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Abstract—Nonlinear propagation of ion-acoustic (IA) shock wave in a nonextensive and relativistic plasma
is investigated by deriving space fractional Korteweg–de Vries–Burgers (SFKB) equation. This unmagne-
tized and collisionless plasma contains relativistic thermal ions, q-distributed electrons, and positrons. A
modified tanh-function method is presented to solve the obtained SFKB equation taking space fractional and
relativistic parameters, electrons nonextensivity, positrons nonextensivity, and electron-to-positron tem-
perature ratio. It is observed that the structure of the IA shock wave can be modified by space fractional
parameters. On the other hand, the IA shock wave shape can be modulated using the space fractional param-
eter. Our results can help understand the astrophysical environments such as pulsar magnetospheres, quasars,
and collimated jets.
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1. INTRODUCTION

Relativistic electron–positron–ion (e–p–i)
plasma is of considerable interest in several areas such
as astrophysics environments, gamma-ray bursts
(GRB) [1], pulsars, and quasars [2]. There are signs of
the existence of relativistic e–p–i plasma in nature. In
the early universe, such plasma is generated when
radiation and relativistic particles are more important
than ordinary matter. It happens when the tempera-
ture is approximately above 109 K. Several theories of
quasars jets, supernova explosions, and galaxy forma-
tions are based on relativistic models [3–5]. Due to the
interaction of intense electromagnetic waves or intense
laser pulses with a solid target, the relativistic effects
can appear in the laboratory and natural plasma [6–9].
In cosmology and astrophysics, the intense electro-
magnetic waves come from the light emitted from pul-
sars, or radiation emitted from black holes that caused
the generation of relativistic plasma [7–10].

Furthermore, the shock wave and pulsar wind are
also observed in the interaction of relativistic electrons
or ions with plasma. Shock waves are an important
feature in several phenomena occurring in the cos-
mology and astrophysical environments such as galac-
tic nuclei [11], galaxies [12], neutron stars, and solar
flares [13]. For example, the stars’ luminosity can be
increased by an increase in the total light emitted from
the galaxy. For this reason, an explosion can occur in
the stars. Several mechanisms are proposed to explain

the energy emitted from the explosion [14]. One of the
probable mechanisms is the formation of shock waves,
which propagate outward. On the other hands, the
formation and observation of the shock structures is
often occurs in dissipative plasmas, when the dissipa-
tion property is dominant over the dispersion property
in such plasma [15–18]. The existence of the nonex-
tensive and superthermal electrons, nonextensive pos-
itrons in space and astrophysical plasma, solar wind,
and magnetosphere environment is reported [19, 20]
as causing dissipative plasma and shock formation.
However, generated shock waves are able to penetrate
into the interplanetary space, galaxy, and solar f lares,
where they appear as interplanetary shock [21]. Thus,
it is essential to investigate the shock wave propagation
in relativistic plasmas. Recently, several authors have
studied the shock wave propagation in plasmas [22–
27]. In paper [24], the effects of isothermal electrons
and relativistic ions on the structure of IA shock waves
in a relativistic e–p–i plasma were studied. It was
found that the structure of ion-acoustic shock waves
depends on the temperature, the relativistic streaming
factor, and the relative velocity. Oblique IA shock
waves propagation in relativistic e–p–i plasmas with
nonthermal electrons and relativistic ions has been
studied in [25]. It was shown that the propagation of
ion-acoustic shock waves depends significantly on the
nonthermal and the relativistic parameters. In [26],
the nonlinear propagation of IA shock wave in a dissi-
pative relativistic plasma was investigated. The results
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show that as the relativistic parameter, temperature
ratio, and positron concentration increase, the ampli-
tude of IA shock wave decreases. The collisions effect
on the structure of IA shock waves in a relativistic
regime was studied in [27] and it was revealed that by
an increase in relativistic and superthermal parame-
ters, the structure of IA shock wave is modified.

Fractional calculus has many applications in vari-
ous fields of science, engineering, and economics
[28–34]. Fractional partial differential equations
(PDEs) have attracted much interest in applied phys-
ics and conceptual modeling to describe various phe-
nomena arising in real-world systems. Thus, the solu-
tion to this type of equation is essential. We focus on a
class of analytical methods to solve them. Some of
these methods are Lindstedt–Poincaré method [35,
36], Adomian decomposition method [37–39], Jacobi
elliptic function method [40], spectral method [41],
and differential transform method [42]. In this manu-
script, using Agrawal method [43, 44], the SFKB
equation is first derived to study the nonlinear pro-
pagation of IA shock waves in a relativistic and non-
extensive plasma. Then, we propose a modified
tanh-function method to solve the obtained SFKB
equation.

2. BASIC EQUATIONS
We consider an unmagnetized, fully ionized, and

collisionless plasma that consists of relativistic thermal
ions, nonextensive positrons, and nonextensive elec-
trons with concentrations , , and , respec-
tively. The hydrodynamics f luid equations that con-
cern the nonlinear propagation of IA waves in a rela-
tivistic plasma can be written as [26, 45]:

(1)

(2)

(3)

where parameters are given by

(4)

where g is the electron-to-positron temperature ratio,
f is the relative concentration of positron to electron in
equilibrium, q is the nonextensivity parameter; the sub-
script  stands for the ions, electrons, and pos-
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itrons, respectively; , ;
, , and ρ are the normalized ion concentration,

ion fluid speed, and ion viscosity, respectively;  and
are masses and temperatures, respectively; and Φ is

the potential normalized by . The time and space
variables are normalized by the plasma period 

, and the Debye length λDe =

, respectively. The relativistic parameter
is defined as , where  is the
speed of light. We applied the reductive perturbation
technique [46] to study the IA shock waves’ structure.
We introduce the stretched coordinates as follows:
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factor measuring the nonlinearity is given by ε, and the
IA wave speed , normalized by .
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The SFKB equation is derived as (see Appendix A)

(9)

Equation (9) represents the SFKB equation describing
the propagation of IA shock waves in the relativistic
plasma with the electrons and positrons’ nonextensivity.

3. DERIVATION OF THE SAGDEEV 
POTENTIAL [47–51]

To study the arbitrary amplitude of ion-acoustic
shock waves, we introduce  where M is
the Mach number, viz., the velocity of shock. By
transforming Eq. (8) into the χ coordinate, it can be
written as

(10)

Integrating Eq. (10) we find
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Equation (13) is the energy equation,  and
 are the variable energy of a particle and Sagdeev

potential, respectively [52, 53].

4. SOLUTION OF SFKB EQUATION
Modified tanh-function method [54] is used to

obtain the exact analytical solution to the SFKB equa-
tion. For this purpose, we propose and apply transfor-
mation ,  to
Eq. (9) and convert it into the following form

(14)

By integrating Eq. (10) once, we obtain

(15)

Balancing  with  in Eq. (15) give
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By applying the modified tanh-function method to
Eq. (15) and using Eq. (16), the exact analytical solu-
tion of Eq. (15) is given by
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Fig. 1. The shock wave amplitude versus γ with ,
, , and  for different values of 

(solid curve), 4 (dashed curve) and 4.5 (long dashed curve).
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Fig. 2. The shock wave amplitude versus γ for different val-
ues of  (solid curve), 2 (dashed curve), and 2.5 (long
dashed curve). The remaining parameters are the same as
in Fig. 1, .
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Using the Maple software, the solution of Eqs. (20) is
obtained as

(21)

where  is an arbitrary constant.
Using Eqs. (19) and (21), the shock wave solution

of the SFKB equation, Eq. (9), can be obtained as fol-
lows

(22)

5. RESULTS AND DISCUSSIONS
According to our knowledge, there is no investiga-

tion of the effect of the space fractional parameter on
the behavior of IA shock wave in relativistic plasma
including electrons, positrons, and relativistic thermal
ions. Thus, our aim is to investigate the behavior of IA
shock waves in such plasma. For this purpose, we have
first derived the SFKB equation using a semi-inverse
technique for an unmagnetized, collisionless, and rel-
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mal ions, q-distributed electrons, and positrons.
Then, we propose a modified tanh-function method
considering a fractional complex transform to solve
the obtained SFKB equation. Moreover, our goal is to
show how the features of shock waves solutions can be
affected by the plasma parameters such as space frac-
tional and relativistic parameters, electrons to posi-
trons nonextensivity, and electron-to-positron tem-
perature ratio. We have chosen the numerical quanti-
ties for the Figs. 1–6 as , , ,
and . Figure 1 shows the relation between the

= 0.3f ρ =0 0.5 =0 0.9iU
=2 0.3f
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Fig. 3. The shock wave amplitude versus ξ for different val-
ues of  (solid curve), 4 (dashed curve), and 4.5
(long dashed curve). The remaining parameters are the
same as on Fig. 1, .

�15 �10 �5 0 5 10 15
�

0.18

0.12

0.14

0.16

0.08

0.10

0.06

0.04

0.02

0

�
1

= 3.5q

γ = 1

Fig. 4. The shock wave amplitude versus ξ for different val-
ues of  (solid curve), 4 (dashed curve), and 7 (long
dashed curve); , , , and .
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amplitude of the IA shock wave  and space frac-
tional parameter γ for different values of electron non-
extensivity , 4, and 4.5. It illustrates that the
amplitude of the IA shock wave decreases with an
increase in space fractional parameter and electron
nonextensivity. Therefore, for increasing the IA shock
wave’s amplitude, we can increase the space fractional
parameter γ instead of electron nonextensivity q.

1Φ

= 3.5q
PLASMA PHYSICS REPORTS  Vol. 46  No. 9  2020
The influence of space fractional parameter γ for
different values of spatial , 2, and 2.5 on the IA
shock wave is represented in Fig. 2. It is shown that as
space fractional parameter and spatial parameter
decrease, the amplitude of the shock wave increases.
Therefore, the shock wave feature can be modulated
using the fractional parameter. The behaviors of the
shocks for different values of electron nonextensivity
q, relativistic parameter η, and electron-to-positron

ξ = 1.5
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temperature ratio g are displayed in Figs. 3–5. It is
clear that the IA shock wave’s amplitude is increasing
by an increase in q and g (represented in Figs. 3 and 4)
while this trend is vice-versa for η as shown in Fig. 5.
By the other word, with an increase in relativistic
parameter from  to 0.35 the amplitude of the
IA shock wave is decreased. The IA shock wave’s
amplitude  versus space fractional parameter γ for
different relativistic parameter , 0.2, and 0.35
is shown in Fig. 6. It is depicted that as relativistic and
space fractional parameters increase, the amplitude of
the IA shock wave decreases.

6. CONCLUSIONS
Using the semi-inverse technique, SFKB equation

for an unmagnetized and collisionless e–p–i plasma
containing relativistic thermal ions, q-distributed
electrons, and positrons is derived to investigate the
structure of IA shock waves. The modified tanh-func-
tion method is presented to solve the obtained SFKB
equation. We investigated the effects of different
parameters on the structure of relativistic plasma. Our
results show that increase in the electron nonextensiv-
ity q and the electron-to-positron temperature ratio g
leads to increase in shock amplitude while this trend is
inversed for the space fractional parameter γ and the
relativistic parameter η. Our results may help to
understand the astrophysical environments such as
pulsar magnetospheres, quasars, and collimated jets.

APPENDIX A

DERIVATION OF SFKB EQUATION
To formulate the space fractional Korteweg–de

Vries–Burgers (SFKB) equation, let’s us introduce a
potential function  as ,
and substituting it into Eq. (8), we obtain the Korte-
weg–de Vries–Burgers (KB) equation as

(A.1)

The functional of Eq. (A.1) is given by

(A.2)
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Therefore, the Lagrangian of KB equation can be
written as

(A.4)

Similarly, the space fractional Lagrangian of the KB
equation can be written as

(A.5)

In Eq. (A.5),  denotes the Riemann–Liouville
(RL) fractional derivative as follows [55, 56]:

(A.6)

Thus, the functional of SFKB equation can be pre-
sented as

(A.7)

According to semi-inverse technique [43, 44, 57], tak-
ing the first variations of Eq. (A.7) with respect to ϕ,

, and optimizing it, , leads to

(A.8)

Substituting Eq. (A.5) into Eq. (A.8) and applying
, we obtain

(A.9)
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