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Abstract—The influence of electron collisions on the breaking of plane nonlinear plasma oscillations is ana-
lyzed. Numerical calculations by the particle method and analytical consideration in the weakly nonlinear
regime show that the breaking time of plasma oscillations increases with increasing electron collision fre-
quency. The threshold value of the electron collision frequency above which no singularity in the electron
density arises is found. In this case, the density maximum formed outside the symmetry plane of oscillations,
the growth of which in the weakly collisional regime leads to the breaking effect, begins to decrease after some
growth because of oscillation damping.
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1. INTRODUCTION
Plasma is a highly nonlinear medium in which even

relatively small initial collective displacements of par-
ticles lead to the excitation of oscillations and waves
with a rather large amplitude. The time evolution of
highly nonlinear oscillations and waves in dissipation-
less plasma leads to their breaking due to the appear-
ance of a singularity in the electron density [1]. The
limiting amplitude of the electric field up to which a
one-dimensional plane nonlinear plasma wave in cold
plasma can exist and, on approaching which, electron
density perturbations become infinitely large was
found in [2]. At the same time, it was shown in [3, 4]
that plasma oscillations can also break after a certain
time even if the field amplitude is below the limiting
value. It was established that the breaking time is
inversely proportional to the third power of the electric
field [3, 4], which leads to the rapid increase in the
breaking time with decreasing oscillation amplitude.
In one-dimensional planar geometry, the breaking of
plasma oscillations considered in [4] is related to the
dependence of the frequency on the amplitude due to
relativistic effects. In [4], the dependence of the break-
ing time on the oscillation amplitude was obtained,
but the proportionality coefficient was not found,
which does not allow one to accurately determine the
time at which the singularity in the electron density
arises. The breaking of cylindrical and spherical
plasma oscillations considered in [3] was explained by
the intersection of the electron trajectories, which
arises due to the frequency shift caused by electron

nonlinearities. It should be noted that, in [5], it was
shown that the appearance of a singularity in the elec-
tron density or, which is the same, the breaking of
oscillations is caused by the intersection of electron
trajectories. In [6], where the time evolution of non-
linear cylindrical and plane plasma oscillations was
studied numerically and analytically, the results
obtained in [3] were refined. It was shown in [6] that
nonlinear cylindrical oscillations break almost
1.5 times faster than it was predicted in [3], because of
the intersection of the trajectories of neighboring par-
ticles, rather than particles spaced along the radius by
a distance equal to the doubled oscillation amplitude,
as was claimed in [3]. Moreover, it was found in [6]
that breaking of nonlinear cylindrical plasma oscilla-
tions is associated with the formation of an off-axis
peak of the electron density, the growth of which leads
to a singularity. In the case of plane relativistic plasma
oscillations, a numerical and analytical study carried
out in [7] also demonstrates the breaking effect due to
the appearance of a singularity in the density outside
of the plane relative to which plasma electrons oscil-
late.

In this paper, the results previously obtained for the
breaking of plane nonlinear oscillations in collision-
less plasma [6, 7] are generalized to the case of a non-
zero electron collision frequency. The paper is
arranged as follows. In Section 2, we present a system
of one-dimensional hydrodynamic equations and
Maxwell’s equations in the Eulerian and Lagrangian
variables, which are then used for numerical calcula-
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tions and analytical consideration in the weakly non-
linear regime. We also formulate the initial and
boundary conditions required to describe the time
evolution of localized plane plasma oscillations. In
Section 3, plane plasma oscillations are simulated
numerically by the particle method with the use of the
so-called leapfrog scheme [8]. The calculated results
are presented in the form of the time dependences of
the maximum electron density. It is shown that break-
ing of plasma oscillations is associated with the forma-
tion of a maximum in the electron density outside the
symmetry plane of oscillations, which grows with time
and, after a few periods, turns to infinity. It is estab-
lished that, in the presence of electron collisions, the
breaking time of plasma oscillations increases with
increasing collision frequency. It is established numer-
ically that, for each initial amplitude of the electric
field, there is a certain threshold value of the collision
frequency above which no singularity in the density
appears. The calculations show that, at collision fre-
quencies above the threshold value, the peak of the
density formed outside the symmetry plane of oscilla-
tions grows for some time, reaches its maximum value,
and then decreases due to oscillation damping. Sec-
tion 4 presents results of an analytic study of the time
evolution of plane plasma oscillations in a weakly non-
linear regime. Based on the equations of motion in
Lagrangian variables, an expression for the particle
displacement as a function of time and the initial coor-
dinate is obtained. From the condition of turning the
electron density to infinity, the breaking time is found
and shown to increase with increasing collision fre-
quency. It is established that the breaking effect occurs
only in plasma with relatively rare collisions. An ana-
lytical expression is obtained for the threshold value of
the collision frequency above which no singularity in
the density appears. Good agreement with the results
of the numerical simulation is noted. In the Conclu-
sions, the results obtained are summarized and the
numerical values of the breaking time for some typical
plasma parameters are presented.

2. BASIC RELATIONSHIPS
We will consider highly nonlinear plasma oscilla-

tions in plane geometry, when all physical quantities
depend only on the coordinate  and time  and the
velocity and electric field are directed along the  axis.
Then, the system of the hydrodynamic equation for
the dimensionless velocity , momentum

, and electron density  with
allowance for collisions with a frequency , as well as
of Maxwell’s equations for the electric field

, has the form

(2.1)

x t
x

= vxV c
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(2.2)

(2.3)

where , , ,  is the plasma
frequency, ,  is the electron density in
the equilibrium state,  and  are the charge and
mass of an electron, and  is the speed of light. In this
case, the electron velocity is related to the electron
momentum as

(2.4)

In what follows, we will assume that the inequality
 is satisfied, which means that the electron colli-

sion frequency is much lower than the plasma fre-
quency. To solve Eqs. (2.1)–(2.4), we must comple-
ment them with initial and boundary conditions. We
will consider plasma oscillations localized in space
near the plane . We also assume that the electron
velocity and momentum at the initial time  are
zero,

(2.5)
We will assume that the oscillations are excited at the
initial instant of time by an electric field of the form [7]

(2.6)

where the parameters  and  characterize the scale
length of the localization region and the maximum
value of the electric field (2.6), 

, respectively.
In accordance with the form of electric field (2.6),

the electrons at the initial instant of time are displaced
from the plane  in different directions, which
leads to their subsequently oscillations about this
plane. The form of function (2.6) is chosen so that
such oscillations can be excited in an underdense
plasma  by a laser pulse with a frequency 
when it is focused into a line (this can be achieved by
means of a cylindrical lens).

If the laser electric field has a Gaussian spatiotem-
poral distribution,

(2.7)
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laser pulse, then, at a certain point  separated from
the trailing edge of the pulse by a distance exceeding
the plasma wavelength , the quantity  is
related to the laser pulse parameters as [6, 9]

(2.8)

where  is the normalized amplitude
of the laser field. Under the conditions of the optimal
excitation of the wakefield wave , when its
amplitude is maximal, relationship (2.8) takes the
form .

In addition, it should be noted that, in view of ini-
tial condition (2.6) plasma oscillations are not excited
at large distances from the plane . Therefore, we
will assume that

(2.9)

Thus, analysis of nonlinear plane localized plasma
oscillations is reduced to solving the system of equa-
tions (2.1)–(2.4) with initial and boundary conditions
(2.5), (2.6), and (2.9).

If we pass to the consideration of particle trajecto-
ries by using the formula

(2.10)

where  is the particle displacement from the
initial position , then we obtain from Eqs. (2.1)–
(2.4) the following equations in the Lagrangian vari-
ables  and :

(2.11)

(2.12)

(2.13)

(2.14)

where  is the total time deriva-
tive. The relationship between the electric field and
particle displacement (2.13) obviously follows from
Eq. (2.2) for the electric field after substituting into it
expression (2.3) for the electron density. System of
equations (2.11)–(2.14) allows one to analyze particle
trajectories numerically, as well as analytically in the
case of weak nonlinearity. According to Eqs. (2.3) and
(2.13), the electron density in plasma oscillations is
expressed through the particle displacements by the
formula
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From system of equations (2.11)–(2.14), we obtain
the following equation describing the particle trajecto-
ries in phase space :

(2.16)

where  is the particle displacement at the turning
point, at which the particle momentum is zero

. Since we assume that the condition  is
satisfied, it follows from formula (2.16) that collisions
between particles insignificantly affect their trajecto-
ries in phase space.

3. NUMERICAL SIMULATION OF PLANE 
PLASMA OSCILLATIONS

In this section, we will numerically integrate
Eqs. (2.11)–(2.14) with initial conditions (2.5) and
(2.6). Let, at the initial instant of time , the th
particle be characterized by an initial radial position

 and initial displacement , ,
where  is the total number of particles. The initial
positions of all particles correspond to electric
field (2.6). On the other hand, the electric field cre-
ated by displaced particles at the initial time  at a
point with the coordinate  is
described by formula (2.13). Comparing expressions
(2.6) and (2.13), we can find the sought-for quantities

 and . To this end, we define the initial
spatial grid , where  is the parameter of dis-
cretization over the spatial coordinate, characterizing
the proximity of neighboring particles. The electric
field  created by displaced particles at the grid
nodes is described by formula (2.6). Therefore, from
Eq. (2.13), we obtain the following equations for the
initial positions :

(3.1)

where  is the distribution of the electric field at
the initial time . Thus, in order to calculate the
trajectory of each particle, we obtain the initial values

 and , to which we should add the condi-
tion of particles being at rest at the initial time,

, which follows from Eq. (2.5).

Equations (2.11)–(2.12) can be integrated numeri-
cally by the second-order difference method (the so-
called leapfrog scheme) [8], traditionally used to solve
the equations of motion. Let  be the parameter of
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Fig. 1. Time dependence of the electron density in nonlin-
ear oscillations in collisionless plasma . The
solid and dashed lines shows the time evolution of the
maximum density in the entire computational domain and
in the symmetry plane ρ = 0, respectively.
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Fig. 2. Time dependence of the electron density in nonlin-
ear plasma oscillations in weakly collisional plasma

. The solid and dashed lines shows the time
evolution of the maximum density in the entire computa-
tional domain and in the symmetry plane ρ = 0, respec-
tively.
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time discretization, i.e.,  . Then, the
computational formulas will have the form

(3.2)

(3.3)

In this case, at an arbitrary instant of time , the vari-
able Eulerian grid at the nodes of which the values of
the electric field are determined by the formula

 can be calculated by the formula

(3.4)

This is used to graphically represent the electron den-
sity, because, in the calculations, we used the follow-
ing formula of numerical differentiation of the second
order of accuracy at the midpoints of subintervals:

(3.5)

For definiteness, we set,  and  in
Eq. (2.6). This version was considered in [7] when cal-
culating the relativistic breaking of undamped oscilla-
tions. In the boundary conditions, all physical quanti-
ties can be assumed to vanish at the boundary of the
computational domain . In our simula-
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tions, the artificial boundary was set at  =  and
the total number of particles was . Accord-
ingly, the quantity , which determines the initial dis-
tance between particles, was . The time
step  was taken equal to . To control the integration
accuracy, we regularly performed calculations with the
grid parameters two times smaller than those in the
main calculation version.

The results of calculations of the electron density as
a function of time for different values of the parameter

, characterizing the collisional damping of electron
oscillations, are shown in Figs. 1–3. Figure 1 shows
the time dependence of the maximum electron density
in collisionless plasma at , i.e., in the absence of
oscillation damping. It follows from Fig. 1 that, at the
given calculation parameters, a peak of the density
forms in the fourth period of oscillations outside the
ρ = 0 plane. This maximum density tends to infinity
already in the next period at . In the pres-
ence of electron collisions, the time at which the sin-
gularity in the electron density appears increases. For
example, for , the maximum density tends
to infinity only in the third period after its formation
(see Fig. 2), rather than in the second period as it was
in collisionless plasma. The calculations show that, for
the given initial parameters, the singularity in the den-
sity appears only at relatively rare collisions, such that

. When the equality  holds,
the singularity in the density appears at ,

d ρ4.5 *
= 51841M

h
( )= −2 1h d M

τ h

ν

ν = 0

( )θ ≈0
wb 29.49
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wb 0.2
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Fig. 3. Time dependence of the electron density in nonlin-
ear plasma oscillations in plasma with frequent collisions

. The solid and dashed lines shows the time
evolution of the maximum density in the entire computa-
tional domain and in the symmetry plane ρ = 0, respec-
tively.
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which is about 2.5 times greater than the breaking time
in collisionless plasma. At , no singular-
ity in the density arises. This scenario of the time evo-
lution of the maximum electron density is illustrated
in Fig. 3 for . In this case, the density max-
imum formed outside the ρ = 0 plane first increases,
but then it decreases due to strong oscillation damp-
ing.

It should be noted that the results of calculations by
the particle method presented above were fully repro-
duced in additional computations by the splitting
scheme in the Eulerian variables [7] and the classical
fourth-order Runge–Kutta method for integrating a
system of ordinary differential equations.

4. ANALYTICAL THEORY IN THE WEAKLY 
NONLINEAR REGIME

In the weakly nonlinear regime, where the expan-
sion  can be used, the system of equa-
tions (2.11) and (2.12) is reduced to one equation for a
small deviation of a particle from its initial position
( ),

(4.1)
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The solution to Eq. (4.1) is sought in the form

(4.2)

where  is the amplitude of the electron dis-
placement, which varies slowly in time over the oscil-
lation period, and  is the dimensionless oscil-
lation frequency (the frequency normalized to the
plasma frequency ). Then, separating the terms in
Eq. (4.1) in time scales and taking into account repre-
sentation (4.2), we find from Eq. (4.1) the reduced
(without a small second time derivative) equation for
the displacement amplitude,
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which determines the relativistic correction for the
plasma oscillation frequency, is satisfied. Then the
solution to Eq. (4.3) takes the form
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From formula (4.7), in the limit , we obtain the
well-known result  for
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plasma with allowance for relativistic nonlinearity [2].
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tion (4.8) the following equation determining the
breaking time of plasma oscillations:

(4.9)

where

(4.10)

The function  increases with time at small ,
reaches its maximum value  at

, and then decreases and vanishes as
. When solving Eq. (4.9), we take into account

that, according to formula (2.13), the initial displace-
ments of particles in the weakly nonlinear regime are
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An approximate solution to Eq. (4.14) under the con-
dition  has the form

(4.17)

It follows from formula (4.17) that the collisions lead
to an increase in the breaking time. In this case,
breaking of plasma oscillations occurs only under con-
dition (4.16) and the density singularity appears as a
result of an increase in the maximum of the electron
density formed outside the symmetry plane. When the
dimensionless electron collision frequency  exceeds
the threshold value  and the inequality

(4.18)

inverse to condition (4.16), is satisfied, then the singu-
larity in the density does not arise because of the
damping of plasma oscillations. Note that, at

, the breaking time is ,
as it follows from analysis of Eq. (4.14).

The expression for the threshold value of the colli-
sion frequency  with allowance for
relationship (4.15) takes the form

(4.19)

It follows from this formula that, for a fixed size  of
the localization region of oscillations, the threshold
value of the collision frequency is proportional to
the third power of the initial amplitude of the electric
field (2.6).

Let us compare the results of the weakly nonlinear
theory with the results of numerical calculations by the
particle method. For  and , the
numerically calculated breaking time in collisionless
plasma is . In this case, the singularity in
the density appears at . As the threshold
value  is approached, the breaking time
tends to . For large values of the collision
frequency, when the inequality  is satis-
fied, there is no singularity in the density. In this case,
the density maximum formed outside the ρ = 0 plane
reaches its peak value at a certain time, after which it
decreases (see Fig. 3). According to the weakly nonlin-
ear theory (see formula (4.15) and inequality (4.16)),
for the above parameters of the initial electric field, we
have  and , which satisfacto-
rily agrees with the numerical results. In this case, the
breaking time at  is equal to 

, which also correlates well with the results of
calculations by the particle method.

( )νθ <0 1wb
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0 0

wb wb wb1 .
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5. CONCLUSIONS

In this paper, the influence of electron collisions
on the breaking of plane nonlinear plasma oscillations
has been studied numerically and analytically. In the
absence of electron collisions, breaking of plasma
oscillations is caused by the formation of a maximum
in the electron density outside the symmetry plane of
oscillations, which grows with time and, after a few
oscillation periods, tends to infinity. It is shown that,
in the presence of electron collisions, breaking of
oscillations is also associated with the growth of the
density maximum formed outside the symmetry
plane; however, in collisional plasma, its growth is
slower and the breaking time increases with increasing
collision frequency. It is established numerically and
analytically that there is a certain threshold value of
the electron collision frequency above which the sin-
gularity in the density does not arise. It is shown that,
at a collision frequency above the threshold value, the
density maximum formed outside the symmetry
plane, grows only for some time after its formation, but
then it decreases due to strong oscillation damping.

Let us estimate the breaking time of nonlinear
oscillations for certain typical plasma parameters. If
plasma oscillations are driven by electric field (2.6)
with the parameters  and , then it
follows from the numerical calculations that the
breaking time in collisionless plasma is .
Hence, according to the numerical result for the
threshold value of the dimensionless collision fre-
quency, , breaking of plasma oscillations
occurs under the condition . In fully
ionized plasma, the dimensionless electron–ion colli-
sion frequency is defined by the formula [10]

(5.1)

where  is the ion charge number;  is the
Coulomb logarithm; and  is the ratio of the electron
interaction energy  to the electron kinetic
energy ,

(5.2)

Suppose that a laser pulse with the wavelength
 μm (frequency  s–1), duration

 fs, and dimensionless amplitude of the electric
field  propagates in a fully ionized underdense
plasma with the ion charge number , electron
density  cm–3, and electron temperature

 eV. If the laser pulse is focused by a cylindrical
lens into a line with a transverse size  μm, then
plane one-dimensional electron oscillations with the

parameters  and , which are close to
those used in the above calculations, are excited in the
wakefield wave generated behind the pulse. It should
be noted that, if the laser pulse propagates in an
underdense plasma with a moderately relativistic
intensity , then the condition for the optimal
excitation of plasma waves  is approximately
preserved and the amplitude of plasma oscillations is
related to the laser field by the same relationship

 as in the nonrelativistic limit. For the
above plasma parameters, we find from formulas (5.1)
and (5.2) that the dimensionless collision frequency

 is below the threshold value of
. Therefore, in this case, breaking of elec-

tron oscillations takes place and the breaking time is
, because . If we consider the

propagation of a laser pulse with the above parameters
in plasma with the same density but with the tempera-
ture  eV, then the calculations by formulas (5.1)
and (5.2) yield the dimensionless collision frequency

 ( ), which exceeds the
threshold value. Therefore, in this case, no breaking of
plasma oscillations in the laser pulse wakefield occurs
because of strong oscillation damping.
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