, for
strong magnetic field , an equation similar to
ZK equation [40] is obtained.
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3. PAINLEVÉ INTEGRABILITY 
AND ANALYTICAL SOLUTIONS

In this section, we perform Painlevé analysis to
study the integrability of Eq. (12) and derive some
interesting analytical solutions. For nonlinear partial
differential equations (NPDEs), complete integrabil-
ity is generally taken to mean the existence of an
infinite set of conservation laws. Integrability plays a
significant role in searching for the exact solutions of
NPDEs. By investigating the integrability of a NPDE,
one attains important observation into the nonlinear
structure of the equation and the nature of its solutions
[57, 58]. Since most of the dynamical systems from
real physical problems have to involve nonlinearity,
much attention has been focused on the integrability
of nonlinear models. There are close relations between
the integrability and the Painlevé property of NPDEs.
Weiss, Tabor, and Carnevale (WTC) [59] proposed
the Painlevé analysis approach of NPDEs, called the
“WTC method of Painlevé analysis,” which is an
effective method for not only testing Painlevé integra-
bilities but also constructing exact solutions of
NPDEs. Later, in [60] the WTC method was simpli-
fied. A NPDE which possesses the Painlevé property
must be single valued about the movable singularity
manifold and the singularity manifold is noncharac-
teristic [60]. Applying the Painlevé criteria, according
to WTC method, one can assume that  and

 are analytic near the singularity man-
ifold M given by

(13)

where  is an analytic function of
 near M and assume that

(14)

where p is an integer. We say that the Eq. (12) has
Painlevé property when the solutions are single-valued
about the movable M. After substitution of (14) into
(12) and using leading order analysis, it turns out that

 and

(15)

From the recursion relations for , collecting terms
involving , it is found that

(16)

From (16), we can see that  are the res-
onance points. The resonance at  corresponds
to the arbitrariness of ψ, which characterizes the sin-
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nance points  satisfy the compatibility con-
dition (16), following Kruskal ansatz [60] of the WTC
method, we consider the following transformation:

(17)

where  is an arbitrary function, and obtain the
following recurrent relation for :

(18)

Putting  in the above recurrence relation (18),
the following relations are obtained

(19)

whereas, , , and  are arbitrary. This shows that
the nonlinear evolution Eq. (12) possesses Painlevé
integrability in the sense of WTC method and hence
it can be solved analytically.

3.1. Bäcklund Transformation 
for Finding Exact Solutions

 We have studied the Painlevé property of Eq. (12),
which demonstrates that the truncated Painlevé
expansion to determine exact solutions of the Eq. (12)
has the form [48, 61]
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and for  it is found that  satisfies the nonlinear
Eq. (12) which has the trivial solution . Starting
with this trivial , the Bäcklund transform (BT)
of Eq. (12) can be recast as

(22)

To determine the localized analytical solutions of
Eq. (12) with the help of above BT (22), we assume a
plane wave  on the curved space 
such that , where M is the Mach number. On
this  plane, the BT can be assigned as

(23)

Here, dash (') represents the derivative with respect to
θ. Again, on the θ plane, the Eq. (12) is reduced (after
single integration) to
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a system of ordinary differential equations (ODEs) in
ψ. For physically valid solutions, we consider ODE
corresponding to the coefficients of , which yields
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field. Finally, substituting (26) in the Eq. (23) we
obtain the general solution of Eq. (12) as

(28)

3.2. Soliton Solutions
Now, for soliton solutions, putting k1 = k2 = k3 =

k4 = 0 and  in the general solution (28) and car-
rying out some simple algebra, we obtain

(29)

Thus, the nonlinear evolution Eq. (12) exhibits sin-
gle peaked soliton solution (29). To have some numer-
ical appreciations of our results, we choose the typical
values of the parameters corresponding to the auroral
zone [8, 19]:  eV,  eV,  cm–3,
and  cm–3. These parameters correspond to

. Furthermore, the present analysis is
restricted to the range of values of the nonextensive
parameter q satisfying  [54]. In Fig. 1, we
present the effect of nonextensive parameter q and
positron concentration  on the soliton solution,
respectively. It is seen, that the soliton shrinks while its
pulse amplitude increases with the increase of q and

, i.e., the nonextensivity and positron concentration
can render the soliton more spiky. Physically, increas-
ing the positron concentration leads to the decrease of
ion number density ( ) due to the quasineutrality
condition and consequently, the soliton amplitude
increases while its pulse width decreases. This feature
can be attributed for diagnostic purpose when positron
population can be introduced in electron–ion plasma.

Moreover, putting , ,
and  in the general solution (28), we obtain
M-shaped soliton solution. Figure 2 shows the
M-shaped solitons for different values of magnetic
field strength Ω. It is observed that the amplitude of
the soliton increases as the value of Ω increases. More-
over, the special extension (width) of M-shaped soli-
ton decreases with the increase in external magnetic
field. Therefore, increasing the magnetic field leads to
an increase in the nonlinearity and a decrease in the
dispersion and thus, the localized structures that are
much taller and narrower. Physically, an increase in
the magnetic field raises the frequency of the electron
oscillation, leading to an increase in phase speed of the
waves for constant wavelength. Then, the soliton prop-
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Fig. 1. Soliton solution of equation (12) as given in (29) for different values of (a) nonextensive parameter q (  (solid line),
 (dotted line), and  (dashed line)) with  and (b) positron concentration  (  (solid line), 

(dotted line), and  (dashed line)) with , where other parameters are , , , and .
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agates with greater speed. Since the soliton velocity is
directly proportional to the soliton amplitude, the
soliton evolves with higher amplitude.

3.3. Periodic Solution

It is known from dynamical system theory that
purely imaginary eigenvalues always correspond to the
periodic solution of a nonlinear system. Therefore, to
determine periodic solution from (28), we put

,  and , where P
is a positive constant. Thus, the periodic solution of
(12) is given by

(30)

Figure 3 exhibits the variations of periodic solu-
tions of the Eq. (12) for several values of nonextensive

1 3= =k k P 2 5 6= = = 0k k k −4 =k P

   + λθλ
   − λθ   

2
(1)
c 2

(2 sin( ))24= .
{1 2 sin( )}

iBn
A i
Fig. 2. M-Shaped soliton solution of equation (12) for dif-
ferent values of magnetic field (  (solid line),

 (dotted line), and  (dashed line)).
Here, , , , ,

 and other parameters are same as in Fig. 1.
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parameter q and external magnetic field strength Ω,
respectively. It is observed from Fig. 3a that the oscil-
lation amplitude as well as the number of oscillations
decreases as q increases, while from Fig. 3b, it is clear
that the influence of the magnetic field strength
increases the number of oscillations and oscillation
amplitude.

3.4. Breather and Rogue Wave-Type Solutions
The name “breather” reflects the behavior of the

wave profile in which energy concentrates in a local-
ized and oscillatory fashion. By choosing

, , and , where
P is a positive constant, breather-like solution can be
generated as

(31)

In order to illustrate the behavior of breather oscil-
lations, the solution (31) is depicted in Fig. 4 by vary-
ing the values of nonextensive parameter q. It is found
that the oscillations and envelope propagate at differ-
ent speed. It is also observed that the number of oscil-
lations and amplitude in the wave packet decrease
with increasing q. The breather structures observed
here are the outcome of interactions of multi phase
waves. Thus, the formation of breather is the signature
of the phase mixing of waves. On the other hand,
rogue waves are strong wavelets that can “suddenly
appear from nowhere and disappear with no trace”
[62]. Rogue waves are now recognized as proper
intrinsically nonlinear structures. Rogue waves are
short-lived phenomena appearing suddenly out of
normal waves and with a small probability. Substitut-
ing , , and  into
(28), the rogue wave-type solution can be obtained as

1 5 6= = =k k k P 2 = 0k = =3 4 /2k k P

( )= λ θ λ + λ − λ λθ(1) 2 2 2
c 2 2 2

12 ( )[2 (2 2 )cos( )Bn
A

+ λ − λ λ θ − λ λθ λ θ2 2 2
2 2 2(4 )cosh( ) cos( )( )

+ λλ λθ λ θ + λθ λ θ + λ θ .2
2 2 2 24 sin( ) tanh( )]{2 cos( )( ) ( )}

1 5 6= = =k k k P 2 3= = 0k k −4 =k P
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Fig. 3. Periodic solution of equation (12) as given in (30) for different values of (a) nonextensive parameter (  (solid line),
 (dotted line), and  (dashed line)) with ,  and (b) magnetic field strength (  (solid line),
 (dotted line), and  (dashed line)) with  and , , , , where

the other parameters are same as in Fig. 1.
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Fig. 4. Breather-like solution of equation (12) as given in (31) for different values of nonextensive parameter q for , ,
, , and  with , , and .
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(32)

This solution refers to an amount of the wave energy
condensed in a relatively small area in space that is

produced by the presence of nonlinear properties of
the plasma medium and can be represented as rogue
wave structure as shown in Fig. 5a. It is apparent from
the figure that nonextensivity reduces the rogue wave
amplitude. To extract another type of rogue-wave-like
solution from relation (28), we take 

 and  and obtain

(33)

( ) λθ λθ

λθ λθ

λθ −

= λ + λ − λ + λ λ θ

+ λ − λ λ θ + λλ λ θ λ θ
× + − λ θ .
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2 2 2
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2
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Fig. 5. (a) Profile of rogue-wave-type solution (32) of equation (12) for different values of nonextensive parameter (
(solid line),  (dotted line), and  (dashed line)) with  and , , and 
and (b) profile of another type of rogue wave structure (33) for different magnetic field strength (  (solid line), 
(dotted line), and  (dashed line)) with , , and , where other parameters are
same as in Fig. 4.
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The profile of solution (33) is displayed in Fig. 5b
for different values of Ω. It is seen that the amplitude
of the rogue wave structure is enlarged with the
increase in Ω. Physically, the magnetic field in the
plasma system enhances the coupling and generates
new perturbations in the electron orbits. This nonlin-
earity introduced by the magnetic field creates new
harmonics, and the rogue wave structures reveal these
nonlinear phenomena. Usually, breathers and rogue
wave structures are described through the well-known
nonlinear Schrödinger equation [62, 63].

4. CONCLUSIONS

In this work, we have investigated the nonlinear
propagation of EAWs in a magnetized plasma consist-
ing of nonextensive hot electrons and positrons,
mobile cold electrons, and immobile positive ions.
Employing the standard reductive perturbation tech-
nique, Laedke–Spatschek equation is derived which
governs the nonlinear dynamics of small-amplitude
EAWs in nonextensive magnetized plasmas. We have
used the Painlevé analysis to show the integrability of
the nonlinear evolution equation. By implementing
the Bäcklund transformation, a series of analytical
solutions of Laedke–Spatschek equation are
obtained. The solutions reveal that EAWs described by
the nonlinear equation support various types of non-
linear structures, such as the single peaked soliton,
M-shaped soliton, and breather and rogue wave-like
structures. It was found that these nonlinear structures
are significantly modified by the relevant plasma
parameters (entropic index q, magnetic field strength,
positron concentration). The derived analytical results
represent a wide class of fascinating coherent nonlin-
ear phenomena and can be applicable in different
fields of physical world [63, 64].
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