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Abstract—The linear and nonlinear propagation of ultrarelativistic and nonrelativistic analysis on modified
ion-acoustic (MIA) waves in a strongly coupled unmagnetized collisionless relativistic space plasma system
is carried out. Plasma system is assumed to contain strongly coupled nonrelativistic ion fluids, both nonrela-
tivistic and ultrarelativistic degenerate electron and positron f luids, and positively charged static heavy ele-
ments. The restoring force is provided by the degenerate pressure of the electron and positron fluids, whereas
the inertia is provided by the mass of ions. The positively charged static heavy elements participate only in
maintaining the quasineutrality condition at equilibrium. The well-known reductive perturbation method is
used to derive the Burgers and Korteweg–de Vries equations. Their shock and solitary wave solutions are
numerically analyzed to understand the localized electrostatic disturbances. The basic characteristics of MIA
shock and solitary waves are found to be significantly modified by the effects of degenerate pressures of elec-
tron, positron, and ion f luids, their number densities, and various charge state of heavy elements. The impli-
cations of our results to dense plasmas in compact astrophysical objects (e.g., nonrotating white dwarfs, neu-
tron stars, etc.) are briefly discussed.
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1. INTRODUCTION

The study of linear and nonlinear behavior of elec-
trostatic disturbances in electron−positron−ion (e-p-
i) plasmas have become one of the most interesting
theoretical studies in recent years. This interest is pri-
marily due to the fact that such plasmas are ubiquitous
to astrophysical compact objects [1–6]. The existence
of e-p-i plasmas have been confirmed in the early uni-
verse [7], where the plasma processes have played an
important role in the evolution of the universe. In
present times, such plasma is assumed to exist in many
astrophysical environments, viz. the inner regions of
accretion disks surrounding black holes [8], active
galactic nuclei [9], relativistic jets that stream from
quasars and active galaxies [10, 11], pulsar magneto-
spheres [12], the solar atmosphere [13, 14], Van Allen
radiation belts [15–17], etc. In the laboratory, the e-p-
i plasma can be created via the mechanism of pair pro-
duction or by injecting positrons into the electron−ion
system [3, 4].

In a high-density strongly coupled astrophysical
plasma, electron and positron fluids are degenerate
and ions are strongly coupled because the ion Cou-

lomb coupling parameter ,
where  is the charge of ions,  is the interion spac-
ing,  is the ion temperature, and  is the ion charge
state, respectively [18]. The ions are strongly coupled
to each other through their mutual Coulomb interac-
tion because of their high charge density. When the
coupling parameter , then the plasma system is
said to be strongly coupled. When the mass and charge
of ions are very high, then ion plasmas can also show
the strongly coupled behavior. Many authors [19, 20]
have also showed it experimentally. Generally, the
constituents of plasmas are electrons, ions, and atoms
or molecules. On the other hand, dusty (or complex)
plasmas contain static mesoscopic (multiply charged)
particles [21]. In some relatively massive white dwarfs,
one can think of the presence of heavier element like
iron within the stars. The heavy nuclei are mainly
formed into the interiors of massive stars. When these
stars contract to very high densities, matter in their
interiors will cool and become degenerate under cer-
tain conditions. The formation of heavy elements
begins in this state of degeneracy. When explosion
occurs, part of the heavy elements distribute over the
surrounding space and leave one or more stellar rem-
nants in the form of white dwarfs [22]. The degenerate1 The article is published in the original.
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electron number density in such a compact object is
very high, e.g., in white dwarfs, the degenerate elec-
tron number density can be of the order of 1030 cm−3,
so that the electron Fermi energy is comparable to the
electron mass energy [23–25]. It is important to note
that the degeneracy feature, which is a fundamental
aspect of ordinary solids, arises due to exclusion
mechanism when the de Broglie thermal wave length

 [26].
Chandrasekhar [27, 28] assumed that the core of

white dwarfs contains pure helium (He4) nuclei as
heavy elements, but more than 70 years later, Koester
[29] noticed that the core of white dwarfs contains car-
bon (C12) or oxygen (O15) nuclei as heavy elements and
that the electron species is relativistically degenerate
only within the inner core of the white dwarfs, but is
nonrelativistically degenerate in their outer mantle
[30]. The equation of state for degenerate electrons in
such space environments and astrophysical objects are
explained by Chandrasekhar [27] for two limits,
named as nonrelativistic and ultrarelativistic limits.
The degenerate electron pressure equation is given by
Chandrasekhar [27, 28] as  for nonrelativistic
limit and  for ultrarelativistic limit, where 
is the degenerate electron pressure and  is the degen-
erate electron number density.

Many authors [31, 32] have already discussed how
the basic features of normal ion-acoustic waves vary in
the presence of dust grains and they named of such
waves as dust-ion-acoustic (DIA) waves. But for
astrophysical compact objects (i.e., white dwarfs, neu-
tron star, etc.) having densities about a million or more
times solid density, dust grains would not have a
chance to exist. Some recent works [29, 30, 33]
showed that the presence of heavy ions like, carbon,
oxygen, etc., are predominant in such astrophysical
compact objects. So, the effect of the heavy ions has to
be taken into account, especially for astrophysical
objects where the degenerate plasma pressure and
heavy ions play an important role in the formation and
stability of the existing waves. Therefore, in our pres-
ent work, we have considered normal ion-acoustic
waves in the presence of heavy ions and we like to call
such propagation as modified ion-acoustic (MIA)
waves. The MIA waves are, in fact, the acoustic type of
waves in which (i) the inertia is provided by the ion
mass and the restoring force is provided by the degen-
erate pressures of positrons and electrons and (ii) the
frequency is much higher than the dust plasma fre-
quency. On the other hand, the dust-acoustic (DA)
waves are the acoustic type of waves in which (i) the
inertia is provided by the dust mass and the restoring
force is provided by the thermal pressure of positrons
and electrons and (ii) the frequency is much lower
than the ion plasma frequency.

Recently, for understanding the localized electro-
static perturbations in compact astrophysical objects

/λ = π 1 2/(2 )B e Bh m k T
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en

like white dwarfs, a large number of theoretical inves-
tigations [34–56] have been made on the nonlinear
propagation of ion-acoustic (IA), positron-acoustic
(PA), and electron-acoustic (EA) waves by consider-
ing a degenerate dense plasma model that assumes
weakly coupled nondegenerate ion f luids and degen-
erate nonrelativistic or ultrarelativistic electron f luids.
All of these investigations, which have shown the exis-
tence of IA/PA/EA solitary and shock structures, are
not valid for strongly coupled nondegenerate or
degenerate ion f luids. The role of strong correlation
among ions can be the source of dissipation (disper-
sion) and can be responsible for the formation of
shock (solitary) structures in such compact astrophys-
ical objects. Again, dense astrophysical quantum plas-
mas can be confined by stationary heavy ions. There-
fore, the effect of the heavy elements has to be taken
into account, especially for astrophysical observations
(such as white dwarfs, neutron stars, black holes, etc),
where the degenerate plasma pressure and heavy ions
play an important role in the formation and stability of
the existing waves.

None of the authors did not consider the effects of
strongly correlated relativistic ions and various charge
states of heavy elements which can significantly mod-
ify the propagation of MIA solitary and shock struc-
tures. To the best of our knowledge, the MIA waves in
such considerable plasma system has never been
addressed. Therefore, it is worthwhile to present a first
study for the MIA shock and solitary waves where the
degenerate plasma pressure, strongly coupled nonrel-
ativistic ion f luids, both weakly coupled nonrelativistic
and ultrarelativistic degenerate electron and positron
fluids, and various charge states of heavy elements
play a vital role.

2. THEORETICAL MODEL 
AND BASIC EQUATIONS

We consider the linear and nonlinear propagation
of MIA waves in a strongly coupled degenerate plasma
system whose constituents are nonrelativistic degener-
ate ions, both nonrelativistic and ultrarelativistic
degenerate electron and positron fluids, and positively
charged static heavy elements. Thus, the equilibrium
condition reads , where  is
the unperturbed number density of the species  (here,

 for positively charged ion, electron, and pos-
itron, respectively),  is the number of light ions
residing onto the heavy element surface. The dynam-
ics of low-frequency nonlinear MIA waves in such a
strongly coupled degenerate plasma system is gov-
erned by the well-known generalized viscoelastic
hydrodynamic equations [57–60] consisting of the
continuity and momentum equations,
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(2)

and by the generalized degenerate pressure equation
for the electron and positron fluids,

(3)

(4)

The system of equations is closed by Poisson’s equa-
tion

(5)

(6)

Here,  is the plasma number density of the species 
(where  for electron, ion, and positron,
respectively) normalized by its equilibrium value ,

 is the plasma species f luid speed normalized by
 (where  ( ) is the electron (ion)

rest mass and  is the speed of light in vacuum),  is
the electrostatic wave potential normalized by 
(where  is the electron charge), the time variable ( )
is normalized by , the space vari-

able ( ) is normalized by ,
 (where  is the viscoelastic relax-

ation time), , and 
 is the effective ion temperature. The latter

consists of two parts, one ( ) arising from the electro-
static interaction among strongly correlated positive
ions and other ( ) arising from the ion thermal
pressure. Again,  is
the normalized longitudinal viscosity coefficient,
where  and  are the transport coefficients of shear
and bulk viscosities. The parameter  is the
electron-to-ion number density ratio,  is
the positron-to-ion number density ratio, and

 is the heavy ion-to-ion number density
ratio. We have defined  and

 = . There are various
approaches for calculating the ion transport coeffi-
cients, similar to those of one-component strongly
coupled plasmas [57, 61, 62]. For our purposes, the
parameter  (which arises from the electrostatic
interactions among strongly correlated positive ions),
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viscoelastic ion relaxation time , and ion compress-
ibility  are written as [57]

(7)

(8)

where  is determined by the ion structure and cor-
responds to the number of nearest neighbors (viz., in
crystalline state,  for a body centered cubic
lattice,  for face centered cubic lattice, etc.);

, with  being Thomas–Fermi screening
length; and  is a measure of the excess internal
energy of the system and is calculated for weakly cou-
pled plasmas ( ) as . We can
express  in terms of  for a range of 
[62] deriving an analytical relation

(9)
where a small correction term due to finite number of
particles is neglected. The dependence of the other
transport coefficient  on  is somewhat more com-
plex and cannot be expressed in such a closed analyti-
cal form. However, tabulated/graphical results of their
functional behavior derived from the molecular
dynamic simulations and a variety of statistical
schemes are also available in literature [57].

3. FORMULATION OF LINEAR 
DISPERSION RELATIONS

The relation between the wave frequency  and
wave number  is known as the dispersion relation. To
analyze the characteristics of linear waves, we derive
the linear dispersion relation for the plasma system
under consideration here. First, we consider perturba-
tions varying as  in the small-amplitude limit
and then by expanding the dependent variables in
Eqs. (1)–(5) in a power series of , as described below
in Eqs. (17)–(21), with the terms containing  or
higher neglected and by replacing   and

 , we get

(10)

where . Now

we separate the dispersion relation into its real and imag-
inary parts by setting ; then, we obtain

 and  for
the real and the imaginary parts, respectively. For
nonzero real frequency, the imaginary part reduces to
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associated with viscosity. Substituting ,
we get the real angular frequency as

(11)
We first consider the nondissipative case, i.e., ,
which leads to the dispersion relation  
(for shock wave). Then, we consider the cases with

 and 0.8.
To evaluate the linear characteristics of MIA soli-

tary waves by linearizing the Eqs. (1)–(5), we obtain
the linear dispersion relation in the form

(12)

where,  and
. In case of large wavelength

(i.e., for ), the MIA solitary waves frequency is
given by

(13)

and the phase velocity of the MIA reads 
 or

(14)

It is seen that the linear dispersion relation for the
MIA waves is significantly modified by the effects of
adiabaticity, nonextensivity of electrons, and Maxwel-
lian light ions.

4. FORMULATION
OF NONLINEAR EQUATIONS

4.1. Derivation of the Burgers Equation
Now, we derive a dynamical equation for the non-

linear propagation of the MIA shock waves by using
Eqs. (1)–(5). We employ a reductive perturbation
technique to examine electrostatic perturbations
propagating in the relativistic degenerate dense plasma
due to the effect of dissipation and introduce the
stretched coordinates [63]

(15)

(16)

where  is the wave phase speed (with  being
angular frequency and  being the wave number of the
perturbation mode) and e is a smallness parameter
measuring the weakness of dissipation ( ). We
then expand , , , and , in power series of ,
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and develop equations in various powers of . To the
lowest order in , using Eqs. (15)–(21), as well as
Eqs. (1)–(5), we get ;

; ; and
the phase speed

 , 

which is the same as we have obtained in case of linear
waves.

We are interested in studying the nonlinear propa-
gation of these dissipative MIA type electrostatic
waves in a strongly coupled degenerate plasma. To the
next higher order in , we obtain a set of equations
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Now, combining Eqs. (22)–(26), we deduce the Burg-
ers equation
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4.2. Derivation of the Korteweg–de Vries Equation

In order to search the Korteweg–de Vries (KdV)
equation, we have to introduce first the stretched
coordinates [63]

(30)

where  and  are the same as before. We can expand
the perturbed quantities , , and  about the equi-
librium values in power series of  as for the Burgers
equation. To the lowest order in , i.e., taking the
coefficients of  from both sides of Eqs. (17)–(20)
and  from both sides of Eq. (21), one can obtain the

, , and , which are exactly same what we have
obtained from the Burgers equation.

To the next higher order in , i.e. taking the coeffi-
cients of  from both sides of Eqs. (17)–(20), and 
from both sides of Eq. (21), one can obtain another set
of coupled equations for , , and , which,
along with the first set of coupled linear equations for

, , and , make a system of nonlinear equa-
tions. After some algebraic calculations, we obtain the
nonlinear equation in the form

(31)

Equation (31) is known as the KdV equation, where
the nonlinear coefficient  gives same value as for the
Burgers equation and the dispersion coefficient  is
given by

(32)

5. PARAMETRIC INVESTIGATIONS
AND RESULTS

The stationary shock wave solution of Burgers
equation (27) is obtained by transforming the inde-
pendent variables to  and , where 
is the speed of the shock waves, and imposing the
appropriate boundary conditions, viz. ,

, and  at . Thus,
one can express the stationary shock wave solution of
Burgers equation (27) as

(33)

where the amplitude  and the width  are given by
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The stationary solitary wave solution for KdV equa-
tion (31) is given by

(36)

where  and .
The ranges of the plasma parameters used to study

the properties of shock and solitary structures are
given in Table 1.

5.1. Linear Properties
The variation of the wave frequency  with wave

vector  for different values of the viscosity coefficient
 is shown in Fig. 1, where the upper and lower curves

correspond to the real (positive) and imaginary (nega-
tive) parts of the linear dispersion relation for MIA
shock waves, respectively. It is observed that the real
part of the wave frequency decreases (in absolute mag-
nitude), while the imaginary part of the wave frequency
increases (in absolute magnitude) with the increasing
values of the viscosity coefficient (i.e., dissipative
effect)  (see Fig. 1). Figure 2 illustrates the variation
of the wave frequency  with wave vector  for differ-
ent values of heavy elements charge states . It is
observed that the wave frequency decreases with the
increasing values of heavy elements charge states .

5.2. Nonlinear Properties
5.2.1. Role of electron-to-ion number density ratio

(via ). The effect of electron-to-ion number density
ratio  on the shock and solitary profiles is illustrated
in Figs. 3 and 4 for both nonrelativistic and ultrarela-
tivistic limits. From Figs. 3 and 4, it is observed that
the amplitudes of shock and solitary structures
increase with increasing values of . Physically, this
happens due to the reason that it decreases the nonlin-
earity coefficient . It is also observed that the ampli-
tude of this shock and solitary waves are higher for the
nonrelativistic case than for the ultrarelativistic case.

5.2.2. Role of positron-to-ion number density ratio
(via ). The effect of positron-to-ion number density
ratio on the shock and solitary profiles is illustrated in
Figs. 5 and 6 for both nonrelativistic and ultrarelativis-
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Table 1. Approximate ranges of the plasma parameters used
in this investigation [64, 65]

Parameter Parameter range

0.1–0.5
0.1–0.7
0.1–0.45

0.1–0.8
0.1–1

β
α
μh
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tic limits. It is found that the amplitudes of the shock
and solitary structures decrease with increasing values
of . It happens on the basis of the driving force of the
MIA wave, as the driving force for the MIA wave is
provided by the ion inertia. Actually, an increase in the
ion concentration (depopulation of electrons) causes a
decrease in the driving force, which is provided by the
ion inertia and, consequently, shock and solitary
waves enervate. It is also found that the amplitude of
these shock and solitary structures are distinctly
higher for the nonrelativistic case than for the ultrarel-
ativistic case.

λ

5.2.3. Role of heavy ion-to-ion number density ratio
(via ). Figures 7 and 8 illustrate the effect of heavy
ion-to-ion number density ratio on the amplitudes of
the MIA shock and solitary structures. It is found that
the amplitudes of shock and solitary structures
decrease with increasing values of . Physically, this
happens due to the reason that it decreases the phase
speed of the MIA waves (see expression for ).

5.2.4. Kinematic viscosity effect (via ). The ampli-
tudes of the shock and solitary structures also depend
on the kinematic viscosity coefficient . It is observed
that the amplitudes of both shock and solitary struc-
tures decrease with increasing values of . Physically,

μh
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pV
η

η

η

Fig. 1. (Color online) Variation of the wave frequency 
with the wave vector  for , , ,
and  of the MIA shock waves linear dispersion
relation. The upper (positive ) curves are for the real part
and the lower (negative ) curves are for imaginary part of
the MIA shock wave linear dispersion relation.
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Fig. 2. (Color online) Variation of the wave frequency 
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this happens due to the reason that it increases the dis-
sipative constant B. The effect of kinematic viscosity
on the linear dispersion relation for MIA shock waves
was already discussed in Section 5.1.

5.2.5. Relativistic effects. The properties of shock
and solitary wave are significantly affected by the rela-
tivistic effects, which manifest themselves through the
adiabatic exponents  and gamma . There are two
relativistic limits called nonrelativistic ( )
and ultrarelativistic ( , ), which signifi-
cantly modify the shock and solitary profiles. It is
found that the amplitudes of the shock and solitary
structures are higher for the nonrelativistic case than
for the ultrarelativistic case.

5.2.6. Role of heavy elements charge states. The
amplitude of solitary and shock structures are signifi-

α γ
α = γ = 5/3

α = 5/3 γ = 4/3

cantly modified by the various charge states of heavy
elements. Figures 9 and 10 illustrate the variation of
the amplitudes of shock and solitary structures with 
for different values of . It is observed that the ampli-
tudes of the shock and solitary structures decrease
with increasing values of . The linear dispersion
relation, i.e.,  versus  graph (see Fig. 1) of the MIA
solitary waves also drastically affected by the various
charge states of heavy ions. From Fig. 1, it is observed
that the phase speed of the MIA waves also decreases
with increasing values of .

It is also important to note here that, when the dis-
persion (dissipation) effect is much more pronounced
than the dissipation (dispersion) effect, and the dissi-
pation (dispersion) effect is neglected, strongly cou-
pled degenerate dense plasmas support solitary

ξ
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Fig. 5. (Color online) Variation of shock waves with  for
different values of . The solid and dashed curves corre-
spond to the nonrelativistic and ultrarelativistic cases,
respectively.
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(shock) waves. To neglect the effect of the MIA dis-
persion in comparison with that of the dissipation, or
vice versa, one has to choose a suitable scaling
(stretching of coordinates), such as the one that we
used in our investigation of the MIA shock and solitary
waves. To investigate only solitary wave propagation in
dusty or normal plasma system, it is not important to
take viscosity term [66–68] in the momentum equa-
tion; however, for describing both solitary and shock
wave characteristics, the viscosity term is essential to
form the shock wave structures.

6. DISCUSSION

In this manuscript, we have presented a rigorous
theoretical investigation of the nonlinear propagation
of MIA shock and solitary structures in a strongly cou-
pled unmagnetized collisionless degenerate plasma
containing relativistic electron and positron fluids,
nonrelativistic inertial ions, and positively charged
static heavy elements. We have derived the Burgers
and KdV equations by using the reductive perturbation
method, and numerically analyzed their solitary and
shock profiles. It is observed that the plasma system
under consideration supports MIA shock and solitary
structures, whose basic properties are found to be sig-
nificantly modified due to the plasma particle number
densities. Our results also show how the presence of
ions of the heavier elements, C or O (instead of He),
can modify the basic features of MIA waves.

To conclude, it may be stressed here that our pres-
ent investigation would be useful to study the effects of
degenerate pressure in interstellar and space plasmas
[69–71], in particular, in stellar polytropes [72],
hadronic matter and quark−gluon plasma [73], proto-
neutron stars [74], dark-matter halos [75], etc., as well
as laboratory plasmas [3, 4] in which nonrelativistic

strongly coupled degenerate ions, both nonrelativistic
and ultrarelativistic weakly coupled degenerate elec-
tron and positron f luids, and positively charged static
heavy elements are the dominant plasma species.
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