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Abstract—The gauge symmetry is said unfree if the gauge transformation leaves the action functional
unchanged provided for the gauge parameters are constrained by the system of partial differential equations.
The best known example of this phenomenon is the volume preserving diffeomorphism being the gauge sym-
metry of unimodular gravity (UG). Various extensions of the UG are known, including the higher spin ana-
logs—all with unfree gauge symmetry. Given the distinctions of the unfree gauge symmetry from the symme-
try with unrestricted gauge parameters, the algebra of gauge transformations is essentially different. These
distinctions have consequences for all the key constituents of general gauge theory, starting from the second
Noether theorem, Hamiltonian constrained formalism, BRST complex, and quantization. In this review arti-
cle, we summarise the modifications of general gauge theory worked out in recent years to cover the case of
unfree gauge symmetry.
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1. INTRODUCTION
The common textbook definition of gauge symme-

try [1] implies that action functional is invariant under
the gauge variations of the fields

(1)

where DeWitt’s condensed notion is used. The gauge
generators  are assumed to be local differential
operators which do not vanish on-shell. The gauge
parameters  are supposed to be arbitrary functions of
space-time. This definition is a cornerstone of general
gauge theory, though the examples have been long
known of the gauge symmetry that do not fit setup (1).
The deviation from (1) is that gauge variation is unfree
in the sense that gauge parameters have to be restricted
by the system of partial differential equations (PDE) to
leave the action unchanged. One more common
assumption of the general gauge theory [1] is that any
on-shell vanishing local quantity should reduce to the
l.h.s. of field equations and their derivatives. This
assumption is also invalid in various known examples
of unfree gauge symmetry [2–5]. The on-shell trivial
quantities exist such that do not reduce to the field
equations. This general feature of unfree gauge sym-
metry has been first noticed in [6].

Let us first exemplify these general features of
unfree gauge symmetry by the case of unimodular
gravity (UG) [7–14]. For basic introduction into the

UG, and further literature, we refer to [15]. Once the
metrics are restricted in UG by the unimodularity
condition , gauge symmetry reduces to the
volume preserving diffeomorphisms:

(2)
Einstein’s equations become traceless, hence they are
not transverse. This makes  “integration constant”,
not pre-defined parameter:

(3)

(4)

On-shell relation  is not a differential conse-
quence of equations of motion (EoM’s) (3), nor  is it
a charge of any local conserved current.

Volume preserving diffeomorphisms form the sub-
algebra

(5)

The subalgebra is singled out by imposing PDE onto
the gauge parameters  rather than by explicitly sepa-
rating subset of generators.

Various generalizations are known of the UG, see
[16–21]. The most frequent starting point for modifi-
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UNFREE GAUGE SYMMETRY 951
cations is that unimodularity condition is replaced by

a more general relation, . In this case,  is
still an integration constant (in [20, 21] it is Newtonian
constant), but there are also new options to describe
“ -essence” and other phenomena.

Higher spin (HS) linearised gravities provide more
examples of unfree gauge symmetry. They include
irreducible HS traceless tensors [4],

(6)

as well as “Maxwell-like” HS, tracefull tensors [5],

(7)

Both models don’t involve auxiliary fields, unlike
Fronsdal’s action.

HS gravity models with unfree gauge symmetry
admit “global conserved quantities”, being HS analogs
of cosmological constant [22–24]. Number of these
“HS cosmological constants” is growing with spin.

For , the analog of scalar curvature is a vector.

(8)

(9)

Instead of  for UG, for  we arrive at (con-
formal) Killing eqs.

The general solution to Eqs. (8), (9) reads

(10)

where  are arbitrary “integra-
tion constants”, being the higher spin analogs of the
cosmological constant for the UG.

For , the higher Ricci’s  of the rank
, or traceless  obey (conformal) Killing ten-

sor eqs, as the differential consequences of EoM’s. The
rank  (conformal) Killing tensor is decomposed
into the product of  (conformal) Killing vectors.
Therefore, the number of the “cosmological constants”
is  for the “Maxwell-like” HS theory, and

 for the UG-like HS gravity in .
Notice that all the theories with unfree gauge sym-

metry admit alternative description by reducible gauge
symmetry with unconstrained gauge parameters [25].
Let us consider some examples of such alternative
parametrization.

For massless spin 2 in ,

(11)
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Equivalence is modulo (Hodge dualised) De Rham
cohomology. This form of the volume preserving dif-
feomorphism is a reducible gauge symmetry. Gauge
transformations of gauge parameters read

(12)

For the “Maxwell-like”  in ,

(13)

where , . Gauge symmetry is
reducible,

(14)

with gauge parameters of the following symmetry type:

For the connection between unfree and reducible
gauge symmetry in Hamiltonian formalism, see [26].

As one can see from the examples, the dynamics
with unfree gauge symmetry do not fit in the usual for-
malism of gauge systems. Below, we briefly explain the
modifications of the general gauge theory which cover
the case of unfree gauge symmetry.

2. GENERAL SETUP FOR UNFREE GAUGE 
SYMMETRY, UNFREE GAUGE ALGEBRA
Consider Lagrangian field equations

(15)

Proceeding from the observations noticed in the
examples, we assume the action  to obey modified
Noether identities [6, 27]:

(16)

where ’s are matrices of differential operators,  are
local quantities. Operator  has a finite kernel,

(17)

Relations (16), (17) replace the common definition of
gauge symmetry (1) to account for the unfree gauge
variation.

Let us explain now, the natural relation of “the
global conserved quantaties” and unfree gauge sym-
metry. Once the kernel is finite, elements of  are
parameterised by  independent constants ,

(18)

μν μνλρ μ μ
ω λ ρ ηδ = ε ∂ ω δ ω = ∂ η, .e

= 3s = 4d
μν μν νμ μν μνλρ

ν λ ρ∂ = = ≈ = ∂ ∂0, ,e e e e e

μνλρ νμλρ=e e
μνλρ μνρλ=e e

μνλρ μνλρσ μνλρσ μνλρστ
ω σ η τδ = ∂ ω δ ω = ∂ η, ,e

→ →

∂ φ ≈( ) 0.iS

φ( )S

α αΓ ∂ + Γ τ ≡ 0,i a
i aS

Γ τ

αΓ
a

αΓ =  ∈ = ∈�0 , dim .a
au u K K k

K
k ΛI

∀ ∈  = Λ = …, 1 .I
Iu K u u I k
5  2023



952 ABAKUMOVA, LYAKHOVICH
The quantities  are assumed off-shell independent,
while on-shell they reduce to elements of , because
of (16):

(19)
These relations can be resolved w.r.t. the constants:

(20)

that means  are the global conserved quantities. The
constants  are understood as modular parameters of
the fields. Specific values of ’s are defined by the
field asymptotics, or finite number of derivatives at
fixed space-time point rather than by Cauchy data.

The local -dependent quantities  vanish
on-shell, while they do not reduce to the linear com-
binations of EoM’s:

(21)

These quantities are termed completion functions.
The modified Noether identity (16) means  is

invariant under gauge transformations

(22)

provided for the gauge parameters  are restricted by
equations

(23)

With this regard,  are termed gauge parameter con-
straint operators.

For gauge symmetry with unrestricted parameters,
any on-shell trivial quantity reduces to linear combi-
nation of EoM’s, while the gauge parameters are unre-
stricted. Commutation relations between gauge trans-
formations and the higher structure relations of gauge
algebra are deduced from Noether identities (1) [1]. In
the case of unfree gauge symmetry (16), (17), any on-
shell trivial quantity reduces to linear combination of
EoM’s and completion functions . The gauge
parameters  are restricted by the equations (23).

Structure relations of unfree gauge symmetry alge-
bra follow from modified Noether identities (16), (17),
and they involve, besides gauge generators and EoM’s,
also completion functions  and gauge parameter
operators .

Proceeding from modified Noether identities, with
appropriate regularity assumptions for the generators
and completion functions [6, 27], we arrive at the
structure relations involving gauge generators and
completion functions:

(24)

(25)
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(26)

where the structure coefficient  is on-shell sym-
metric, and the structure functions  are antisymmet-
ric, , .

Relation (24) means the completion functions are
on-shell invariant under unfree gauge variation;
(25) demonstrates possible off-shell disclosure of the
composition of gauge transformations, including devia-
tion of the parameters from the equations restricting
them; and relation (26) demonstrates that equations
imposed on gauge parameters are gauge invariant under
unfree gauge variation.

3. FADDEV–POPOV (FP) ACTION
FOR UNFREE GAUGE SYMMETRY, 

BV-BRST FORMALISM
Given the distinctions of the unfree gauge symme-

try algebra from the case with unrestricted gauge
parameters, the quantisation has to be correspond-
ingly modified. Let us consider the modification at the
level of FP recipe [6].

Impose independent gauges , the FP matrix is
rectangular,

(27)

The number of gauges plus the number of equations
restricting gauge parameters equals to the number of
gauge parameters. The unfree gauge variation has to be
transverse to the gauge condition surface.

FP ghosts are introduced being restricted by the
equations

(28)

where  are operators of gauge parameter con-
straints.

Anti-ghosts are introduced for gauges and equa-
tions imposed on ghosts:

(29)

The FP path integral is adjusted to the case of unfree
gauge symmetry:

(30)

where the FP action reads
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Table 1

gh

deg

φi ξa αC φ*i ξ*a α
*C

ε 0 0 1 1 1 0

0 0 1 −1 −1 −2

0 1 0 1 1 2
Path integral (30) remains unchanged under variation
of gauge  in the action (31), see in [6]. Notice that even
for the UG, the FP receipt has been known only for spe-
cial gauge conditions [11] such that lead to a non-local
action, while (31) works well for any local gauge.

The starting point of the BV-BRST formalism
extension to the unfree gauge symmetry is the idea that
ghosts are constrained,

(32)

This equation is considered on equal footing with the
original EoM’s. The equation is non-Lagrangian, so it
has to be assigned with the antifield . For introduc-
tion of antifields in non-Lagrangian BV-BRST for-
malism, see [28].

Once Eq. (32) is ghost number one, the anti-field is
ghost number zero! All the fields, including original
ones, ghosts, and antifields  are equipped with anti-
canonical conjugate. The grading is arranged in Table 1.

Given the anti-canonical pairs, the anti-bracket
reads

(33)

where , , and

(34)

The BV action is defined by the master equation

(35)

The solution is sought for as the expansion w.r.t. reso-
lution degree

(36)

The boundary condition is defined by the first two
orders

(37)

where  is the original action, while  includes the
basic constituents of unfree gauge symmetry: com-
pletion functions , gauge generators , and opera-
tors of gauge parameter constraints . The second
order reads
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Master Eq. (35) identifies all the coefficients in  with
structure functions in structure relations (24)–(26) of
unfree gauge symmetry algebra.

BRST differential  is anti-Hamiltonian vector
field for the master action:

(39)

It can be decomposed w.r.t. resolution degree

(40)

Because of master equation, the first orders are con-
nected by the relations

(41)

where Kozul–Tate differential  is defined as

(42)

By virtue of Noether identity for unfree gauge symme-
try,  squares to zero,

(43)

One can verify that  is acyclic in strictly positive res-
olution degrees, that insures existence of solution for 
in the , Q.E.D. For more details, see [27].

Given the extension of the BV formalism to the
case of unfree symmetry, one can seek for consistent
deformations of the models of this class and systemat-
ically quantize them.

4. UNFREE GAUGE SYMMETRY 
IN HAMILTONIAN FORMALISM

Hamiltonian action for the theory with primary
constraints  reads

(44)
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954 ABAKUMOVA, LYAKHOVICH
where the role of fields is played by canonical variables
, , and Lagrange multipliers . Assume that there

are no second-class constraints. Conservation of 
leads to secondary constraints ,

(45)

where  are local differential operators,  has finite
kernel. Secondary constraints  are considered as com-
pletion functions, and gauge symmetry should be
unfree. Once the kernel of  is finite, completion
functions can be redefined by adding modular param-
eters  to make  vanishing on-shell,

(46)

Assume no tertiary constraints appear,

(47)

For more general case, see [22].
Termination of the Dirac–Bergmann algorithm

means the modified gauge identities as the EoM’s turn
out dependent with their differential consequences
and completion functions:

(48)

Corresponding unfree gauge symmetry transforma-
tions read

(49)

Constraints on gauge parameters take the form
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Direct computation confirms that action (44) is
invariant under transformations (49), (50),
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For the linearised unimodular gravity (LUG),
Hamiltonian action (44) reads

(52)

where , , , .
Conservation of primary constraints  leads to the

secondary ones,

(53)

The secondary constraints are conserved by virtue of
the primary ones:

(54)

Unfree gauge symmetry transformations read

(55)

Gauge variation of the action reads

(56)

So, gauge parameters have to obey equation

(57)

For more detailed description, see [29]. For analog in
the non-linear UG, see [30].

5. HAMILTONIAN BFV-BRST FORMALISM
To avoid technical complexities, we restrict consid-
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Table 2

gh

αC αP aC aP αλ απ αP αC

ε 1 1 1 1 0 0 1 1
1 −1 1 −1 0 0 1 −1
the gauge fermion is introduced,

(61)

and gauge-fixed Hamiltonian is defined by the usual
rule,

(62)

The grading is arranged in Table 2. For more detailed
description, see [22, 26, 31].

For the UG, the complete BRST charge reads [30]
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As one can see, the Hamiltonian does not involve ,
nor does it contain four-ghost vertices, unlike the GR
analog. The BRST charge (63) involves cosmological
constant explicitly. It is included in  in a manner
similar to inclusion of the intercept in the bosonic
string theory. As the theory is non-renormalisable,
discussion of the consequences of this specifics is
somewhat speculative. If the way was known to make
serious quantum calculations, this could mean that
the spectrum of admissible physical states is sensitive
to , and  can be even quantized, getting spectrum.
On the other hand, no quantum transitions are possi-
ble between the states with different , as it is involved
in  as a modular parameter. If one conseider an alter-
native reducible parameterisation of gauge symmetry
as it is done in [30], this would lead to inequivalent
BFV-BRST formalism, where  is not explicitly
involved in BRST charge. From this perspective, cos-
mological constant is the BRST cocycle, and quantum
transitions can be possible between the states with dif-
ferent .

CONCLUSIONS

Besides action and gauge generators, the unfree
gauge symmetry algebra has two more principal con-
stituents: operators of gauge parameter constraints
and completion functions. Noether identities are
modified involving these constituents (16), (17). This
results in modification of structure relations of gauge
algebra. Modified Noether identities result in the
“global conserved quantities” in any model with
unfree gauge symmetry. The modification is found for
the FP ansatz that accounts for the constraints
imposed on the gauge parameters. This has conse-
quences in the models, including UG. The BV-BRST
field-antifield formalism is worked out that accounts
for the unfree gauge symmetry. The unfree gauge sym-
metry transformations are described in terms of gen-
eral constrained Hamiltonian formalism. The volume
preserving diffeomorphisms are constructed in Ham-
iltonian form of UG. Hamiltonian BFV-BRST for-
malism is worked out for the systems with unfree gauge
symmetry. Being applied to the UG, it results in previ-
ously unknown ghost vertices in the complete gauge
fixed BRST invariant Hamiltonian.
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