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Abstract—In a brief review, the development of the concept of screws is outlined, which ultimately influenced
the creation of the twistor calculus.
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1. INTRODUCTION

The advancement of technology in the 19th cen-
tury motivated the development of statics and compu-
tational kinematics. The problem of composition of
forces acting along skew lines led to the appearance of
concepts of sliding vectors and screws and to the com-
prehension of a force as a screw, while the description
of a set of forces acting on a rigid body led to the con-
cept of a Grassmannian. A century later, the analysis
on Grassmannians served as a basis for creating the
twistor calculus, since the possibility to interpret the
complexified Minkowski space as a Grassmannian in
a 4-dimensional linear space over the complex number
field (as the twistor space) was revealed. The twistor
technique has been successfully used to classify instan-
tons in the Yang–Mills theory and to find some solu-
tions to the Einstein equations.

Mathematical constructions used in this develop-
ment direction of physics have not gained due atten-
tion in educational programs. In this work, an
attempt is made to give a simple and visual descrip-
tion of screws and Grassmannians. The “engineer-
ing” origin of the mentioned mathematical objects,
having a reputation for being complex and abstract, is
emphasized.

2. THE PROBLEM OF COMPOSITION 
OF FORCES AND THE SLIDNG VECTORS

The concept of a screw arose in applied mechanics
during calculations that require considering a large
number of forces acting in complex mechanisms [1, 2].
The problem of the composition of forces in statics can
be formulated as follows: it is required to find the
resultant force acting on a rigid body so that a torque
of this resultant force about any point be equal to a
sum of the respective torques.

In statics, a force acting on a rigid body is charac-
terized by a sliding vector, since it is characterized not
only by a magnitude and direction, but also by a line of
action.

The difference between fixed, free, and sliding vec-
tors is as follows: a free vector is defined with an accu-
racy of any parallel translations; a sliding vector, with
an accuracy of parallel translations along its direction;
a fixed vector is in one-to-one correspondence with a
directed segment that specifies it. More strictly, a slid-
ing vector is the class of equivalence of directed seg-
ments if the directed segments lying on the same line
are considered equivalent.

It is possible to define the operation of composition
of sliding vectors. The problem of the composition of
forces requires the introduction of a more general
mathematical concept than a vector for describing a
force acting on a rigid body.

A sum of two sliding vectors  and , acting
along the lines  and , is found as follows:
first, we add  and  as free vectors

, then we reduce the arbitrariness in
choosing an origin of the resulting vector (point ):

● If  and  intersect at the point , then
 (i.e., the line of action of the resulting vector

passes through ).

● If the added vectors are codirectional: ,
then  is selected on the segment  so that

(1)

● If the added vectors are oppositely oriented:
 and  , the point 

is chosen on the part of the ray  outside the
segment  so that Eq. (1) is satisfied.
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● Degenerate case:  and ; the
passage to the limit  leads to and

, moreover, . The
resulting force tends to zero in magnitude, its line of
action tends to an infinitely distant straight line, more-
over, its moment relative to any point in the plane tends
to the moment of a couple of forces  and . The
concept of “couple of forces” (i.e., a pure moment) in
statics is used to describe this situation [3].

● If  and  intersect, we decompose each
of the added vectors into components as follows:

, , where  and 
are parallel to ,  and  are perpendicular to

; in this case , consequently,  and
 represent a pure moment parallel to . A position

of the point  is determined by composition of parallel
vectors  and  as sliding ones: .

3. SCREWS AND GRASSMANN 
MANIFOLDS

A sliding vector  (a force) in 3-dimensional
affine space can be represented by a bivector

 in the extended 4-dimensional space :

where  is the origin of coordinates in , while
 and  are the coordinates of 

and , respectively. Plücker coordinates of a bivector

contain information about both the force vector
 and its torque about the origin of coordinates

.
Thus, we obtained a one-to-one correspondence

between sliding vectors in the 3-dimensional space
and decomposable external forms (bivectors) in the
4-dimensional space, which contain among the fac-
tors at least one vector with a nonzero -component.

Since a sum of two bivectors is not always a decom-
posable form, a sum of forces cannot always be
described by a sliding vector.

However, an indecomposable form of the kind
 (the linear independence of ,

and  results from the indecomposability) can always
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be represented as a sum , where
, , , ; in

this case,  are obtained from 
using the symplectic transformation. Moreover, the
symplectic transformation can be selected in such a
way that . The bivectors , in which

, correspond to a force couple (i.e., a
pure moment). Thus, a sum of arbitrary forces can be
resolved into a combination of a force (a sliding vec-
tor) and a pure moment (or force couple) parallel to it
(a free vector). This assertion was first proved by
L. Poinsot [3]. This combination was called a screw, a
sum of two screws is again a screw; it is possible to
define the concept of an angle between screws, a scalar
product of screws and other operations with screws.

Thus, the adequate description of an action of sev-
eral forces on a rigid body is given in terms of screws,
not vectors. In this case, the representation of screws
by 2-forms  in an extended 4-dimensional
space is of particular importance. Forces (i.e., sliding
vectors) are represented by 2-forms that satisfy the
Plücker relation:

(2)
which is the condition of orthogonality of the force
and its moment relative to the origin of coordinates.

A screw, i.e., an equivalent of the action of an arbi-
trary number of forces on a rigid body, is uniquely
given by a couple , where  is the sum of all
these forces, represented by a sliding vector with an
arbitrarily chosen line of action , while  is the
sum of the moments of all forces relative to some point

 on this line. It can be shown that the screw depends
neither on the choice of a two-parameter arbitrariness
in the choice of the line of action , nor on the choice
of the point :  depends on the point  in such a
way that the combined effect of the action of and 
on the body remains unchanged. In this case, there is
such a line of action that , this line of action
is called the axis of the screw.

In addition to screws that describe the effect of a
system of forces on a rigid body (called the force or
dynamic screws), the screws can be considered, which
describe the movement of a rigid body: kinematic
screws. A kinematic screw is a pair , where  is
the sliding vector of angular velocity, the line of action
of which is the instantaneous axis of rotation, while 
is the free vector of velocity.

The concept of screws and the screw calculus have
proven to be extremely useful in engineering mechan-
ics [4] and robotics [5] for the calculation of various
mechanisms. A detailed presentation of the theory
with examples of the practical application can be
found in [2].

∧ + ∧1 1 2 2
' '' 'f g f g

=
�

1 1
' '(0, )f f = �

1 1
' '(1, )g g

�

2 2
' '= (0, )f f = �

2 2
' '(0, )g g

1 1 2 2
'' ' ', , ,f g f g 1 1 2 2, , ,f g f g

×
�� � �
� � 12 2

'f g f ∧2 2
' 'f g

= =(0) (0)
2 2' ' 0g f

∧i j
ijp e e

− + =01 23 02 13 03 12 0,p p p p p p

� �

( , )F M
�

F

�

F
�

M

O

�

F
2

�

M 2
�

F
�

M

=
� �

M pF

Ω
�

�

v( , ) Ω
�

�

v

F PARTICLES AND NUCLEI  Vol. 54  No. 5  2023



SCREW THEORY: FROM MECHANICAL ENGINEERING TO TWISTORS 959
4. SCREWS AND TWISTORS
However, it makes sense to consider a screw which

in some sense is dual to a kinematic one: the motion of
a rigid body can also be characterized by a screw ,
where  is a sliding vector of momentum, a line of
which is such that the angular momentum relative to
the points of this axis is parallel to the momentum,
while  is a free vector of angular momentum. We will
call this screw a momentum screw. A sum of these two
screws corresponds to the momentum screw of the
composite system, a difference conforms to the rela-
tive motion. In the limiting case, when a rigid body
becomes a material point, but its angular momentum
retains a nonzero value, we can speak of a material
point with a spin. Operations with momentum screws
correspond to the description of the dynamics of a sys-
tem consisting of material points with a spin (elemen-
tary particles in the classical nonrelativistic approxi-
mation). However, the momentum screw is remark-
able for the fact that is naturally generalized for the
relativistic case: the 3-vector  is replaced by a 4-vec-
tor , while the ordinary moment  is replaced by the
form corresponding to the generators of the Lorentz
group  (by the form of the relativistic angular
momentum). As in the case of a force screw, a change
in the line of action of the momentum vector leads to
a change in the angular momentum according to the
formula:

(3)

Among the set of relativistic screws of momentum,
a 7-dimensional subset of screws is especially distin-
guished, whose momenta lie on the light cone. In this
case, the tensor quantities  and  can be expressed
in terms of two Weyl 2-spinors  and 

(4)

In this case, Eq. (3) entails the dependence of the
spinor  on :

(5)
where

A pair of spinors , satisfying Eq. (5), was
named the twistor [6, 7].

Another approach leading to the concept of
twistors arises from the description of a set of light rays
in four-dimensional space-time [8]. Using the Plücker
coordinates  to describe a light
ray in a general position, where the 4-vector  is along
the light ray, while a lightlike vector  connects the ori-
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gin of coordinates with the light ray under consider-
ation, is quite similar to the above-discussed consid-
eration of dynamic screws and momentum screws.
The lightlike vectors  and  can be expressed in
terms of 2-spinors:

(6)
The 5-dimensional manifold of light rays is natu-

rally nested into the real 8-dimensional space of

twistors , where .

The twistor concept can also be approached from
the other side, starting not from the construction of
twistor analogs of any objects in the Minkowski space,
but from the representation of points in the Minkowski
space by planes in . Namely, to each point  we put
into correspondence the matrix (  are considered
complex-valued)

and consider the plane in  spanned by the rows of
this matrix. This is how the implementation of the
Minkowski space as a large Schubert cell of the Grass-
mannian  arises; this approach is studied in
detail in [9].

5. CONCLUSIONS
The concept of Grassmannian arises quite natu-

rally when solving the problem of the composition of
forces acting on a rigid body. An arbitrary system of
these forces can be represented as a screw: a superpo-
sition of a force and a couple. The space of screws is
isomorphic to the space of external forms in , in
which the hyperplane  is a 3-dimensional space
of forces. Decomposable forms correspond to “pri-
mary” quantities: forces or pure moments (force cou-
ples). Thus, the set of forces and couples of forces
presents a Grassmannian cone whose projectivization
is the Grassmannian . This approach allows us
to consider forces and force couples as quantities of the
same nature.

The further attention to the theory of Grassmann
manifolds led to the observation that the manifold

 can be identified with the complexified com-
pactified Minkowski space, which makes it possible to
express mathematical objects in the Minkowski space
in terms of those in the original twistor space .

On the other hand, the twistor space arises in a nat-
ural way if the angular momentum and four-momen-
tum of the relativistic system, considered as a screw,
are expressed in terms of Weyl spinors: a pair of spinors
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forming the twistor has the same dependence on coor-
dinates as a couple of vectors forming the screw.

Thus, the concepts of screws and Grassmann man-
ifolds, which were formed in the epoch of a tremen-
dous upgrowth of applied mechanics, played a signifi-
cant role in the development of the theory of twistors.
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