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Abstract—A scheme for constructing quantum mechanics is described, in which the Hilbert space and linear
operators are not the primary notions of the theory. Instead, a variant of the algebraic approach is considered.
The noncommutative algebra elements (observables) and the functionals on this algebra (elementary states),
which are associated with the results of individual measurements, are used as primary notions. This scheme
makes it possible, on the one hand, to use the apparatus of the classical (Kolmogorov) probability theory, and
on the other hand, to reproduce the standard mathematical apparatus of quantum mechanics and determine
the limits to its applicability.
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INTRODUCTION
In recent decades, quantum field theory has made

significant advances. The success is associated with
the construction of non-Abelian (noncommutative)
gauge models. On their basis, the newest quark physics
arose. The Abelian gauge model, quantum electrody-
namics, has been known for a long time. The transi-
tion to non-Abelian models was a qualitative leap for-
ward in the development of quantum field theory.

At the same time, this transition did not entail any
significant revision of the basic concepts of quantum
field theory. Moreover, it did not demand any changes
in logic and mathematics.

This paper will use the idea that the transition from
classical to quantum physics is similar to the transition
from Abelian gauge models to non-Abelian ones.
Definitely, quantum physics is a qualitatively new the-
ory. However, for the successful development of quan-
tum theory, it is not at all necessary to withdraw from
the basic concepts of classical theory (formal logic,
classical probability theory, the principle of causality,
the representation of objective physical reality) or, as
philosophers say, from the classical paradigm. It is
generally believed that the classical paradigm is
incompatible with the mathematical apparatus used in
quantum mechanics. The opposite will be proved
here.

The basic concepts of the modern standard
approach to quantum mechanics are the Hilbert space
and linear operators in this space. Von Neumann for-
mulated quantum mechanics in a mathematically
clear manner on the basis of these concepts. Heisen-
berg’s matrix mechanics and Schrödinger’s wave

mechanics are specific representations of the abstract
Hilbert space method of von Neumann.

The apparatus of Hilbert space became the mathe-
matical basis for the tremendous advances achieved by
quantum mechanics. However, these successes also
have a reverse side. A definite fetishization of Hilbert
space occurred. Physicists stopped paying attention to
the fact that Hilbert space is a very specific mathemat-
ical object. It turned out to be an excellent basis for
calculating the mean values of the observed quantities
and their probability distributions. At the same time,
the idea that observables are operators in Hilbert space
is by no means self-evident.

Attempts to use the apparatus of Hilbert space to
describe single physical phenomena are far from being
so successful. The reasoning used in this case often
proves to be controversial.

So, in order to reconcile the concept of Hilbert
space with the results of individual measurements, von
Neumann resorts to a very dubious idea of the “inner
self.” The rejection of the principle of causality is also
perceived with great difficulty.

The same refers to the widely accepted concept of
the determining the influence of the observer on
quantum mechanical processes. In this case, it is no
longer very surprising that, in this respect, quantum
mechanics turned out to be a unique branch of not
only physics, but also science in general. Ideas are put
forward about the active role of consciousness in
quantum mechanics.

All this indicates that although Hilbert space is a
very useful mathematical object, its basic role is not at
all indisputable. The idea that Hilbert space and linear
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ALGEBRAIC AND STATISTICAL METHODS 707
operators should not be the primary elements of quan-
tum theory is not new. It was this idea that became the
basis of the algebraic approach to quantum theory.
The entire content of this review is devoted to the
development of this idea.

1. AXIOMS OF QUANTUM MECHANICS 
AND PHYSICAL INTUITION

The development of quantum theory produced a
revolution in physics. This statement has long become
a commonplace but has not ceased to be true for it.
Indeed, within quantum physics, it was possible to
quantitatively describe a huge number of phenomena
that could not be described in the context of classical
physics. A huge number of new technologies have
developed on the basis of quantum physics.

However, like any revolution, the quantum revolu-
tion had not only positive, but also negative conse-
quences. In physics, the substitution of concepts
somehow imperceptibly occurred. Under the words
“to explain some phenomenon” in quantum physics,
“to give a mathematical description of this phenome-
non” is usually meant.

This substitution has a completely understandable
origin. Modern quantum physics is built as an axiom-
atic theory based on the mathematical axioms of von
Neumann [1]. These axioms are very convenient for
constructing a powerful mathematical apparatus. At
the same time, their connection with our intuitive
ideas is almost completely absent. As noted by Segal
[2], “these axioms are technically simple, but intui-
tively completely unclear and seem to have arisen ad
hoc. Among the majority of theoretical physicists, the
opinion is firmly established that the physical intuition
based on classical concepts is useless in quantum the-
ory. Therefore, a theory can be built on the basis of a
more or less arbitrary set of mathematical axioms. If
only they were not internally contradictory, and their
consequences well describe quantitatively a fairly wide
range of experimental results. Thus, the replacement
of the explanation of a physical phenomenon with its
mathematical description became one of the conse-
quences of the quantum revolution.

Current standard quantum mechanics is based on
the following postulates:

(I) The state of a physical system is described by a
vector  of some Hilbert space or a statistical opera-
tor (density matrix) in this space.

(II) The observed  systems are described by self-
adjoint operators .

(III) The mean value of the observed  in the state
 is equal to the mathematical expectation

.
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Why does the Hilbert space have something to do
with the state of the physical system, why does the
operator  correspond to the observable , and
finally, why does the mean value of the observable
equal ? All of these questions are considered
irrelevant.

In the standard approach to quantum mechanics,
the slogan “Winners are not judged!” has triumphed.
The great number of excellent results obtained on the
basis of these postulates allows the irrelevant “why” to
be ignored with a safe conscience.

Nevertheless, deep down, a worm of doubt is stir-
ring. On the other hand, these excellent results cannot
be of random nature. Or maybe statements I–III need
not be accepted as primary postulates, perhaps they
follow from more fundamental provisions that are
more directly related to physics?

If this is so, then there is a hope to identify the con-
ditions under which statements I–III are true, in other
words, to establish the limits of applicability of the
standard quantum mechanics. In turn, this can help to
put an end to the debate over quantum paradoxes that
excite the physical community almost since the very
dawn of quantum mechanics.

Postulates I–III have another significant draw-
back. They break a link between quantum physics and
classical physics. In the latter, states and observables
are described using completely different mathematical
concepts. In general, the link between classical physics
and quantum physics turns out to be somewhat
strange. On the one hand, classical physics is consid-
ered the limiting case of quantum physics, i.e., classi-
cal physics is a secondary theory. On the other hand,
to formulate the main provisions of quantum physics,
an idea of the interaction of a quantum object with a
device is required, which is described using classical
physics [3]. In logic, this situation is well known and is
called a vicious circle. As a way out of this situation,
the statement is made that classical logic does not
work in quantum physics, while the special quantum
logic is required there.

Thus, quantum theory also implies a revolution in
logic. However, unlike physics, few significant posi-
tive results are observed here from such a revolution.
In addition, the quantum logic, as a kind of sequential
complete scheme, has not been created. Separate for-
mulated statements are actually a reformulation of
postulates I–III or consequences from them. No won-
der that the overwhelming majority of actual practic-
ing physicists do not refer to the statements of quan-
tum logic but prefer to appeal directly to the postu-
lates I–III.

There is another embarrassment in the standard
formulation of quantum mechanics. Quantum
mechanics is essentially a statistical theory. Therefore,
it should be based on the theory of probability. Proba-
bility theory (as formulated by Kolmogorov [4]) is cur-
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708 SLAVNOV
rently a fully formed branch of mathematics. However,
it is believed that such a theory of probability is not
suitable for quantum mechanics and a special quan-
tum theory of probability is required. In other words,
quantum theory still requires a revolution in mathe-
matics. Here too, no particular positive results have
been achieved. Only individual statements of this new
theory of probability have been formulated, which
again actually reduce to postulates (see, e.g., [5]).

Thus, a gap between quantum theory and mathe-
matics is observed; the latter remains in the traditional
mainstream of classical logic and classical probability
theory. It follows from what has been said that it would
be highly desirable to construct a theoretical-mathe-
matical scheme that would be suitable for both classi-
cal physics and quantum physics. It would be very
good if rules of the game in this scheme, or, as the phi-
losophers say, the paradigm, are classical. The classi-
cal paradigm here will imply, first of all, classical for-
mal logic, and the idea of the presence of a causal rela-
tionship between both physical phenomena and
logical statements. Further, it assumes the existence of
physical realities, which are carriers of the causes of
physical phenomena. In addition, it assumes that
probabilistic judgments obey the classical Kolmog-
orov probability theory.

It is usually believed that all of these provisions are
incompatible with the mathematical scheme that is
accepted in quantum mechanics. An attempt is made
here to prove the opposite. In this case, we will not rely
on postulates I–III, but we use the algebraic approach
[6–8]. Within this approach, it turns out to be possible
to formulate axioms, which, firstly, are more funda-
mental than postulates I–III, and, secondly, are intu-
itively much more understandable [9–11].

Here, however, a certain psychological barrier will
have to be overcome. The point is that the Hilbert
space apparatus has become standard in quantum
mechanics. Therefore, it seems to be intuitively under-
standable. However, this is the habit of a certain math-
ematical apparatus, and not a physical intuition. In
contrast to this, the apparatus of the theory of algebras
is much less familiar to most physicists. Therefore,
statements using the language of algebra theory seem
to be more complex than statements using the lan-
guage of Hilbert space theory. Although, as a rule,
algebraic statements are more elementary. To help to
overcome this psychological barrier, the next section
will provide basic information from the theory of
algebras.

2. ELEMENTS OF THE THEORY 
OF ALGEBRAS

Definitions and statements are borrowed from
monographs [6, 12–15].

Definition 1. A set  is called a complex (real) lin-
ear space if:

L

PHYSICS O
(a) For any complex (real) number  and any ele-
ment , an element  is defined.

(b) For any two elements , an element
 is defined.

(c) Operations (a) and (b) have the usual properties
of multiplication and addition, respectively.

Definition 2. A complex (real) linear space  is
called a complex (real) algebra  if for any elements

, a multiplication operation is defined
that has the following properties:

(a) .

(b) , 
.

(c) .
Definition 3. An algebra  is called associative if

 holds for any .
Definition 4. An algebra  is called commutative if

holds for any .
Examples:
(a) A set of all real continuous bounded functions

of one variable is a real algebra.
(b) A set of all complex continuous bounded func-

tions of one variable is a complex algebra.
(c) A set of bounded linear operators of the Hilbert

space is a complex algebra.
(d) A set of mutually commuting bounded Hermi-

tian linear operators of the Hilbert space is a real alge-
bra.

(e) A set of all bounded Hermitian linear operators
in the Hilbert space is not an algebra.

Definition 5. A mapping  of a complex
algebra  onto itself  is called an involu-
tion if for any complex number  and for all ,
the following is true:

(a) .

(b) .

(c) .

(d) .
Examples:
(a) If  is the set of all complex continuous

bounded functions of one variable, then the operation
of complex conjugation is an involution.

(b) If  is the set of all bounded linear operators of
Hilbert space, then the operation of Hermitian conju-
gation is an involution.

Definition 6. A complex algebra equipped with an
involution operation is called an involutive algebra.

α
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∈ˆ ˆ,U V L

+ ∈ˆ ˆU V L

L

A

∈ˆ ˆ ˆ, ,U V W A

∈ˆ ˆUV A

+ +ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) =U V W UW VW + =ˆ ˆ ˆ( )U V W
+ˆ ˆ ˆ ˆUV UW

α α αˆ ˆ ˆ ˆ ˆ ˆ( ) = ( ) = ( )UV U V U V

A

ˆ ˆ ˆ ˆ ˆ ˆ( ) = ( )U VW UV W ∈ˆ ˆ ˆ, ,U V W A

A

ˆ ˆ ˆ ˆ=UV VU ∈ˆ ˆ,U V A

→ˆ ˆ*U U
A ∈ˆ ˆ( , * )U U A

α ∈ˆ ˆ,U V A

+ +ˆ ˆ ˆ ˆ( )* = * *U V U V

α αˆ ˆ( )* = * *U U
ˆ ˆ ˆ ˆ( )* = * *UV V U

ˆ ˆ** =U U

A

A

F PARTICLES AND NUCLEI  Vol. 53  No. 3  2022



ALGEBRAIC AND STATISTICAL METHODS 709
Remark. In real commutative algebra, the involu-
tion operation can be defined as the identity transfor-
mation.

Definition 7. If  ( ), then the element
 is called Hermitian.

Definition 8. An element  is called a unit ele-
ment of the algebra if  is true for any

.
Statement 1. Any algebra either contains the unit

element or can be supplemented with an element that
has the properties of the unit element.

Further, algebras will be considered in which the
unit element is included.

Definition 9. An element  is called the
inverse of an element  if 

Definition 10. The set of all such numbers , for
which the element  has no inverse in the alge-
bra , is called the spectrum  of an element 
in the algebra  ( ).

Definition 11. The spectral radius of an element 
is called the number  .

Definition 12. A subset  of an algebra  is called
a subalgebra if  is an algebra with the same definition
of the addition and multiplication operations.

Definition 13. Let  be a real commutative subal-
gebra of algebra . The subalgebra  is called a max-
imal real commutative subalgebra if it is not a subalge-
bra of any other similar subalgebra of algebra .

In the general case, the spectrum  of an ele-
ment  in the subalgebra  may not coincide with the
spectrum  of the same element in the algebra

. However, the following assertion is correct.
Statement 2. If  is a maximal real commutative

subalgebra of the algebra  and , then
.

Definition 14. A set  of elements of an algebra  is
called its left ideal if:

(a) .
(b)  is the linear subsplace of .

(c) From ,  it follows that .
A right ideal is defined similarly. A set of elements

of the algebra  that is simultaneously both a left and
a right ideal is called a two-sided ideal.

Definition 15. Let  be a two-sided ideal of the
algebra . Elements  are called to be equivalent
with respect to  if . The set of all mutually

ˆ ˆ* =U U ∈Û A

Û
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equivalent elements is called the residue class of the
algebra .

Definition 16. The set of all residue classes of the
algebra  is called the quotient algebra and is denoted

.

Statement 3. If in the set , the operations of
the multiplication of classes by a number, the addition
of classes and their multiplication are introduced as
the corresponding actions on representatives of these
classes, then the set  will acquire the structure of
an algebra, i.e., a quotient algebra is an algebra.

Definition 17. An involutive algebra is called nor-
malized if in it for each element  a norm  is
defined which is a nonnegative number that satisfies
the conditions:

(a) ;

(b) ;

(c) ;

(d) ;

(e) if , then .

Definition 18. The value  for which all the con-
ditions of the previous definition are satisfied, except
for item (e), is called a seminorm.

Definition 19. A sequence  of elements of a nor-
malized space is called fundamental if for any  a
number  can be specified such that for 
and , it is true that .

Definition 20. A normalized space, in which every
fundamental sequence converges in norm to some ele-
ment of this space, is called complete.

Definition 21. A complete normalized space is
called a Banach space.

Statement 4. Any normalized space can be com-
pleted to a Banach space.

Definition 22. An involutive associative algebra,
which is a Banach space (Banach algebra), in which
the norm satisfies the additional condition

, is called a C*-algebra.

Definition 23. A mapping  from an involu-
tive algebra   to an involutive algebra 

 is called a homomorphism of the algebra 
into the algebra , if from , , it fol-

lows , , ,
.

Under a homomorphism, one element of the alge-
bra  can correspond to several elements of the alge-
bra .
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710 SLAVNOV
Definition 24. If a homomorphism is  one-to-one
mapping, then it is called an isomorphism.

Definition 25. An isomorphic mapping of an alge-
bra onto itself is called an automorphism.

Definition 26. A homomorphism of a commutative
associative real (complex) algebra  into the set of real
(complex) numbers is called a character of this algebra.

Definition 27. A homomorphism of an algebra 
into a set of linear operators of some Hilbert space 
is called a representation of this algebra.

Definition 28. A mapping from a normalized alge-
bra  to a normalized algebra  is called isometric if

 follows from .

Definition 29. The mapping  of the alge-
bra  into the set of complex numbers is called a linear
functional if , 

. Here, , while  and  are
complex numbers.

Definition 30. A linear functional  on an involu-
tive algebra  is called positive if  for each

.

Statement 5. If  is a positive functional, then

(a) ,

(b) .
Statement 6. A positive functional on a Banach

algebra is continuous.

Statement 7. If   is a character of a
commutative associative algebra , then

(a) ,

(b) ,

(c) .
Thus, a character is the positive functional on the

algebra .

Statement 8. If, in addition, the algebra  is a Ban-
ach one, while  is the set of all its characters,
then

(a) ;

(b) If , then  for some
.

Definition 31. An element  of an algebra  is
called a projector if , .

Definition 32. The projector  is called mini-
mal, if from  it follows that either

, or .
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Statement 9. If  is an algebra of linear bounded
operators in the Hilbert space , then a minimal pro-
jector is a projector on the one-dimensional subspace
of the space .

Definition 33. We will say that a sequence  of
elements of the algebra  converges in the weak
topology to an element  if for any linear bounded
positive functional , it follows that .

Definition 34. A set  of elements of a Banach alge-
bra  is called a system of generators of this algebra if
the smallest closed subalgebra containing  coincides
with .

Definition 35. The Boolean algebra of a set  is a
collection of subsets of the set , in which the follow-
ing algebraic operations are defined:

(a) The operation of logical addition—the union of
subsets.

(b) The operation of logical multiplication—the
intersection of subsets.

(c) The operation of logical negation—the comple-
ment of a subset to a set .

Definition 36. A Boolean algebra is called closed
under some algebraic operation if this operation
results in an element of the initial algebra.

Definition 37. A Boolean algebra is called a -alge-
bra if:

(a) It contains the set  itself and the empty set .
(b) It contains the complement to  of each subset

included in the algebra.
(c) It is closed under a countable number of unions

and intersections of subsets.
Definition 38. The set , in which a definite -alge-

bra is chosen, is called a measurable space.
In the future, references to definitions and state-

ments will be made according to the following tem-
plate: (D.35.b)—Definition 35, item (b); (S.7.c)—
Statement 7, item (c).

OBSERVABLES, 
MEASUREMENTS, STATES

Let us now turn to physical problems.
When studying physical systems, a basic concept is

the “observable.” Heuristically, the observable is such
an attribute of the physical system under study, for
which a numerical value can be obtained using a defi-
nite measurement procedure.

Remark. Further, we will assume that a definite
system of units is fixed, and therefore all observables
can be considered dimensionless.

The concept of an observable is basic in both clas-
sical and quantum physics. However, traditionally, in
the mathematical apparatus of classical and quantum
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ALGEBRAIC AND STATISTICAL METHODS 711
physics, an observable corresponds to different math-
ematical objects. Let us try to conduct the unification.
To this end, it is necessary to single out the really sig-
nificant mathematical characteristics of the observ-
ables, separating them from the characteristics that are
usually attributed to the observables for the sake of con-
venience in constructing a mathematical apparatus.

Remark. Often, for the system under study, the val-
ues of some observables are known in advance and
remain unchanged. For example, when studying the
interaction of electrons with photons, the masses of
electrons and photons and the charge of an electron
are known a priori. It is convenient to exclude such
quantities from a set of observables and consider their
values as parameters included in the definition of the
physical system under study.

In the measurement process, the physical system is
affected by the measuring device. By the nature of this
impact, measurements can be divided into two types:
reproducible and nonreproducible. Reproducible
measurements are characterized by the fact that,
despite the perturbation that the system experiences
during each measurement, a repeated measurement of
the same observable by the same or a different device
gives the same result. It is assumed that in the interval
between measurements the system was not subjected
to external influence, and we can interpret the change
in the values of observables due to the free evolution.

Of particular interest is the issue of reproducibility
when we measure several observables for the same
physical system. Suppose we, e.g., measure the
observable , then the observable , then the observ-
able  again (perhaps with a device different from the
original one) and, finally, the observable . If the
results of repeated measurements for each observable
coincide with the results of primary measurements,
then we will call these measurements compatible. If
for the observables  and  there are devices that
allow compatible measurements to be made, then we
will call these observables compatible or simultane-
ously measurable.

Experience shows that all observables of classical
physical systems are compatible. In the quantum case,
in contrast, there are both compatible and incompati-
ble observables.

In the standard formalism of quantum mechanics,
this fact is qualified as an integral part of the “principle
of complementarity” [16]. We will consider it simply
as evidence that to measure two incompatible observ-
ables, the instruments are required which are incom-
patible with each other [17].

Let us denote a set of all observables by , and let
its maximum subset of compatible observables be
denoted by . An index  distinguishes one maxi-
mum subset of compatible observables from another.
In turn, a set of index values  will be denoted by . It

B̂ Ĉ
B̂

Ĉ

B̂ Ĉ

+A

ξO ξ

ξ Ξ
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is clear that for a classical system the set  consists of
a single element. For a quantum system, this set com-
prises more than one element. Later we will see that in
this case the set  is infinite and even has the cardinal-
ity of the continuum. The same observable can simul-
taneously belong to different subsets .

Experience shows that for any two compatible
observables  and  there is a third observable ,
which has the following properties. First, it is compat-
ible with both  and . Second, the results of simulta-
neous measurements of the observables , , and 
(for one physical system) satisfy the relation

(1)
Here and below, the measurement results are

denoted by the same symbols as the observables, but
without a “hat.”

In reality, a simultaneity is not very significant. It is
enough that the measurements of these observables
are compatible. However, in what follows, for brevity
in such a situation, we will say that the observables are
measured simultaneously.

Relation (1) is always satisfied, regardless of spe-
cific measurement results. This allows us to consider
that the observables in themselves are linked by the
similar relation

Hence, it is possible to equip the set  with the
operation of addition. The operations of multiplica-
tion of elements and multiplication by a real number
are introduced in a similar way. The experience shows
that each subset  has properties of a real associative
commutative algebra. Thus, the characteristic mathe-
matical property of observables is that they can be
considered as elements of some algebra. So far, we
have justified this statement only for compatible
observables. We will see later that it can be extended to
incompatible observables as well.

If for a fixed physical system, using compatible
measurements, we compare each observable with the
measurement result

then we define the functional on the algebra . By
virtue of the definition of algebraic operations in ,
this functional will be one of the characters of the alge-
bra  (see (D.26)).

In any real measurement, for any observable, the
finite value is always obtained. This fact can be
reversed and only those observables  are considered
physical (i.e., fixed in a real experiment) for which

(2)
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B̂ Ĉ D̂

B̂ Ĉ
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In what follows, we will see that a boundedness of
functionals  is not an insurmountable obstacle to
consideration in the theory of observables that are not
bounded. In the standard formalism of quantum
mechanics, these observables are often considered.

As a result of the previous reasoning, we formulate
four postulates.

Postulate 1. The set  of compatible observables
can be equipped with the structure of a real associative
commutative algebra. Conversely, if the observables
belong to the same real associative commutative alge-
bra, then they are compatible.

Postulate 2. For a classical system, all observables
are compatible.

Postulate 3. The results of simultaneous measure-
ment of observables belonging to the algebra  are
described by a real bounded (in the sense of inequal-
ity (2)) functional , which is a character of the
algebra .

Postulate 4. Observables of a physical system are
Hermitian elements of some algebra .

With each region  of the four-dimensional space-
time , we associate a set of observables for which
numerical values can be obtained by making measure-
ments in the region . These observables are called
(see [6] and [7]) local (localized in the domain ).
Strictly speaking, all observables should be considered
local, but global (quasi-local) observables as a rule are
used in theory considering definite limits of sequences
of local observables.

What is a physical system is more or less intuitively
clear. However, below it will be more convenient for us
to go to the formal level and by the term “physical sys-
tem” to mean the totality of two sets:  (system local-
ization region in the space ) and  (the set of
its observables). This will make it possible to transfer
naturally from the physical system to its physical sub-

system: , where  and

. In this case, we will not assume that
the subsystems are necessarily isolated from each
other. In the general case, systems and subsystems can
be open.

In the algebraic approach, points of the space 
are not considered as observables. Accordingly, the
space  is not assumed to be linear. This is very essen-
tial for the consistency between the quantization proce-
dure and the general theory of relativity. The point is
that quantum observables are elements of a linear space,
while in general relativity the space is nonlinear.

In the algebraic approach, it is accepted:

Postulate 5. The space  is a smooth manifold.
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A characteristic property of a smooth manifold is
that in the vicinity of each point of the manifold, a
local Euclidean coordinate system can be introduced.

Let us now discuss the “state of a physical system”
concept. We will start the discussion with the classical
system. In this case, the state of the system is under-
stood as some attribute of the physical system, which
unambiguously determines the result of measuring all
observables. Since the time of Newton, the principle
of locality has been adopted in physics, which, in par-
ticular, assumes that the state of a localized physical
system is determined by some internal characteristics
of this system and by characteristics of the external
field acting on the system which belong to the localiza-
tion region of the physical system. According to the
classical paradigm, there must be some local reality
that determines this state.

Mathematically, a state is usually specified using a
point in the phase space. It is assumed that the system
dynamics is given. Within the approach developed
here, this way of specifying the state is not convenient.
First, it is difficult to transfer it to the quantum case.
Second, it is rigidly connected with a definite way of
specifying the dynamics. In particular, it assumes the
introduction of canonically conjugate variables. How-
ever, it is easy to understand that this way of specifying
the state is just a specific version of defining some real
functional on the algebra of observables, which is the
character of this algebra. If one does not get involved
in any specific option, then the state of a classical sys-
tem can be defined as a character of the algebra of
observables of this system.

Let us now turn to the quantum case. The set  of
quantum observables cannot be equipped with the
structure of an associative commutative algebra.
Therefore, a direct transfer of the definition of a state
from a classical system to a quantum one is impossible.
However, a set  can be considered as a collection of
subsets , each of which has the structure of
a real associative commutative algebra. We can con-
sider each subset  as a set of observables correspond-
ing to the classical subsystem of a quantum system. Of
course, this classical subsystem will not be isolated from
the rest of the quantum system. However, isolation is
not a prerequisite for separating a subsystem.

As before, we can describe the state of each such
classical subsystem mathematically with the help of a
functional  that is given on an algebra  and is a
character of this algebra. In this regard, we introduce a
new concept—an elementary state.

Definition 39. Let us call as an elementary state of a
physical system the collection  ( ) of
functionals , each of which is a definite character of
the corresponding algebra . In turn, the sets  are
the maximal subsets of the set  which have a struc-
ture of a real associative commutative algebra.
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The term “state” is also justified in the quantum
case. Indeed, in each individual measurement, and
even in a set of compatible measurements, we can at
most find the values of some collection of compatible
observables. All these observables belong to a definite
single algebra . Therefore, their values are deter-
mined by the corresponding functional . By specifi-
cation of an elementary state , all these functionals
are fixed. Hence, the results of all possible measure-
ments are fixed. In the standard apparatus of quantum
mechanics, another mathematical object is called a
state. Therefore, for  we use the term “ele-
mentary state.” The standard formulation of quantum
mechanics does not use this term. In the case of a clas-
sical system, the concepts of elementary state and state
are identical.

We conclude this stage of reasoning with the fol-
lowing postulate.

Postulate 6. The result of each individual experiment
for measuring the observables of a physical system is
determined by the elementary state of this system.

In the case of a classical system, this postulate does
not give anything new. On the contrary, in the quan-
tum case this postulate is completely unusual. More-
over, there is much “evidence” that nothing of the sort
can happen. In our approach, this postulate will
occupy a central place.

Note that no additional assumptions about the
properties of the functionals  are made. In particu-
lar, it is not assumed that

(3)

Definitely, Eq. (3) can hold for some functionals .
We will say that the functional  is stable on the observ-
able  if Eq. (3) is satisfied for all allowed  and .

On the other hand, it seems very natural to require
that Eq. (3) be valid. In this regard, the possibility of
violating this equality needs a special comment.

Experimentally, the values of the observables man-
ifest themselves as the response of the measuring
device to the action of the system under study. In prin-
ciple, the responses of different instruments to the
same action may be different.

The simplest classical example is the measurement
of a speed. Instruments moving in different ways for
the same system under study will record different
speed values. In similar cases, it is usually said that the
value of many observables may depend on the chosen
coordinate system. Physically, the selection of a defi-
nite coordinate system is a choice of a definite collec-
tion of measuring instruments. In the general case, the
instruments can differ from each other not only in
their spatiotemporal characteristics.

From the viewpoint of an experimenter, the depen-
dence of the measurement result on the characteristics
of the measuring instrument is highly undesirable.
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Therefore, the experimenter seeks to unify the
response (indications) of various instruments. The
instrument calibration procedure serves for this unifi-
cation.

Schematically, the procedure is as follows. As a tem-
plate, a measuring instrument is taken, which performs
a reproducible measurement of some observable .
With the help of this device, the observable of some
test physical system is measured. A definite value  is
obtained. By definition of a reproducible measure-
ment, a repeated measurement of the same observable
by an instrument to be calibrated should give the same
value. Only an instrument that repeatedly withstands
this test deserves the name “measuring instrument.”
The calibration is destined to exclude the dependence
of the measurement result on the uncontrolled effect
of the instrument, in particular, on the uncontrolled
state of the instrument.

However, for the single parameter, the value of
which can be determined by the instrument, the cali-
bration is powerless. This parameter is . Let us
explain what relation the parameter  bears to the
measuring instrument. Each device, depending on its
design (settings), is intended either to measure one
observable  or to simultaneously measure a group of
observables. This observable (a group of observables)
belongs to some algebra . We will assume that the
instrument belongs to the type , if, first, it is designed
to measure the observable (observables) from the sub-
set , and second, the result of measuring the
observable  (a group of compatible observ-
ables) is  (a group of corresponding
results).

It is impossible to find out with the help of calibra-
tion whether the measurement result depends on the
parameter . Indeed, the first stage of calibration is a
reproducible measurement, after which the state of the
test system becomes stable on the observed . There-
fore, the result of the subsequent measurement of this
observable in any case will not depend on the param-
eter . In any other way of checking Eq. (3), we must
subject the same system under test to two measure-
ments: once with an instrument of type , another
time with type  . These are two different
instruments, so we cannot perform both measure-
ments at the same time.

Let us first make a measurement using an instru-
ment of type  and get the result . If this
measurement is irreproducible, then after it, the ele-
mentary state  of the system under test will change in
an uncontrolled way. Therefore, the result of the sec-
ond measurement (with a device of type ) will in no
way be related to the result of the first measurement. If
the first measurement is reproducible, then after it, the
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714 SLAVNOV
elementary state ϕ will be replaced by ϕ'. Since, after a
reproducible measurement, the elementary state
becomes stable on the corresponding observable, the
relation  must hold for the state 
regardless of whether equality (3) is satisfied or not.
Thus, in any case, we cannot check equality (3).

Of course, the above reasoning does not guarantee
that a dependence of the measurement results on the
parameter  exists. It only demonstrates a possibility
of this dependence. Therefore, any conclusions that
assume the validity of equality (3) do not have a pro-
bative value. It should be emphasized that the classifi-
cation of instruments by types  is a classification
according to the nature of interaction between the
instrument and the system under study. Therefore, it is
determined not only by properties of the instrument,
but also by the system under study (by the set , by
algebras ).

The measurement result dependence on the type of
the device can be considered as an implementation
and concretization of Bohr’s concepts [18] of the mea-
surement result dependence on a general context of
the experiment. At the same time, the dependence
variant proposed here contradicts neither the principle
of causality nor the notion of local reality existence.
However, local reality is not the definite value of each
observable for the physical system under consider-
ation, but a definite cause that produces some reaction
of a measuring instrument of the definite type.

In the general case, a value of observable cannot be
considered as an objective characteristic of the system
under study. It may depend on characteristics of the
measuring instrument. On the other hand, nothing
prevents us from considering the elementary state as
this characteristic (physical reality).

While measuring by a classical instrument, the ele-
mentary state of a quantum system cannot be fixed
unambiguously. Indeed, since instruments designed
to measure incompatible observables are incompati-
ble, in one experiment we can measure observables
that belong to the single algebra . As a result, we will
determine only the values of the functional . For the
rest, the elementary state  will remain undefined. A
repeated measurement using a different type of instru-
ment will give new information but will uncontrollably
perturb the elementary state that has arisen after the
first measurement. Therefore, the information
obtained in the first measurement will become useless.

Figuratively speaking, an elementary state is a
holographic image of the system under study. With the
help of classical instruments, we can look at it from
only one side and get a f lat image. In this case, the
measurement will perturb the system and change its
original holographic image. Therefore, if we subse-
quently look at the system under study from the other
side, we will see a f lat part of the new holographic
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image. Thus, we will never be able to see an integral
holographic image.

Using the concept of an elementary state, one can
take a fresh look at Everett’s idea [19] about the exis-
tence of many parallel worlds. The original idea was
that quantum systems are located simultaneously in
many parallel worlds, while a classical observer hap-
pens to be in one of these worlds. Therefore, he sees
the version of the quantum system that is presented in
his world. The idea as such looks fantastic.

In contrast, the notion that an elementary state is
analogous to a holographic picture looks quite plausi-
ble. On the other hand, the idea of an elementary state
leads to approximately the same consequences as the
idea of the existence of many worlds. However, there is
a significant difference. In Everett’s picture, the ran-
domness inherent in a quantum measurement is asso-
ciated with the randomness of the entry of an observer
into one or another world. In the picture we are con-
sidering, a specific measurement result does not
unambiguously fix the elementary state of a physical
system. Therefore, we actually do not give a descrip-
tion of an individual system but describe some charac-
teristics common to the whole ensemble of quantum
systems. In this connection, it is useful to introduce a
notion of -equivalence. Two elementary states

 and  are called -equivalent if
 holds in them. The rest  and  can be in

any relationships. For the class of -equivalent ele-
mentary states, we introduce the notation . The
most that can be learned about an elementary state 
is that it belongs to some equivalence class: .

After that, we can make the following predictions.
If instruments of the -type are used, then for the
observable , the result  will be
obtained. If the elementary state  is stable on observ-
ables , then this result will be obtained when
using instruments of any type . Of course,  should
be such that . Otherwise, the instrument sim-
ply will not be designed for measuring this observable.
Nothing definite can be said about the results of mea-
suring the observables , since these results will
be different for different elementary states .
The most we can hope for is that we will be able to pre-
dict the probability of obtaining one or another result.

In the standard mathematical apparatus of quan-
tum mechanics, a quantum state, fixed by the definite
values of a complete set of mutually commuting
observables, possesses the mentioned physical proper-
ties. This allows us to give the following definition of a
quantum state in the proposed approach.
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Definition 40. A quantum state  is a class 

of -equivalent elementary states that are stable on
observables .

In fact, this definition of a quantum state is conve-
nient only for systems in which there are no identical
particles. The fact is that the measuring instrument
cannot determine which of the identical particles has
hit it. Therefore, it is convenient to somewhat general-
ize the equivalence concept. An elementary state  is
said to be weakly -equivalent to an elementary state

 if the restriction  of the elementary state  to the
algebra  coincides with the restriction  of the ele-
mentary state  to the algebra . It is assumed here
that the algebra  is obtained from the algebra  by
replacing the observables of one of the identical parti-
cles by the corresponding observables of the other par-
ticle. For systems with identical particles in the quan-
tum state definition, an equivalence should be
replaced by a weak equivalence. In what follows, we
will assume that, if necessary, this replacement has
been made.

If we can consider an elementary state as an objec-
tive attribute of a separate physical system, then a
quantum state (an equivalence class of elementary
states) should be considered an attribute of an ensem-
ble of physical systems. This ensemble will be called a
quantum ensemble. In principle, the equivalence class
of elementary states can also be associated with a sep-
arate physical system. To this end, it suffices to con-
sider that a separate elementary state is an attribute of
this system at a fixed point of time, and to compare
different elementary states to different points of time.

In this case, time will play a role different from that
which it plays in Newtonian mechanics. In the latter,
time marks the sequence of states that the system
under study goes through in the course of its evolution.
Moreover, in this sequence, the time arrow is clearly
traced: the cause always precedes the consequence. In
the quantum state mentioned in the previous para-
graph, time marks the various elementary states that
make up the quantum ensemble. All probabilistic
characteristics of this ensemble may depend on the
ensemble form but cannot depend on the sequence in
which the markers of individual elements of the
ensemble are located. This can explain why, in con-
trast to Newton’s equations, the equations describing
the dynamics of quantum systems are invariant under
time reversal.

4. PROBABILITY THEORY 
AND QUANTUM ENSEMBLE

Most of the quantum theory predictions are prob-
abilistic in nature. Therefore, the quantum theory
must be based on the theory of probability. At present,
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Kolmogorov probability theory  the most mathe-
matically developed [4]. It is generally believed that a
special quantum probability theory is required for
quantum systems. Here we will defend the thesis that
the classical Kolmogorov probability theory is quite
sufficient in the quantum case, we only need to con-
sider the peculiarity of quantum measurements [20].

Kolmogorov’s theory of probability (see, e.g., [4],
[21]) is based on the so-called probability space

.
The first component  is a set (space) of elemen-

tary events. The physical meaning of elementary
events is not specifically stipulated, but it is believed
that they are mutually exclusive, and in each test one
and only one elementary event occurs. In our case, an
elementary state  can serve as an elementary event.

There is no candidate for this role in the standard
mathematical apparatus of quantum mechanics. A
quantum state obviously cannot play the role of an ele-
mentary event, since two nonorthogonal quantum
states are not mutually exclusive. Therefore, indeed,
while remaining within the standard formalism of
quantum mechanics, one cannot use Kolmogorov’s
probability theory. The situation is similar with classi-
cal formal logic.

In addition to the elementary event, the concept of
“random event” or simply “event” is also introduced
in the probability theory. Each event  is identified
with some subset of the set . It is considered that an
event occurred if one of the elementary events belong-
ing to this subset ( ) was implemented. It is
assumed that in each trial we can determine whether
an event has occurred or not. This is not required for
elementary events.

Collections of subsets of a set  (including the set
 itself and the empty set ) are provided with a

structure of Boolean algebras. Accordingly, the sec-
ond component of the probability space is some Bool-
ean -algebra . Thus, the probability space is
equipped with the structure of a measurable space.

Finally, the third component of the probability
space is the probability measure . This is a mapping
of a set  into a set of real numbers (each  is put
in correspondence with a number ) that satisfies
the following conditions: (a)  for all

, ; (b)  for any

countable collection of disjoint subsets .
Note that the probability measure is defined only

for events included in the algebra . For elementary
events, the probability, generally speaking, is not
defined.

Let us illustrate the last statement using a simple
example. Let the space of elementary events be a set of
rational numbers lying between zero and one. A test is
the guessing of one of these numbers, guessed by the
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716 SLAVNOV
interlocutor. Obviously, the probability of guessing
any of the numbers cannot have any numerical value
other than zero. However, it also cannot be equal to
zero. Indeed, the probability that the hidden number
lies between zero and one is equal to one. The set of
rational numbers is countable. Therefore, according to
the properties of the probability measure, the unit
would have to be equal to a countable sum of zeros. No
contradiction arises if we choose as  the set of all
intervals (and their unions) and assign to each interval
a probability equal to its length.

Thus, measurability is a very essential property of a
probability space. Further, we will see that in the
quantum case the role of measurability is even more
important. In addition, the measurability property
carries not only a mathematical, but also a very signif-
icant physical load.

Let us now discuss the specifics of applying the
basic principles of probability theory to quantum mea-
surements. Most quantum measurements are associ-
ated with finding the probability distributions of par-
ticular observed quantities. Using the definite measur-
ing equipment, we can obtain this distribution for
some set of compatible observables. From the view-
point of probability theory, by choosing the definite
measuring equipment, we choose the definite -alge-
bra .

For greater clarity, the further discussion will be
carried out on a specific example. Let our system
under study be a particle that can move in a fixed
plane. Suppose that first we want to find the probabil-
ity distribution of the -th coordinate of this particle.
To do this, we must break the plane of motion into
strips perpendicular to the axis . The width of the
strips must be consistent with the sensitivity of the
measuring instrument used. These strips will play a
role of elements  of the -algebra . With the
help of a measuring device, we will be able to deter-
mine the probability of a particle falling into the defi-
nite strip. A similar experiment can be carried out to
find the probability distribution along the axis . In
this case, the strips will be denoted by  while the

-algebra, by .
We can conduct a more detailed study and find the

probability distribution of particle coordinates along
both axes at the same time. To this end, it is necessary
to divide the plane of motion into rectangles, obtained
by the intersections of various strips: .

The rectangles  will be elements of the -algebra
. An algebra  is said to be generated by the

algebras  and . So far, there is no difference in
the classical and quantum considerations.

Now we want to know the probability distribution
not only for coordinates, but also for momenta. If we
are interested in probability distributions over coordi-
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nates and separately over momenta, then the experi-
ment can be set according to the previous scheme.
Only the strips will have to be traced in the plane of
momenta.

However, the situation will change radically if we
want to find a probability distribution that is compati-
ble with respect to the th coordinate and the -th
projection of the momentum. Formally, purely math-
ematically (see, e.g., [21]), we can construct a -alge-
bra , which is generated by the algebras  and

. The rectangles (and their possible combina-
tions) in the two-dimensional plane  of the four-
dimensional phase space will be the elements of this
algebra. In the classical case, we can organize an
experiment to find the probability of a particle hitting
this rectangle. However, in the quantum case, this
experiment is impossible in principle because the mea-
suring instruments designed to determine the th
coordinate and the -th projection of the momentum
are incompatible. This means that no probability mea-
sure can be assigned to this rectangle. In other words,
for an event that implies a particle falling into this rect-
angle, there is no concept of “probability” at all.

The general conclusion from the above example
should be formulated as follows. Not every mathemat-
ically possible (and admissible in the classical case) -
algebra is admissible as an -algebra of a probability
space in the quantum case.

Thus, an element of a measurable space in an
experiment  is matched by a pair: the object
under study and the definite type of measuring equip-
ment, which makes it possible to record an event cor-
responding to a definite collection of compatible
observed quantities, i.e., belonging to the same algebra

. Therefore, the -algebra  can also be indexed by
the parameter : .

A specific feature of a quantum experiment
requires a careful consideration in defining one of the
basic concepts of probability theory—a real random
variable. Typically, a real random variable is defined as
a mapping from the space  of elementary events to
the extended real line . However, this
definition does not consider the specific features of a
quantum experiment, in which the result may depend
on the type of a measuring device. Therefore, we will
adopt the following more detailed definition.

Definition 41. A real random variable is a mapping
of the measurable space  of elementary events
into the extended real line.

When applied to the observable , it will look as
follows
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Let us call as a quantum ensemble a set of identical
(i.e., described by a single set  of observables and a
fixed set  of commutative algebras  ( ))
physical systems that are in a definite quantum state. A
mixture of quantum ensembles, into which each of
these ensembles enters with a multiplicity 
( ) is called a mixed quantum ensem-
ble. An experiment testifies in favor of the following
postulate.

Postulate 7. A quantum (in the general case,
mixed) ensemble can be equipped with the structure of
a probability space. As a result of a reproducible mea-
surement, the quantum ensemble transforms to a
quantum ensemble, generally speaking, with a differ-
ent probability distribution of observables.

Consider an ensemble of physical systems that are
in a quantum state  . Accordingly, we will

consider the equivalence class  as the space 
of elementary events . Let a value of the observable

 be measured in the experiment and an instru-
ment of the type  be used. Denote by  the
corresponding measurable space. Let  be the proba-
bility measure on this space, i.e.,  is a probability
of the event .

Let us assume that the event  occurs in the
experiment if the recorded observable value  is no
greater than . Denote the probability of this event as

. By knowing the probabili-
ties , with the help of appropriate summations
and integrations, we can find the probability ;
the distribution  is marginal for probabilities

 (see, e.g., [22]).

An observable  may belong not only to an algebra
, but also to another maximal algebra . There-

fore, to determine the probability of an event , we
can use an instrument of the type . In this case, we
could get a different value for the probability: .
However, the experience shows that probabilities do
not depend on the measuring instrument used. There-
fore, we must accept one more postulate.

Postulate 8. Let the observable ,
then the probability of detecting an event  for a sys-
tem in a quantum state  does not depend on the

type of instrument used, i.e., 
.

Therefore, despite the fact that an elementary state
 is a collection of functionals , we have the right to

use the notation  for the probability of
an event .
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Let us introduce in addition the notation

and consider an ensemble of quantum systems that are
in a quantum state . According to probability the-

ory (see, e.g., [21]), the expectation of an observable 
in this state is given by the formula

(4)

On the other hand, Khinchin’s theorem is valid
(see the law of large numbers, e.g., in [21]):

Theorem. Let   be a
sequence of mutually independent randomly chosen
values having the same probability distribution with a
finite mathematical expectation . Then, for

, the quantity  converges in
probability to . Thus,

(5)

Equation (5) defines the functional (quantum
mean) on the set . We denoted this functional by
the symbol  and will also call it a quantum state.
It immediately follows from Eq. (5) and the properties
of the functionals  that  is linear on each
subset  of compatible observables. In other words,
the restriction of the functional  to each subset

 is a linear functional. The linearity property of the
functional  can be extended to the entire set .
However, the set  should be equipped beforehand
with a structure of the real linear space.

Since each element  of the set  belongs to some
linear subset , then for it the operation of multipli-
cation by a real number is defined. With the operation
of adding elements  and , the situation is more
complicated, since these elements can belong to dif-
ferent linear subsets  and . However, the entire
totality of quantum experiments indicates that for any

 and  belonging to , there is an element 
such that for each quantum state  it is true that

By definition, we can consider this element  as
the sum of elements  and , i.e., . With
these considerations in mind, we accept the following
postulate.

Postulate 9. A set  can be equipped with a struc-
ture of the real linear space, and the functionals 
are linear on this space.
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1
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It means that

also in the case when  and  belong to different sub-
sets  and .

The set  can be equipped with the structure of a
real algebra. To this end, the product of elements 
and  should be determined by the formula

(6)

This product is obviously commutative, but in the
general case it is not associative (see (D.3)), i.e., the
associator  is not
necessarily equal to zero. It can be shown (see [6]) that
for the product  to be distributive (see (D.2.b,c))
it is necessary and sufficient that the associator van-
ishes for any  and , and for any real number .
Under this condition, a real algebra with product (6) is
called a real Jordan algebra [6, 23].

In principle, we can try to build a quantum theory
on the basis of this algebra. However, only a few suc-
cesses have been achieved along this path (see [6]). A
direction based on complex associative algebra, for
which the Jordan algebra is in some sense a real part,
proved to be much more successful.

All Jordan algebras are divided into two classes: special
and exceptional. The special Jordan algebra is defined as
follows. Let there be a real or complex algebra  with
the “ordinary” product .
With respect to this product, the algebra is associative,
but not necessarily commutative. In the set , we can
introduce a “symmetrized” product

(7)

Relative to this product, the set  will be a Jordan
algebra. Any Jordan algebra that is isomorphic to this
algebra (or to its subalgebra) is called special. Other-
wise, the Jordan algebra is called exceptional. Not
every Jordan algebra is special. Therefore, for the Jor-
dan algebra to be special, its elements must satisfy
definite identities, which, in principle, could be veri-
fied experimentally. However, at present, the list of
these identities is not known. On the other hand, in
any of the quantum models considered so far, a set of
observables can be equipped with the structure of a
special Jordan algebra.

We will remain within this tradition and accept the
following hypothesis.

Hypothesis. The Jordan algebra of observables is
special and real.

In what follows, the elements of an algebra  will
be called dynamic quantities. The set  can be
equipped with a structure of the Jordan algebra by

η η ηΨϕ + Ψϕ = Ψϕ +ˆ ˆˆ ˆ( ) ( ) ( )B C B C

B̂ Ĉ
ξO ξ'O
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B̂
Ĉ

( )= + − −�

2 2 2ˆ ˆ ˆˆ ˆ ˆ1 2 ( ) .B C B C B C
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B̂ Ĉ α

A

∈ ∈ ∈ˆ ˆ ˆ ˆ ˆ ˆ( , , )UV U V UVA A A

A

= +�
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A

A
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defining the product of its elements using Eq. (7). It
follows from the hypothesis that dynamic quantities
can be added and multiplied using the usual rules of
addition and multiplication (except for commutation).
This seems so obvious that it is almost never specifi-
cally mentioned. Nevertheless, we called the corre-
sponding statements a hypothesis, not a postulate,
because we cannot indicate an experimental way to
verify the necessity of this statement.

It should be emphasized that in the standard
approach to quantum mechanics, the statement of the
hypothesis is taken in a much stronger form. It
assumes that the observables are self-adjoint operators
in some Hilbert space. This assumption can hardly be
considered self-evident.

Further, a physical system will be considered to be
given if the algebra  of its dynamical quantities is
given. By virtue of the first postulate, the algebras 
of compatible observables are the maximal real com-
mutative subalgebras of the algebra  that belong to .
This, in turn, implies that compatible observables are
mutually commuting elements of the algebra , while
incompatible observables do not commute with each
other.

It was mentioned earlier that in the quantum case
the set  of subalgebras  has the cardinality
of the continuum. Indeed, even if the algebra  is an
algebra with two noncommuting Hermitian generators

 and , then a commutative algebra  with a gen-
erator  is an algebra of type 
for any real .

5. -ALGEBRA AND HILBERT SPACE

Any element  of the algebra  is uniquely repre-
sented as , where . Therefore,
the functional  can be uniquely extended to a

linear functional on the algebra : 

.

We define the seminorm of an element  by the
equality

(8)

where  is the spectral radius of an element
 in the algebra .

This definition is acceptable. Firstly, 
owing to the property (S.7.c). Further, by virtue of the

A
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η ηϕ ϕΨ + Ψ ˆˆ( ) ( )B i C

Û
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definition of a probability measure for any , we
have

(9)

For  such that ,
 is true. Therefore, for this ,

(10)

where  is the spectral radius in . Since the
subalgebra  is maximal, then (see (S.2))

. Hence, taking into account
equalities (8), (9), and (10), we obtain

(11)

Since  is a linear positive functional, then the
Cauchy–Bunyakovsky–Schwarz inequality is valid
(see (S.5.b)):

(12)

This implies that for , the axioms of the semi-
norm of an element  hold (see, e.g., [6]):

Consider now the set  of elements  of the alge-

bra  for which . From inequality (12) it fol-
lows that  is a two-sided ideal of . Therefore, we
can form a quotient algebra . In the algebra

, from , it follows that . Therefore, in
the algebra , equality (8) defines not a seminorm,
but a norm. On the other hand, we can verify that the
algebra carries the same physical information as .

For this purpose, we consider two observables 
and , which simultaneously either belong or do not
belong to each of the subalgebras . Let  and  sat-
isfy the additional condition . Then from
equality (8), it follows that

(13)

for all  that contain these observables. Equality (13)
means that no experiment can distinguish these
observables. Therefore, from the phenomenological
viewpoint, these observables should be identified.
Mathematically, these observables are -ideal equiv-

η∈ Ξ

η

ϕη

ξ

ϕ
ϕ∈ ϕ

ξ
ξ ϕ

Ψ = ϕ ϕ

≤ ϕ =

 ˆ ˆ*
{ }

ˆ ˆ ˆ ˆ( * ) ( )[ * ]( )

ˆ ˆ ˆ ˆ( * ) ( * ).sup sup

U UU U P d U U

U U r U U

η∈ Ξ η∈ˆ ˆ*U U O

ηϕ ηΨ = ϕˆ ˆ ˆ ˆ( * ) ( * )U U U U η

η
η η

ϕ η η
ϕ ϕ
Ψ = ϕ =ˆ ˆ ˆ ˆ ˆ ˆ( * ) ( * ) ( * ),sup supU U U U r U U

η
ˆ ˆ( * )r U U ηO

ηO

η =ˆ ˆ ˆ ˆ( * ) ( * )r U U r U U

ξ
ξ ξ

ξ ϕ
ξ ϕ ξ ϕ

= ϕ = Ψ
2ˆ ˆ ˆ ˆ ˆsup ( * ) ( * ).sup supsupU U U U U

ξϕΨ ⋅( )

ξ ξ ξ ξϕ ϕ ϕ ϕΨ Ψ ≤ Ψ Ψˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( * ) ( * ) ( * ) ( * ).U V V U U U V V

Û
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Ĉ

ξO B̂ Ĉ
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alent. When passing from algebra  to algebra , all
equivalent observables are identified mathematically.
To deal directly with -type algebra, we can accept
the following postulate.

Postulate 10. If  then

.
Postulate 10 is of a technical nature. At the same

time, from the phenomenology viewpoint, it does not
impose any additional restrictions. It only simplifies
the mathematical description of physical systems.
Further, we will assume that the requirement of Pos-
tulate 10 is satisfied, and therefore equality (11) deter-
mines the norm of the element .

It follows from the multiplicativity of the functional
 that  . This means that

. Therefore, if we complete the algebra 
with respect to the norm , then  turns into a

-algebra [15]. Thus, the algebra of quantum
dynamic quantities can be equipped with the -alge-
bra structure. In the standard algebraic approach to
quantum theory, this statement is taken as a starting
axiom. Mathematically, this is, of course, very conve-
nient. However, from the phenomenological view-
point, the necessity of this axiom remains completely
unclear.

From a technical viewpoint, it is convenient to
replace Postulates 7–10 with a single postulate about
the quantum average:

Postulate (QM). The probability distribution on
the equivalence class  is such that the right-hand
side of Eq. (14) does not depend on  and defines a
linear functional  on the algebra :

(14)

where

is the probability measure on the class .

In most of our previous constructions, the elemen-
tary state  occupied a central place. The ele-
mentary state has many properties that are usually
attributed to the so-called hidden parameters [24]. In
the standard approach to quantum mechanics since
the time of von Neumann [1], the opinion has been
firmly rooted that there are no hidden parameters in
quantum mechanics and cannot be. Therefore, it is
necessary to make sure that the elementary states can
be introduced in a consistent way.

A 'A
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The assignment of  physical system involves the
definition of an algebra  of dynamic quantities. As
we have just seen, this algebra must have the structure
of a -algebra. By defining the algebra , we thereby
define a set of its maximal commutative associative
subalgebras . Each of these subalgebras is a Banach
algebra.

It is clear that to construct any elementary state
 it is necessary and sufficient to construct all

its components , while each  is a character of the
subalgebra . Each functional  can be constructed
as follows. In the subalgebra , we arbitrarily choose
a system  of independent generators. Bearing in
mind statement (S.8), we associate each element of
the set  with one of the points of its spectrum.
This is how we define the functional  on the set

. By linearity and multiplicativity, the func-
tional  is uniquely extended to the entire subalgebra

. By sorting out for each element of the set 
all points of its spectrum, we construct all the func-
tionals . For another , we build functionals accord-
ing to the same recipe. This procedure is definitely
consistent if for different  functionals are constructed
independently of each other. If we impose condition
(3), then the procedure may turn out to be, and indeed
turns out to be contradictory in some cases.

However, it is always possible to construct an ele-
mentary state  that is stable on all observables
belonging to any single subalgebra . To this end, it
suffices to start constructing the functional  precisely
from this subalgebra, using the procedure just
described above. On another subalgebra , we con-
struct a functional  as follows. Let 
and  be independent generators of the subalge-
bra . Let  be the complement of these gen-
erators to the set of generators of the subalgebra . If

, then we assume . If

, then we construct  as a mapping of

the element  to one of the points of its spectrum. The
functional  is extended to the remaining elements of
the subalgebra  by linearity and multiplicativity.

Thus, we see that for the elementary state there is
no problem of existence. Von Neumann’s proof [1] of
the impossibility of the existence of hidden parameters
for elementary states  fails for the following reason.
Von Neumann assumed that the state is described by a
linear functional on the set of observables. An elemen-
tary state  can be considered as a definite functional
on the set of observables. However, this functional is

a
A
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linear only on subsets ; moreover, this functional is
multivalued.

In this proof, von Neumann also has shown that
the linearity of the functional describing the system
state is incompatible with the assumption of causality
at the microscopic level. From this, he concluded that
there is no causality at the microlevel, while at the
macro level it appears due to averaging over a large
number of noncausal events. The approach proposed
here allows for a much more plausible assertion. At the
microscopic level, the causality is present, while there
is no linearity of the state describing an individual
quantum system. The linearity of the quantum state
arises due to averaging over the quantum ensemble.

Note that the appearance of the property of linear-
ity in averaging is a common phenomenon in proba-
bility theory. Therefore, the principles of linearity and
superposition, which are usually considered in quan-
tum mechanics as fundamental physical principles, in
reality are not of that kind. These properties are just
mathematical artifacts that owe their origin to the
averaging procedure. In contrast, the causality is
indeed a physical principle that is widely used in phys-
ics in circumvention of the “official ban.” It is the ele-
mentary state that can claim the role of a mathemati-
cal image of reality, which is the physical carrier of
causality.

The mentioned property of superposition owes its
origin to the following remarkable feature of the -
algebra. Any -algebra is isometrically isomorphic to
a subalgebra of linear bounded operators in an appro-
priate Hilbert space [15]. This will allow us in the future
to use the typical apparatus of Hilbert space, in which
the superposition property arises in a natural way.

Remark. The standard approach to quantum
mechanics usually assumes that all self-adjoint
bounded operators in a Hilbert space are observables.
This assumption is not satisfied in models with super
selection rules [25]. The algebraic approach (includ-
ing the one considered here) dispenses with this
assumption.

In the algebraic approach, a state is defined as a
positive linear functional  on the set of observables
that satisfies the normalization condition . In
the standard approach to quantum mechanics, a state
is usually given either by a vector in Hilbert space or,
in more general case, by a density matrix. However,
not every interesting (from physical viewpoint) state
can be specified using the density matrix (see [6]).
Therefore, the algebraic definition is more general.
Often a state defined in this way is called an algebraic
state. Since  (see (S.7.b)), the functional

 defined by Eq. (4) satisfies the normalization
condition. Therefore, the quantum state introduced
here is an algebraic state. Since a linear positive func-
tional defined on the set of observables is uniquely

ξO

*C
*C

Ψ
Ψ =ˆ( ) 1I

ϕ =ˆ( ) 1I

ηϕΨ ˆ( )B
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extended to the algebra  dynamical quantities, then
further we will call a normalized linear positive func-
tional, defined on the algebra , as an algebraic state.

Definition 42. An algebraic state  is called pure if
the equality

(15)

where  and  are two states, is possible only in the
case .

It is easy to verify that the quantum state ,
which we introduced in definition (D.40) is an alge-
braic pure state. Indeed, suppose that the functional

 can be represented in the form (15). We narrow
down Eq. (15) to the subalgebra . On this subalge-
bra, i.e., for all, , it is true that .
However, a functional  is a character of the subal-
gebra . Every character of a commutative algebra is
a pure state (see [14]). Therefore, it follows from the
equality  that for

,  is true
and, in particular,

It follows from this that when ,

Therefore, if , then almost definitely
 for . This means that almost

definitely the elementary states  form a class of
equivalence . From this, it follows that

for all . It is similar for , i.e., .
The procedure that implements a relation between

a -algebra and a Hilbert space is the so-called
canonical Gelfand–Naimark–Segal (GNS) con-
struction (see, e.g., [6, 13]). Briefly, it is as follows.

Let there be some -algebra  and a linear posi-
tive functional  on this algebra. We will consider
two elements ,  equivalent if for any ,
the equality  is valid. Denote by

 the equivalence class of an element  and con-
sider the set  of all classes of equivalence in .
Turn the set  into a linear space by setting

of
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. The scalar product in
 is defined by the formula

(16)

This scalar product generates the norm 
 in the algebra . The completion in

this norm turns  into a Hilbert space. Each ele-
ment  of the algebra  is uniquely represented in this
space by a linear operator  acting according to
the rule

(17)
Thus, the GNS construction allows constructing a

representation of any -algebra. Let us consider a
GNS construction in which the functional ,
appearing in Eq. (4), acts as the functional that gener-
ates the representation. Let  be the equivalence
class of the identity element , then according to
Eqs. (16) and (17), we have

(18)
This is nothing but the Born postulate [26]. Thus,

the GNS construction allows the standard mathemat-
ical apparatus of quantum mechanics to be repro-
duced.

At the same time, at this point there is a significant
difference between the proposed approach to quan-
tum mechanics and the standard one. Born’s postulate
is sufficient for quantum mechanical calculations, but
its necessity is not clear. In contrast, in our case,
Eq. (18) is a consequence of phenomenologically nec-
essary postulates.

We will return to the Born postulate, but for now let
us recall what representations there are.

The representation may be exact or approximate.
In the exact representation, different elements of the
algebra are associated with different operators in the
Hilbert space.

Definition 43. A representation  is called
exact, if from , it follows .

A representation may be null.

Definition 44. A representation  is called
null if  for any .

Definition 45. A representation  is a
direct orthogonal sum  of two
(or more) representations if operators  act in a
Hilbert space  according to the rule

. Here 
 , while  and  are the rep-

resentation operators in the spaces  and , respec-
tively.
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Definition 46. A representation  is called
degenerate if it can be expressed as a direct orthogonal
sum of representations, among which at least one
is zero.

Definition 47. A representation  is called
irreducible if it cannot be expressed as a direct orthog-
onal sum of two other representations.

Definition 48. A representation , acting
in a Hilbert space , is called cyclic if in , there exists
a vector  (called cyclic) such that the set of vectors

 is everywhere dense in .

It is equivalent to the fact that, using the 
construction, it is possible to construct a basis in .

It is obvious that the representation constructed
using the GNS construction is cyclic and nondegener-
ate. It can be shown that this representation is irreduc-
ible if and only if the state  is pure. In the general
case, this representation is not exact. However, there
exists a so-called universal representation

. This representation is the direct sum
 of the representations. Each repre-

sentation  is built according to the GNS
construction with the state . The summation is car-
ried out over all algebraic states .

Any nondegenerate representation of the -alge-
bra is isomorphic to some subrepresentation of the
universal representation. The universal representation
is exact. This means that the algebra of elements  is
isomorphic to the algebra of operators . In other
words, the -algebra  is isomorphic to some subal-
gebra of bounded linear operators in a Hilbert space

. To establish any algebraic relation between the ,
it suffices to establish the corresponding relations
between the operators that implement any exact repre-
sentation of it. The existence of a universal representa-
tion guarantees that at least one this representation
exists.

It has already been said earlier that the quantum
state introduced here is a pure algebraic state. Now we
show how functionals can be constructed that have the
required properties. Consider first the case where the
commutative algebra  that defines the quantum
state contains a one-dimensional projector . Most
clearly, a one-dimensional projector can be defined as
an element of an algebra, which in any exact represen-
tation corresponds to the projector operator onto a
one-dimensional Hilbert subspace.

Remark. In the standard approach to quantum
mechanics, it is typically assumed that any bounded
self-adjoint operator corresponds to some observable.
In this case, any maximal commutative subalgebra has
one-dimensional projectors. Conversely, any one-
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dimensional projector belongs  some commutative
subalgebra. In this situation, the case under consider-
ation is a general one.

So let . Consider an exact representation of
the algebra . In the Hilbert space of this representation,
there exists a vector  such that 

 . Consider the expression
, i.e.,

(19)

for any .

Equation (19) is a relation between elements of the
algebra . Therefore, it is determined only by the
structure of the algebra  and does not depend on its
specific representation. In particular, the functional

 does not depend on this representation. It is easy
to verify that  is an algebraic state on the algebra

. The linearity of this functional follows from the
relation

The positivity follows from the relation
. Since the operators 

and  are positive, then . Finally, the
normalization follows from the relation

. Moreover, a restriction of a
functional  to a subalgebra is a character of this
subalgebra. Indeed, let  and , then

Thus, the functional  has a property of linearity
and multiplicativity. In addition,  is positive and
satisfies the normalization condition. These are
exactly the conditions that must be satisfied for a func-
tional describing a quantum state. Equality (19) is
purely algebraic. Therefore, a value of the functional

 depends only on  (the quantum state) and on
 as an element of the algebra , but not on any par-

ticular commutative subalgebra (  may belong to sev-
eral such subalgebras).

Let us now show that the inverse statement is true.
If a quantum state such that , corre-

sponds to the functional , then .
Indeed, from Eq. (4) it follows

(20)

to
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From the Cauchy–Bunyakovsky–Schwarz
inequality (see Eq. (12)) we obtain

Whence, making use of Eq. (20), we have

(21)

Making the change  in (21), we
obtain

(22)

Using Eq. (19) on the right-hand side of (22), we
arrive at the equality

(23)

Let us now pass to the case when the subalgebra 
does not contain one-dimensional projectors. In this
situation, we should consider an exact representation
of the algebra . Let  be the Hilbert space of this
representation, while  be the set of all bounded
linear operators in . We can assume that  and 
are subalgebras of the algebra .

Let  be the maximum real commutative subal-
gebra of the algebra  such that . Con-
sider the set of all projectors belonging to . These
projectors are mutually commuting self-adjoint oper-
ators in  with discrete spectra. In the space , there
exists an orthonormal basis consisting of the eigenvec-
tors of these operators. Let  be the set of projectors
onto such basis vectors. All these projectors are one-
dimensional, they belong to , but in the case
under consideration they do not belong to . Each of
the projectors  defines a linear functional 
on : . The restriction of this func-
tional to the algebra  has all the properties necessary
to describe the corresponding pure quantum state.

6. PROBLEM OF PHYSICAL REALITY
In the famous Einstein–Podolsky–Rosen (EPR)

work [28], the authors have formulated the principles
which a complete physical theory should satisfy: (a)
every element of physical reality should have a copy in
a complete physical theory; (b) if, without any pertur-
bation of the system, we can predict the value of a
physical quantity with certainty (i.e., with probability
one), then it means that there is an element of reality
corresponding to this quantity.

The standard quantum mechanics did not accept
this thesis. A single experiment does not have an ade-
quate copy in the mathematical apparatus of standard
quantum mechanics. Moreover, the opinion is firmly
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established that such a copy cannot exist and there is
no objective physical reality that determines the result
of a single experiment.

Quite weighty arguments are presented in favor of
this opinion. Perhaps the best-known argument is
based on Bell’s inequality [29, 30]. Bell derived his
inequality by reasoning in terms of the EPR thesis.
After Bell, many variants of similar inequalities were
proposed. Here, we consider the variant proposed in
[31]. This variant is usually abbreviated as CHSH.

Let a particle with spin 0 split into two particles 
and  with spins 1/2. These particles scatter over a
long distance and are recorded by devices  and ,
respectively. For a particle , the device  measures
the spin projection on the direction , while for the
particle , the device  measures the spin projection
on the direction . The corresponding observables will
be denoted by  and , while the measurement
results, by  and .

Let us assume that a state of the initial particle is
characterized by some physical reality, which can be
tagged with the parameter . We will use the same
parameter for describing the physical realities that
characterize the decay products. Accordingly, the
results of measuring the observables ,  can be con-
sidered as functions of ,  of the parameter .
Let the distribution of events with respect to the
parameter  be characterized by a probability measure

 satisfying the standard conditions

We introduce the correlation function :

(24)

and consider the combination

(25)

For any directions  and 

(26)

Therefore

(27)

Due to Eqs. (26) for any , one of the expressions

(28)

A
B

aD bD
A aD

a
B bD

b

âA b̂B
aA bB

ν
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724 SLAVNOV
is equal to zero and the other to one. Note that the
same value  appears in both expressions.

Considering the property of expressions (28),
inequality (27) yields the Bell inequality (CHSH)

(29)

In standard quantum mechanics, the correlation
function is easily calculated, the result is

where  is the angle between the directions  and .
For directions , , , ,
we obtain

which contradicts inequality (29).
The experimental results are consistent with quan-

tum mechanical calculations and do not confirm
Bell’s inequality. Typically, these results are consid-
ered as evidence that for a quantum mechanical sys-
tem there is no physical reality that would predeter-
mine the results of the measurement.

However, from the point of view of current proba-
bility theory, the above derivation of Bell’s inequality is
too naive. This derivation assumes that there is a proba-
bility distribution with respect to the parameter . In its
meaning, this parameter marks an elementary event.
And as noted earlier (see Section 4), it is far from
always possible to attribute any probability to an ele-
mentary event. Before speaking about probability, it is
necessary to equip the considered set of elementary
events with the structure of a measurable space. In
this regard, we will try to repeat the derivation of
Bell’s inequality, using the elementary state  as a
parameter .

According to the condition of the problem, the ini-
tial particle is in a definite quantum state. This means
that we should consider the equivalence class  as
the space  of elementary events. In other words,
if the observable , then for all  the
value of this observable will be the same. The elemen-
tary states  differ from each other due to val-

ues of the observables . It is easy to make sure
that, due to this difference, the set  will have
the cardinality of the continuum. To verify this, let us
consider some subalgebra . Since the subal-
gebras  and  are maximal, then there exists at
least one observable  such that  and .
The spectrum of this observable cannot consist of a
single point. If this point  is only one, then a spectral
radius of the element  is equal to zero:

. However, for the -algebra,
. It means that .
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This implies that there are at least two elementary
states  with different values of the observable

. The same reasoning can be repeated for another
subalgebra . Since the set of these subalge-
bras  has the cardinality of the continuum, then the
set of subalgebras distinct from each other 
will also have the cardinality of the continuum.

Let us now turn to Eq. (24) for the correlation
function. We need correlation functions for four com-
binations of observables: , , , and .
Of interest is the variant when the directions , , ,
and  in pairs are not parallel to each other. In this
case, the listed observables in pairs are incompatible
with each other. Therefore, in order to experimentally
find the correlation functions, we must conduct four
separate series of experiments. In the real case, each of
these series consists of a finite number of experiments,
in the ideal case, of a countable number.

Thus, in the experiment we are dealing not with a
single space  of elementary events, but with four
separate random samples from it. We denote them

, , , and . Since even in the ideal case
these samples are countable, and the space  has
the cardinality of the continuum, then the probability
that there are common elements in these samples is
zero. In addition, for these selections to become mea-
surable spaces, it is necessary to choose the corre-
sponding -algebras , , , and .
These subalgebras are not only different, but, as
explained in Section 4, they cannot be subalgebras of the
same -algebra to which some probability measure cor-
responds. In other words, each sample should have its
own probability measure: , , , and .

Thus, Eq. (24) will now look as follows

while Eq. (25), as

(30)

Although the same symbol  is used in all four
terms on the right-hand side of Eq. (30), it must be
borne in mind that the sets of elementary states corre-
sponding to  will be different. They are elements of
different -algebras. Moreover, the probability that
they have common elements is equal to zero. There-
fore, first, it is impossible in Eq. (30), as it is done on
the right side of Eq. (25), to combine the integrals
under the modulus sign into one integral. Second, it is
impossible to form pairs similar to those involved in
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Eq. (28). In turn, this does not allow inequality (29) to
be proven. Thus, if we associate a concept of physical
reality with an elementary state, then the violation of
Bell’s inequality in no way proves the inconsistency of
this concept.

Another argument against the use of the concept of
physical reality in quantum physics is the so-called
Kochen–Specker forbidding theorem [32]. The
meaning of this theorem is as follows. Let us consider
as a physical system a particle with a spin of unity. Let
the directions , ,  be mutually orthogonal. Then
the observables  that describe squares of spin
projections on the corresponding directions commute
with each other. Therefore, they are compatible and
can be measured simultaneously. Let us assume that
there is some physical reality that uniquely predeter-
mines the result of measurement in any direction.
When measuring in one of the directions, one should
get zero, while in the other two directions, unity must
be obtained. We fix one of the latter directions and
consider two directions (different from the previous
ones) which are normal to it and to each other. In one
of these directions, the measurement result should be
zero, in the other direction, it will be unity. We fix the
first direction and repeat the whole procedure from
the beginning. After a finite number of such steps, we
can arrive at the previously considered direction. In
this case, it turns out that if initially in this direction a
value of the spin projection squared was equal to zero,
then, when returning to this direction, the same
square should be equal to unity.

From this contradiction, it is concluded that there
cannot be a physical reality that predetermines the
measurement result. However, this reasoning com-
pletely ignores the problem of measurability. Mean-
while, here we have to deal with two triplets of direc-
tions:  and . Within each of the triples, all
directions are mutually orthogonal, but in different
triples, there are nonorthogonal directions. Therefore,
the observables  and  belong to dif-
ferent commutative subalgebras of the algebra . Cor-
respondingly, the devices that perform measurements
that are compatible within each of the triples belong to
different types. These instruments do not necessarily
have to yield the same result when measuring the
observable . This was tacitly assumed in the proof of
the theorem. We recall that the elementary state does
not uniquely fix the values of all observables. It
unambiguously fixes the readings of instruments of a
definite type. For different types, these readings may
be different.

Thus, within the proposed approach, the Kochen–
Specker theorem does not exclude the possibility of
existence of an objective physical reality associated
with an elementary state.

x y z
2 2 2ˆ ˆ ˆ, ,x y zS S S
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7. PARADOXES
Critics of the standard formalism of quantum

mechanics have pointed to a large number of situa-
tions in which quantum mechanical reasoning leads to
paradoxical results. In this section, we will discuss
only two, perhaps the most frequently mentioned,
paradoxes. These are the Einstein–Podolsky–Rosen
(EPR) paradox and the Schrödinger cat paradox. It
must be said at once that the most orthodox support-
ers of the standard formalism assert that there are no
paradoxes. It is only necessary to correctly use the for-
mulas of quantum mechanics. Therefore, before dis-
cussing specific paradoxes, let us fix our own position.
It is as follows.

The formulas of the standard formalism of quan-
tum mechanics are definitely valid in the case of con-
sidering quantum ensembles. They correctly describe
the average values of the observed quantities and the
probabilities of events also in those physical models
that are proposed by the authors of the paradoxes.
Therefore, it is of interest to discuss only single phe-
nomena. There are two possible positions here. See
review [33] on this matter. First, we can assume that
single phenomena lie outside the competence of
quantum mechanics. In this case, the subject of the
dispute disappears. However, single phenomena defi-
nitely exist. Therefore, the question arises about the
completeness of the quantum mechanical description.
Second, we can assume that for single phenomena,
quantum mechanics should predict only probabilities,
and the completeness of the description is limited to
the prediction of the corresponding probabilities. In
this case, it is necessary to consider that the probabil-
ity is some self-dependent essence of this single phe-
nomenon.

This is not the case in current mathematical prob-
ability theory. Recall that before introducing the con-
cept of probability measure, the concept of the space
of elementary events is introduced. Accordingly, a sin-
gle phenomenon (elementary event) is considered as
an element of the definite set (ensemble). In this case,
the same single phenomenon can be considered as an
element of different sets. Depending on this set, differ-
ent probabilities will correspond to the same phenom-
enon, or no probability will correspond to it.

The orthodox supporters of the standard formalism
reject this viewpoint and prefer to consider a probabil-
ity as the fundamental undefined essence of a single
phenomenon, which in the mathematical apparatus of
quantum mechanics is matched by either a Hilbert space
vector or a density matrix. Formally, paradoxes can be
avoided in this way, but the physical essence of the phe-
nomena remains beyond the scope of discussion.

After these preliminary comments, we proceed
directly to the discussion of paradoxes. Let us start
with the EPR paradox. In the original work [28], this
paradox was considered using the example of measur-
ing the position and momentum. A simpler physical
3  2022
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model was proposed by Bohm [34]. There, the same
problem is discussed using the example of measure-
ments of spin projections on different directions. Here
we will focus on the variant proposed by Bohm. In this
case, the same physical system is considered as in the
discussion of Bell’s inequality.

Let a particle with spin 0 decay into two identical
particles  and  with spins 1/2, which f ly apart over
a large distance. The spin state of this system, accord-
ing to formulas of the standard approach, is described
by the state vector

(31)

where  and  are the eigenvectors of opera-
tors of spin projection on the  axis with eigenvalues

 and . This is a so-called entangled state. In
this state, neither the particle  nor  has a definite
value of spin projection onto the  axis. The spin state
of each of the particles can be described by the density
matrix. For example, for a particle , the density
matrix is written as follows:

This matrix means that with the probability 1/2 the
particle has a spin projection  and with the same
probability, a projection .

At the moment when the particles  and  are in
space-like regions, we measure the spin projection
onto the  axis for the particle . Let the result be

. Then, according to the postulate about the
quantum state collapse (the projection principle), the
state  is instantly replaced by the state

(32)

where  is the projector of the form

(33)

Here  is the identity operator in the state space of
the particle .

Substituting (33) into (33), we obtain
. The particle density matrix corre-

sponding to this state has the form .
This means that in the subsequent measurement of the
spin projection onto the  axis for the particle , we
will obtain the value  with the probability one.
This perfectly describes the experimental situation.
Thus, as a recipe for getting the correct result, the pro-
jection principle works very well. However, we would
like to understand what physical process ensures the
effectiveness of this recipe.

Two variants of the process immediately arise. The
first one is as follows. At the decay instant, the parti-
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cles acquired definite spin projections on the  axis (of
the opposite sign), but before measuring the projec-
tion of the particle , we do not know which projec-
tions these are. By measuring the projection of the
particle , we automatically came to know the projec-
tion of the particle . However, this explanation is not
consistent with the general concept of the standard
approach to quantum mechanics.

The point is that the same quantum state  can
be presented in the form

where the designations are the same as in Eq. (31),
only instead of projections onto the  axis, projections
onto the  axis appear. Now we can repeat all the argu-
ments given after Eq. (31), replacing the  axis in them
with the  axis. As a result, we obtain that at the
moment of decay, the particles must acquire definite
values of the spin projections on the  axis. However,
the observables corresponding to the spin projections
on the  and  axes are mutually incompatible and,
according to the standard approach, cannot simulta-
neously have definite values.

The second variant of the process looks as follows.
After the decay, particles  and  did not acquire defi-
nite values of spin projections on any axis. As a result
of measuring the projection on the definite axis, they
acquired these values of projections on this axis. It is
not difficult to believe that this process is possible for
a particle  that has interacted with the measuring
instrument. However, how this measurement could
affect a particle  located in a space-like region rela-
tive to the measuring instrument cannot be imagined
without violating the principles of the theory of rela-
tivity. Thus, both versions of the explanation of the
physics involved turn out to be untenable. Herein lies
the paradox.

Objecting to the presence of a paradox, Bohr wrote
in [35] that when discussing a system in which there
are correlations, it cannot be considered as consisting
of two independent parts. Therefore, any measure-
ment over one part of this system should be considered
as a measurement over the entire system. This expla-
nation does not seem particularly convincing. The fact
is that there are two types of correlations that can be
rationally explained. The first type includes correla-
tions, which owe their origin to the interaction
between parts of the system. In the case of the EPR
paradox, this interaction would have to be transmitted
at superluminal speed. The second type includes cor-
relations due to some relation between the initial con-
ditions for the considered particles. In the case of the
EPR paradox, this relation exists since the particles 
and  emerged as a result of the decay of a single pri-
mary particle. However, the presence of this relation is
not sufficient for the unambiguous correlation of these
particles in the future. For this purpose, it is also nec-
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essary that the initial conditions should unambigu-
ously fix the subsequent temporal evolution of these
particles. And this means that immediately after the
production, even before the moment of measurement,
the particles  and  must have had a definite prop-
erty that would unambiguously determine the result of
the measurement. This contradicts the general con-
cept of standard quantum mechanics.

Of course, it can be assumed that there is some spe-
cial quantum type of correlations that cannot be ratio-
nally interpreted. However, this explanation is, from
the viewpoint of science, the worst of all possible,
since the main task of scientific theory is to reduce the
number of truths that cannot be rationally interpreted.

Fock’s arguments [36] seem to be more successful.
Fock believed that in the quantum case, an objective
meaning should not be assigned to the concept of
“state.” Rather, it should be understood as “status
information.” With this interpretation, the paradox
can indeed be avoided. But the question arises: Is there
something objective about which we receive this infor-
mation?

Within the approach proposed in this paper, this
“something” exists. It is an elementary state. The ele-
mentary state is an objective characteristic of a physi-
cal system. It does not depend on any knowledge of
the system. In contrast, a quantum state, i.e., some
equivalence class of elementary states, is not a com-
pletely objective characteristic of a physical system.
This concept is an objective characteristic of an ensem-
ble of physical systems. We can consider the definite
system of interest to us as an element of different
ensembles (freedom of choice). Accordingly, it will be
characterized by different quantum states. Therefore,
in a quantum state there is a subjective factor.

Turning directly to the EPR paradox, we can give it
the following interpretation. Both before and after the
decay of the initial particle, the physical system is
characterized by stable (zero) values of observables 
(projections of the total spin onto the direction ).
After the decay, the values of the observables  and 
(projections of spins onto the direction  for particles

 and , respectively) satisfy the relation

(34)

In principle, each of the observables  and 
could be unstable. However, in the case of a two-level
system, which indeed a particle with spin 1/2 is, these
observables will be stable. In the elementary state, the
incompatible observables can simultaneously have
definite values. Only these values cannot be simulta-
neously measured using a classical instrument. In a
specific experiment, we can measure the observable 
for any, but only for one, direction , since for differ-
ent directions  and , the observables  and  are
incompatible. Thanks to Eq. (34), with this measure-
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Ĉn
n

n 'n Ĉn 'Ĉn
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ment, we automatically measure a value of the observ-
able . This is the so-called indirect measurement.
Thus, in this approach, the EPR paradox is resolved
trivially.

Using this physical system as an example, we can
give a completely rational interpretation of the phe-
nomenon such as the quantum state collapse. In the
context of the standard approach, this phenomenon
looks mystical.

Before measuring the spin projection of a particle
, we know that our physical system is in some ele-

mentary state, which belongs to the equivalence class
characterized by zero values of observables . In
other words, we know that the system is in a singlet
quantum state, but we do not know what specific ele-
mentary state it is in. After measuring the observable

, thanks to Eq. (34), we acquire knowledge not only
about the value of this observable, but also about the
value of the observable . Therefore, now we know
that after the measurement, the system under consid-
eration will be in the elementary state, which belongs
to the equivalence class characterized by the values

 (the value  is known) of the observables 
and . Here we assumed that the measurement of the
observable  was reproducible. Now, again, we do not
know in which particular elementary state the physical
system turned out to be, but we know that it is in a
definite quantum state (of the type , Eq. (32)).

Due to the interaction with the measuring instru-
ment, the value of the observables  for directions

 varies in an uncontrollable manner. Therefore,
for these directions, Eq. (34) is violated. This corre-
sponds to the fact that the considered system ceases to
belong to the singlet state. Thus, all signs of the quan-
tum state collapse are reproduced. Note that before
measuring we could describe the quantum state of
particle  with the help of the density matrix

(35)

while after measuring with the help of the density
matrix

(36)
Although quantum state (35) is mixed, and state (36)

is pure, this does not mean that some change hap-
pened in the elementary state of particle . Simply we
acquired additional information about this elementary
state.

Equality (34) can be given another useful interpre-
tation. In the decay of the primary particle, each of the
secondary particles produces a “measurement” of the
elementary state of its partner in the sense that the ele-
mentary state of one of the particles is a negative copy
of the elementary state of the other particle. The devel-
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opment of this copy can be called a measurement
using a quantum instrument. One particle is a quan-
tum measuring instrument for another. In contrast to
the measurement with a classical instrument, this
measurement can unambiguously fix the elementary
state of the particle under measurement. However, in
order for the result of this “measurement” to become
available to us, it is necessary using a classical instru-
ment to carry out a direct measurement for this quan-
tum instrument. As a result of this secondary measure-
ment, we obtain knowledge only about the equiva-
lence class to which the elementary state belongs.

The scenario of the second paradox, which we will
discuss here, was proposed by Schrödinger [37] (on
this subject, see also [38]). The scenario looks as fol-
lows. A cat and a radioactive source of very low inten-
sity are placed in the box. When an atom decays in the
source, the Geiger counter is triggered. The impulse
from the counter is fed through an amplifying device
to the automation, which breaks the ampoule of poi-
son. The cat dies from the poison. The observer does
not know whether the decay has occurred or not.
Therefore, according to the standard rules of quantum
mechanics, it must describe the state of a complex sys-
tem (a cat plus a radioactive source) by a state vector
that is a superposition of two quantum states: an unde-
cayed atom and a living cat plus a decayed atom and a
dead cat. The superposition of a live and a dead cat
looks strange to say the least.

There is a statement that there will be no paradox if
we go from describing the state using the Hilbert space
vector to describing it using the density matrix. How-
ever, here we must clearly agree on what game we are
playing. If we consider that the density matrix
describes an ensemble of physical systems, then there
will be no paradox. However, in this case, we will
describe the state of not the cat alone, but state of an
ensemble of cats, in which a part of the cats is alive, the
other part is dead. In this case, each of the cats is either
definitely alive or dead, but which of the cats we have
to deal with is determined by the probability theory.
However, in the scenario of the Schrödinger paradox,
it is understood that we are dealing with one cat. In
this case, the mentioned interpretation of the density
matrix is not suitable. If we consider that the density
matrix describes the state of one cat, then it is no easier
to imagine a mixed state of an alive and a dead cat than
a superposition of these cats.

Definitely, there will be no paradox if Fock’s inter-
pretation is accepted. In other words, it is considered
that the term “state” in quantum mechanics actually
implies our knowledge of the objective state of a phys-
ical object. However, firstly, standard quantum
mechanics does not accept this point of view. Sec-
ondly, the question remains, whether this objective
state exists.

Within the concept of an elementary state, the par-
adox is again resolved trivially. The pair under study
PHYSICS O
(a cat plus a radioactive atom) is in a definite elemen-
tary state. At a given time moment in this state, the cat
is either definitely alive or definitely dead. There is no
mixed elementary state of a living and dead cat. The
quantum state describes the equivalence class of these
elementary states. Among these elementary states,
there are those that correspond to an alive cat at a
given moment in time, while there are those that cor-
respond to a dead cat at the same time moment.

When we place a cat in a box, we only have the
information about the equivalence class, but not about
the individual elementary state. The equivalence class
is fixed by classically recorded conditions: at the time
moment of preparation of the system under study, the
cat was alive, and the atom did not decay. On the other
hand, the unambiguous evolution of a particular phys-
ical system is determined precisely by its elementary
state. Using classical observations, this state cannot be
unambiguously fixed.

8. ELEMENTARY STATE 
AND GENERAL THEORY OF RELATIVITY
The 20th century gave mankind two remarkable

physical theories: quantum mechanics and the theory
of relativity. However, the relationship between these
theories was not cloudless. The special theory of rela-
tivity, though not without problems, has been com-
bined with quantum mechanics. From this union a
viable child was born: the quantum field theory. How-
ever, the general theory of relativity (GR) has not yet
been able in any way to be combined with quantum
mechanics in a harmonious union. The contradictions
turned out to be too serious.

The whole of GR is permeated with the spirit of
locality (see, e.g., [39]). Formally, in quantum field
theory, the axioms of locality and causality are also
among the fundamental ones. However, at the same
time, the so-called projection principle [1] is widely
used, which fits very poorly with the locality property.
There are numerous “proofs” that locality and causal-
ity are incompatible with the mathematical apparatus
used in quantum mechanics.

The most striking inconsistency between the math-
ematical apparatus of GR and quantum mechanics is
manifested in the basic equation of GR. This equation
relates the curvature of the four-dimensional space-
time  with the energy-momentum (4-momentum)
tensor of matter. The curvature of space  is one of
the basic concepts of general relativity and is described
in terms of -numerical functions. On the other hand,
the 4-momentum tensor of matter is an important
concept in quantum theory and is described in terms
of operators in the Hilbert space, i.e., with the help of

-numerical functions. Therefore, when trying to
directly unify general relativity with quantum
mechanics, we would be forced to equate -numerical
and -numerical functions. This indicates that it is
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impossible to do without the modernization of general
relativity or quantum theory, or without both at the
same time.

At present, the gravitational field quantization has
been chosen as the main direction of harmonization of
general relativity and quantum theory. A very beautiful
mathematical scheme has already been built: so-called
supergravity. However, this scheme was not without
significant drawbacks. For example, there is no way to
construct a renormalizable theory of the gravitational
field. The most important is that supergravity, like any
supersymmetric theory, assumes the existence of
superpartners of ordinary particles. Nothing similar
has been found experimentally.

The approach used here proposes to go in a differ-
ent direction. In the previous sections, we abandoned
the literal identification of the “observable” and
“operator in a Hilbert space” concepts accepted in the
standard approach to quantum mechanics. For classi-
cal observables, this identification is obviously unsuit-
able. Instead, it was proposed to use the algebraic
approach, in which the observables are considered as
elements of some algebra without any reference to
their representation in the form of operators. This
approach is suitable for both quantum and classical
observables.

In the previous sections, the relationships between
quantum and classical systems were described without
considering the general theory of relativity. To take
GR into account, the main provisions should be
somewhat modified and supplemented. Let us supple-
ment the postulates of the previous sections with one
more.

Postulate 11. The metric tensor  of a four-
dimensional manifold  is the value of the classical
observable .

The manifold  is not an  linear space. Follow-
ing Kartan [40], it is convenient to represent a four-
dimensional nonlinear space  as a smooth four-
dimensional surface in a linear space  of higher
dimension. However, we will not ascribe any physical
meaning to the space .

The observables  are components of the
covariant tensor. This tensor can be associated with a
contravariant tensor with components . No fun-
damental difference is often made between tensors

 and , and the components of one tensor
are expressed in terms of the components of another.
Though, from the viewpoint of mathematics, they are
elements of different (mutually conjugate) spaces. In
our case, these tensors will play essentially different
roles. While the covariant tensor  describes a
gravitational observable, the contravariant tensor

 does not describe any observable. It defines
some linear mapping. Further, as observables, respec-
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tively, elements of the C*-algebra, we will consider the
covariant components of tensor quantities. Contravar-
iant components will be used to construct linear map-
pings; components of mixed tensors will be avoided.
The operations of integration and differentiation with
respect to  are also used to construct linear map-
pings.

We assume that the mapping  acts on the
observable  as follows

(37)

Here  is the Kronecker symbol, and  is the iden-
tity element of the algebra of observables.

Along with the observables , their derivatives
often have to be used

In GR, generally, observables  and  are
not components of tensors, i.e., with the coordinate
transformation, they are not transformed, as it should
be for tensors. On the other hand, with respect to the
mapping , they behave like covariant compo-
nents of tensors. Until now, there is no well-estab-
lished term in GR for these quantities. We will use the
term “paratensor” (alleged tensor). Genuine tensors
in GR are the so-called covariant derivatives ,

.
Differentiating both parts of Eq. (37) with respect

to , we obtain

Multiplying both parts of this equality by 
and using Eq. (37), we obtain

The performed calculation is similar to the corre-
sponding calculation in the book [41]. We have only
consistently paid attention to the difference between
observables and linear mappings of observables.

In the general theory of relativity, much attention is
paid to the so-called coordinate-free description of a
physical system. With this description, the relations
are established between the observed quantities that
do not depend on the particular choice of the refer-
ence frame in the four-dimensional spacetime .

In our approach, observables are the elements of an
algebra. In other words, observables are the quantities
that satisfy the definite algebraic relations. These rela-
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tions, naturally, do not depend in any way on the
choice of coordinates in the space .

Another important characteristic of a physical sys-
tem is the elementary state. The elementary state
assigns to each observable its value recorded by the
measuring instrument. For a physical system that is in
a definite elementary state, different measuring
instruments for the same observable can record differ-
ent values. This is analogous to the fact that in GR the
values of observables can depend on the frame of ref-
erence. Therefore, in our approach, we will identify
the reference system with some system of classical
measuring instruments.

As pointed out in Section 3, an elementary state in
the quantum case is an infinite set of functionals on
the set of quantum observables. The former set fixes
the measurement results obtained by the instrument of
any type. In this sense, the elementary state does not
depend on the choice of measuring instrument. In
Section 3, we dealt with observables of matter in the
absence of a gravitational field. Now let us see what
changes should be made when the gravitational field is
considered.

These changes will be of two kinds. First, the grav-
itational observables will appear. Therefore, the func-
tionals characterizing elementary states of the physical
system (or subsystem) under consideration must also
be defined on gravitational observables. Second, the
collection of instruments that can be used to measure
both gravitational observables and observables of mat-
ter will be significantly extended. Now we must con-
sider that the measuring device can move arbitrarily
relative to the physical system under study. Each such
device (system of devices) should be associated with its
own functional in the elementary state. Thus, the set
of functionals that make up each individual elemen-
tary state should be significantly extended. After the
inclusion of such functionals in the elementary state,
the latter will describe the results of measurements for
any system of devices. This means that such an
extended elementary state does not depend on the sys-
tem of devices. Therefore, we can assume that the ele-
mentary state is an objective physical reality deter-
mined only by the system under study.

Another thing is the recorded values of observables.
They depend both on the system under study and on
the system of measuring instruments. Therefore, they
are not an objective characteristic of the system under
study. In this regard, a commonly used statement of
this type seems unfortunate. An object moving at a
high constant speed experiences the Lorentz contrac-
tion. This statement gives rise to the illusion that some
objective changes are taking place in the moving
object. In reality, no change occurs in the object itself,
it merely interacts differently with measuring instru-
ments that move relative to it at different speeds.

In other words, the dimensions of the moving
object are not its objective characteristic. In this

M
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regard, we can recall the nearly forgotten term mass of
motion, which is also not an objective characteristic.
By contrast to this, mass (rest mass) is such a charac-
teristic. In the terms used here, we can say that the
mass is a stable observable for physically realizable ele-
mentary states of the system under study.

A stable observable, as defined in Section 3, is an
observable on which the various functionals that enter
into a given elementary state take the same value. As
applied to GR, the concept of a stable observable can
be extended. It can include all observables that are ten-
sors. Of course, the result of measuring each compo-
nent of a tensor observable may depend on the system
of measuring instruments used (on the frame of refer-
ence). However, knowing the values of all components
found by one instrument, we can unambiguously pre-
dict the result of measuring these components if we
use another instrument associated with the first
instrument by the corresponding coordinate transfor-
mation. In this case, we can assume that the tensor
observable, considered as a whole, is stable. Accord-
ingly, it can be assumed that the value of this observ-
able (the totality of the values of all its components) is
an objective reality.

Observables that have a structure of paratensors
should not be considered stable. The values of their
components in the same elementary state, found using
one system of measuring instruments, cannot be
unambiguously recalculated into values that can be
found using another system of instruments. To
be more precise, this recalculation is possible. How-
ever, for its implementation, a complete history of the
transition from one instrument system to another is
required. We can synchronize the instrument readings
at different points of the space . However, the result
of this synchronization may depend on the path con-
necting these points.

9. TENSORS OF THE 4-MOMENTUM
Using the standard procedure (see, e.g., [41, 42]),

from a metric tensor and its derivatives other basic
gravitational observables can be constructed:

Christoffel symbols

curvature tensor

Ricci tensor

scalar curvature
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Einstein–Hilbert tensor

covariant derivative of the vector

According to the Bianchi identity, for this tensor,
the following equality is true:

(38)

By virtue of the definition of a physical system that
we have adopted, we can consider a domain  in space

, together with observables of matter determined on
it, gravitational observables  and their first two
derivatives, as a certain physical system. From this sys-
tem, we can select two subsystems. The elements of
the first subsystem are the points of the domain 
together with the algebra of gravitational observables.
This algebra is commutative and belongs to the center
of the algebra containing all observables. Accordingly,
this subsystem will be classical.

The elements of the second subsystem are the
points of the domain  together with the algebra 
generated by observables of matter which are defined
on the points . In the general case, the algebra

 is noncommutative. Accordingly, the second
subsystem will be a quantum one. For the terminology
not to become more difficult, we will call observables
belonging to algebras  as quantum observables.
Although, among them there may be observables
belonging to the center of algebra .

The first subsystem will be called a gravitational
field. It is natural to call the second subsystem the
matter. These two subsystems are mutually open and
interact with each other. The basic equation of general
relativity is precisely intended to describe this interac-
tion. Outwardly superficially, this equation looks very
simple:

(39)

Here,  is the 4-momentum tensor of matter.

The basic equation of GR, written in the form (39),
is an equation that relates the observables of two sub-
systems that are localized in the same domain . If
both subsystems are described in a classical way, then
Eq. (39) is not internally inconsistent. However, it
turns out to be contradictory if we want to describe the
matter in terms of quantized fields, and the curvature
of spacetime in classical terms.

In quantum field theory, the 4-momentum tensor
of matter is described in terms of an operator-valued
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generalized function. To take this fact into account,
Eq. (39) could be rewritten as

where  is the arbitrary readonably good (basic)
function. However, this is not enough, since in this
equality the operator is equated with a number.

As already mentioned in Section 8, at present, the
main hopes for resolving the contradiction that has
arisen are associated with attempts to quantize the
spacetime. However, this requires a new revolution in
physics with a very unclear outcome. Except that, one
can try to do without such radical changes.

Recall that modern physics already has an experi-
ence in describing the interaction between the quan-
tum and classical systems. The first thing that comes
to mind is the motion (scattering) of quantum parti-
cles in classical fields. However, this description does
not consider the counteraction of the quantum parti-
cles on classical fields. Meanwhile, there is a process in
which this impact is the main goal of the study. This
process is the interaction of quantum particles with a
classical measuring instrument. It can be attempted to
use the here-gained experience to remove the contra-
diction that arises in the direct use of Eq. (39) in the
case when the matter is described in a quantum way.

We will consider the gravitational field associated
with the domain  as a classical measuring instrument
designed to measure the value of the 4-momentum
tensor of matter that is localized in this domain.
Accordingly, the value of tensor , as the reading of
this instrument. In this case, Eq. (39) can be rewritten
in the form

(40)

On the left-hand side of Eq. (40),  should be
considered not as a classical observable (Einstein–
Hilbert tensor), but as a value of this observable at the
point . On the right-hand side of Eq. (40), there is a
value of the quantum observable (4-momentum ten-
sor) in the elementary state . This is the elementary
state in which the subsystem under consideration is
located.

Equation (40) should not be confused with the
equation

(41)

which is widely used in the so-called semiclassical the-
ory (see, e.g., [43]).

In this theory, the gravitational field is considered
classical, and matter fields are treated in a quantum
way. In this case, the Einstein–Hilbert tensor is asso-
ciated with the average value  of the energy-
momentum tensor over a quantum state. Equation (41)
can be obtained using the variational principle from a
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732 SLAVNOV
definite effective action. In some cases, this effective
action can be useful.

Equation (41) is suitable for describing the interac-
tion of a gravitational field with a material object,
which can be considered as a quantum ensemble of
some more elementary objects. To describe the latter,
the quantum theory can already be used. However, it
is desirable to have a theory in which the matter fields
are consistently described in a quantum way from the
very beginning.

In contrast to Eq. (41), Eq. (40) is suitable for
describing an individual event of the interaction of a
quantum object with a gravitational field. An example
of this event is the birth of our Universe. We can hardly
hope to collect statistics on these events.

There is one more significant difference in
Eqs. (40) and (41). An individual event can occur here
and now. Therefore, with the help of Eq. (41), it is pos-
sible to describe local events. For GR, this is very
important. In the case of Eq. (41), it is about average
values. To get average values, one has to collect statis-
tics. To this end, the measurements can be simultane-
ously made in different places, the measurements can
be made in one place, but at different moments of
time. In any case, we are deprived of the possibility of
a local description of the physical system.

Unlike Eq. (39), Eq. (40) is not an equation of
motion for observables. In Eq. (38), the observables

 and  can be considered independent.
Equation (40) is an equation for an elementary state.
Of course, it defines the elementary state far from
uniquely. This equation is satisfied by a whole class of
equivalence in the set of elementary states. The situa-
tion is typical for quantum systems.

In the standard approach to quantum mechanics, it
is typically assumed that if, as a result of the interac-
tion of a quantum system with a classical measuring
instrument, the definite result is recorded for some
observable, then after this measurement, the quantum
system goes into a quantum state in which this observ-
able has a recorded value. This statement is even fixed
in the projection principle [1]. Strictly speaking, this is
not necessarily the case. The measuring instrument is
not necessarily at the same time the device that pre-
pares the quantum state. However, in the case under
consideration, this is what happens most likely.

We will assume that the classical subsystem (gravi-
tational field) does not simply measure a value of the
quantum observable , but simultaneously pre-
pares a quantum state with the definite value of this
observable. Then the reverse action of the classical
subsystem on the quantum one will lead to the fact
that the quantum subsystem will turn out in the ele-
mentary state  that is stable on the observable

. In this case, on the right-hand side of Eq. (40),
as  the functional  can be taken, which is
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the character of any of the commutative subalgebras
 containing the observable . Then the results

of the measurement of the classical observable 
and the quantum observable  will coincide
when using any suitable measuring instruments. This
corresponds better to the meaning of the basic GR
equation.

If the assumption made is correct, then this means
that the observable  is preferred with respect to
all other observables. Its value is a physical reality
inherent in a quantum object and does not depend on
the instrument used to measure it.

If indeed the value of the 4-momentum tensor of
matter is a physical reality inherent in a quantum
object, then it is possible to go from writing the basic
GR equation in the form of (40) (in terms of general-
ized functions) to the form

(42)
which is used commonly in GR. It is only necessary to
keep in mind that now this equation relates not two
observed quantities, but physically realizable numeri-
cal values of these quantities.

One should consider as well that in the quantum
case we cannot experimentally fix in which elementary
state the quantum system under consideration is
located. At the most, we can find out what quantum
state it is in. If this quantum state is an eigenstate of the
observable , then the value  is uniquely
fixed. It is with this value, Eq. (42) should be solved. If
the fixed quantum state is not an eigenstate for the
observable , then before using Eq. (42), we must
find the probability of each of the values of the observ-
able . After that, we can solve Eq. (42) for vari-
ous values. The resulting solutions will describe the
physical reality with the found probabilities.

If the matter is described classically, then the ele-
mentary state is determined by a single functional.
Therefore, in the proposed approach, Eq. (39)
remains valid. In this case, we can assume that
Eq. (39) relates two observables. However, this will be
true only when we associate each of the observables
with a function whose values coincide with the physi-
cally realizable values of this observable. In other
words, Eq. (39) remains valid only in the preferred
representation of observables. This is usually taken for
granted, but this cannot be automatically transferred
to the quantum case.

It is instructive to approach the derivation of the
basic GR equation from the other side, using the prin-
ciple of stationary action. We start from the following
formulation.

The actual evolution of a physical system occurs in
such a way that a value of the variation of action is
equal to zero.

ξO μν
ˆ ( )T x

μν
ˆ ( )G x

μν
ˆ ( )T x

μν
ˆ ( )T x

μν μν=( ) ( ),G x T x

μν
ˆ ( )T x μν( )T x

μν
ˆ ( )T x

μν
ˆ ( )T x
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Let us take a look at the word value. It is often omit-
ted. It will play a key role for us. In a standard way (see,
e.g., [41]), we assume that the action  of a physical
system consists of two parts: the matter part of the
action and the gravitational part :

where  is the determinant of a metric tensor, and
 is the scalar function of the quantum observ-

ables and the mapping .

Denote by  the quantum observable, which plays
the role of a generalized coordinate. The gravitational
action does not depend on , therefore, with its varia-
tion, only  will change. Accordingly, to find a value
of the variation of action, it suffices to consider the
quantum subsystem. Then, from the principle of the
stationary action, we have

(43)

We assume that  only in a small region
around a point  in the space  and belongs to the
center of the algebra of observables. Considering that

 is a linear multiplicative functional, Eq. (43) can
be rewritten as

If the point  is not fixed, then to describe the
physically realizable elementary states of the quantum
subsystem, all characters , restricted to the subal-
gebra of quantum observables, are admissible. By vir-
tue of Postulate 10, from here, it follows

(44)

Thus, from the principle of the stationary action for
quantum observables, equations of motion are
obtained. In these equations, gravity acts as an exter-
nal classical field, while gravitational observables are
represented in the form of their values in the consid-
ered elementary state.

Consider the variation  with the transformation

of coordinates , where  are small
quantities. Since  is a scalar, the variation must be
zero. Repeating the calculations of [41], we obtain

(45)

ˆ
mS

ˆ
gS

= −ˆ ˆ ˆ( ) ( ) ,m mS L x g x dx

ˆ( )g x
ˆ ( )mL x

μν�g

= −
π 

1ˆ ˆ ˆ( ) ( ) .
16gS L x g x dx

q̂

q̂
ˆ

mS

ξ ξ
 δ −ϕ δ = ϕ δ = δ 


ˆ ˆ( ) ( )ˆ ˆ( ) ( ) 0.
(̂ )

m
q
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ξ
μ μ

  ∂ − ∂ −ϕ − =  ∂ ∂   , ,

ˆ ˆˆ ˆ( ) ( ) ( ) ( ) 0.
ˆ ˆ

m mL x g x L x g x
q q

y

ξϕ ⋅( )

μ μ
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ˆ ˆˆ ˆ( ) ( ) ( ) ( ) 0.
ˆ ˆ

m mL x g x L x g x
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δ ˆ
mS

μ μ μ μ→ = + ζ'x x x μζ
ˆ

mS

ν
μν =;ˆ ( ) 0,T x
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where

is the 4-momentum tensor of matter.
A similar calculation can be done for the variation

 and it can be obtained that the total
4-momentum tensor  satisfies the
equation

(46)
Note that our Eq. (46) is not a consequence of

Eq. (40) and the Bianchi identity (38). In particular,
this is due to the fact that, for noncommuting observ-
ables, the elementary state does not have the linearity
property.

Let us consider the variation  in varying
the gravitational observable . Now we must use the
principle of stationary action, i.e., must consider that

(47)
for a physically realizable elementary state .

In contrast to - and -numbers, the operation of
addition is defined for all elements of the -algebra.
Therefore, we can again use the calculations of [41]. It
is necessary to consider only Eq. (47) and the fact that
the tensor  is a generalized function. As a result,
we arrive at the equation

(48)

which coincides with Eq. (40). It follows from this
equation that the total 4-momentum tensor of each
domain of the space  is equal to zero. This is the law of
conservation of energy and momentum in our
approach. The law is satisfied not only globally, but
also locally.

On the other hand, if the total 4-momentum tensor
is defined as the sum of the tensor and the
4-momentum paratensor , then the usual proof
of conservation of the total 4-momentum fails when

 is a quantum observable. Instead of the conser-
vation of this tensor, conservation law of another
paratensor can be proven.

Let us introduce the paratensor

This tensor consists only of gravitational observ-
ables. Therefore, it can be treated as a classical observ-
able. Then, repeating the calculations from [41], in
which the tensor  is replaced by the tensor

, we obtain

(49)

τ

μν μν τ μν

  ∂ − ∂ −= −  − ∂ ∂   
� �
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Fig. 1. Histogram describing the statistics of the crossing of
bouncing oil droplets through a baffle with two slits.
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This equality holds identically. Therefore, it is valid
for any elementary state. On the other hand, since

 is a paratensor, then its value is not
uniquely determined by the elementary state. In our
terminology, this observable is not stable on a physi-
cally realizable elementary state. The result of its mea-
surement depends on the measuring instrument used.
It is noteworthy that each fixed instrument does not
notice the evolution of this observable in time. In this
sense, this observable is hidden.

The division of the 4-momentum tensor  of
the gravitational field into two parts  and 
is ambiguous. The measurement result of each of these
parts is not an objective reality but depends on the type
of measuring instrument. This is very reminiscent of
the division of internal energy in thermodynamics into
heat and work. In our case, the role of heat is played by

, while the role of work, by .

10. EXPERIMENT 
WITH A WANDERING DROP

The introduction of a concept of “elementary
state” makes it possible to consider gravitational and
quantum phenomena from unified positions. How-
ever, before discussing quantum effects, it is useful to
consider a very curious classical experiment that mod-
els many of the specific features of quantum experi-
ments. We mean the experiment with a wandering
droplet carried out by a team of French researchers
[44, 45].

The experimental set up included a f lat tank filled
with silicone oil, which was subjected to vibration in
the vertical direction with a characteristic acceleration
greater than the acceleration due to gravity. On the

μν
ˆˆ( ) ( )g x Q x

μν− ˆ ( )G x

μν
ˆ ( )Q x μνˆ ( )t x

μν
ˆ ( )Q x μνˆ ( )t x
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surface of the silicone oil, a droplet of the same oil,
about one millimeter in diameter, fell. Due to vibra-
tion, the droplet bounced off the surface without stick-
ing to the oil bulk. In this jumping state, the droplet
could exist indefinitely.

With each impact on the surface, the droplet gen-
erated a surface wave. The conditions were selected in
such a way that, during each fall, the drop fell on the
outer falling side of the hump of the surface wave that
was generated by the previous fall of the drop. When
rebounding from an inclined surface, the drop
acquired a speed both in the vertical and horizontal
directions. As a result, a complex system was formed,
which consisted of a surface wave and a bouncing drop
that was coherent with it and moved in a horizontal
direction. The authors called this system a walker.

Several types of experiments were carried out with
the walker: the reflection of a walker from the wall, the
interaction of two walkers, the diffraction of a walker
on one slit, the interference of a walker on two slits.
Perhaps the most curious was the experiment with
interference.

This experiment was organized as follows. The oil
tank was partitioned by a metal strip lying at the bot-
tom of the tank. The thickness of the oil layer above
the strip was so small that the surface wave above it was
attenuated. As a result, the movement of the bouncing
drop over the strip in the horizontal direction halted.
Having made two transverse passages in the strip,
8 mm wide and 15 mm apart, the experimenters orga-
nized a two-slit experiment with a walker.

In the experiment, the high-speed video recording
was carried out to constantly monitor the drop and the
surface wave. With the help of this survey, it was estab-
lished that the droplet passed through one of the slits,
while the surface wave, through both. Behind the bar-
rier, both parts of the wave interfered with each other,
while the wandering drop interacted already with the
resulting wave and, when moving in the horizontal
direction, deviated from the perpendicular to the par-
tition by an angle . This angle was measured, after
which the experiment was repeated from the very
beginning with another drop.

Under the same initial conditions, the deflection
angles  of different droplets vary strongly and, it
would seem, chaotically. However, the most surprising
was the result of statistical processing of the data
obtained. This result is shown in Fig. 1.

In this figure, it is easy to recognize a typical inter-
ference pattern. It can be fitted with good accuracy by
scattering a plane wave on two slits. Though, of
course, the droplets could not form any physical wave
since they existed at different time intervals. In other
words, in this case, the interference pattern is a purely
statistical effect. It can be said that jumping droplets
form a wave of probabilities.

The probability distribution is most significantly
determined by the type of ensemble of events under

α

α
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consideration. In this case, the experimenters selected
the events in which the droplets initially moved per-
pendicular to the partition. In addition, the experi-
menters tried to equalize the density of the number of
droplets crossing the slits along the partition.

In the droplet experiment, a decisive factor in the
emergence of a wave of probabilities was the coherent
nature of the interaction of each drop with its accom-
panying surface wave. As a result, a strongly coupled
system—“walker”—emerged. The strong coupling
manifested itself by the fact that precisely the droplet–
surface wave interaction determined the droplet tra-
jectory in the horizontal direction.

The results of this experiment are strikingly similar
to results of corresponding experiments in the micro-
cosm, in particular, to the electron scattering by two
slits. This suggests the idea: to try to find an analog of
a walker in experiments with an electron. Using this
analogy, we will try to modify the current model of
the atom.

11. SOFT AND SUPERSOFT PHOTONS
Rutherford’s planetary model is the precursor of

the modern model of the atom. According to this
model, electrons, like planets, revolve around the
nucleus, being kept in orbit due to the Coulomb force
of attraction to the nucleus. Rutherford’s model is very
visual. However, according to the laws of classical
electrodynamics, an electron by moving along a curvi-
linear orbit must constantly radiate energy and fall
onto the nucleus very quickly. This shortcoming of
Rutherford’s model was overcome by Bohr, who sup-
plemented the model with two postulates.

First, an electron can only revolve around the
nucleus in definite stationary orbits. In this case, it
does not radiate energy. Second, under the action of
an external perturbation, an electron can jump from
one orbit to another. In this case, it emits or absorbs
the strictly defined portions of energy. In the context
of modified planetary model, Bohr managed with a
good accuracy to calculate the allowable energy levels
for the hydrogen atom. However, rather a high price
had to be paid for this: the model largely lost its visu-
alization, since Bohr gave no physically visual justifi-
cation for his postulates.

In the Bohr model, the electron was considered as
a point particle moving in definite orbits. However,
this point-like nature of the electron and the determi-
nation of orbits have become an insurmountable
obstacle to the further development of the atomic
model. Therefore, at the next stage of model modifi-
cation, it was decided to replace the concept of “parti-
cle” with “wave function,” and “orbit” with “orbital.”
In this way, it was possible to achieve a good agree-
ment between the results of calculations and a large
amount of experimental data. However, the model has
almost completely lost visibility. In it, the description
PHYSICS OF PARTICLES AND NUCLEI  Vol. 53  No. 
of the electron motion is replaced by the postulation of
a definite equation for the evolution of vectors in a
Hilbert space. The model has actually turned from a
physical one into a mathematical one.

Here we will try to return to a more physical
method of building new models. Namely, it is pro-
posed to give an overview of various physical phenom-
ena, to try to find common features in them. After
that, it is proposed to transfer the experimentally
established regularities in one of the compared phe-
nomena to another phenomenon. At the same time, it
is proposed to choose a mathematical apparatus that
would be suitable for describing comparable physical
phenomena.

Specifically, we will compare the structure of the
atom and the structure of the Universe. This compar-
ison can be very useful. We can experimentally study
the Universe from the inside, and the atom from the
outside. In addition, we can experimentally investigate
intermediate objects—macroscopic bodies—and
study them “from the side.” The data obtained can
significantly complement each other.

We will proceed from the idea that the fundamental
properties of the matter do not depend on the scale of
the object under study. Based on this idea, we will try
to modify the Rutherford–Bohr model.

According to current concepts, the larger part of
the mass in the Universe is concentrated in the dark
matter and dark energy. However, what dark matter
and dark energy consist of is not currently established.
The various (and often highly exotic) candidates for
these roles are offered. In practice; it can only be con-
sidered as the firmly established fact that neither one
nor the other is recorded by modern measuring instru-
ments.

At the same time, objects with suitable properties
are well known in modern physics. These objects are
soft and supersoft photons. The presence of undetect-
able soft photons is necessary for a consistent descrip-
tion of the well-studied process of elastic scattering of
an electron by a nucleus. When calculating the cross
section of this process within perturbation theory, the
infrared divergences appear. A very efficient method
has been developed in quantum field theory to over-
come this difficulty.

The method is as follows (see, e.g., [46]). Experi-
mentally, the process of elastic scattering (Fig. 2a)
cannot be separated from the process of electron scat-
tering with the emission of soft bremsstrahlung pho-
tons (Fig. 2b), if the energy of these photons is below
the sensitivity threshold of the instruments used.
When this process is considered, infrared divergences
are compensated. With an increase in the order of per-
turbation theory, the number of bremsstrahlung pho-
tons taken into consideration should be increased.

Thus, although it seems to us that one electron
emerges from the scattering region, in reality, an elec-
tron, surrounded by a cloud of soft photons, f lies out.
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Fig. 2. Feynman diagrams describing the (a) elastic elec-
tron scattering and (b) bremsstrahlung. Solid arrows repre-
sent electrons, dashed arrows represent photons.

(a) (b)
These photons are not virtual, but quite real. A similar
situation also takes place in other processes. With each
act of scattering, part of the energy of scattering parti-
cles is spent on the production of bremsstrahlung pho-
tons. As a result, more and more photons are pro-
duced, and the energy of each of them, on average, is
decreasing. Under normal conditions, processes of
this type are dominant. They are in good agreement
with the second law of thermodynamics.

As a result of such processes, the soft and supersoft
photons should be produced in great numbers and
they are quite suitable for the roles of dark matter and
dark energy. In principle, the presence of other com-
ponents in the dark energy and matter is also possible,
but we will focus on the contribution of soft and super-
soft photons. Further, we will call these photons dark.
The specific values of the required frequencies of
mentioned photons are, of course, conventional and
may depend on the problem under consideration. As
the upper limit, ω = 10–3 Hz can be taken (conditional
lower limit of the observed radio frequencies).

Dark photons can also act as a tool for thermaliza-
tion of the system under consideration. Let us explain
the latter with a simple classical example. Let the ther-
modynamic properties of a gas in a vessel be studied.
This gas can often be considered as ideal, and it can be
assumed that the gas molecules do not interact with
each other and are elastically reflected from the vessel
walls. However, to explain a reason for the emergence
of thermodynamic equilibrium in the gas, we must
assume that the molecules of this ideal gas actually
interact (secretly for us) with each other and with the
vessel walls.

In each specific process, many bremsstrahlung
photons are produced, but they carry away a very small
portion of the energy. Therefore, it should be expected
that they must be well described by classical electrody-
namics. However, in classical electrodynamics, the
energy is carried by electromagnetic waves. On the
other hand, any wave is a relatively stable and ordered
object. Therefore, if we want to describe this ensemble
of photons within the quantum theory, then we should
consider that they are in a coherent state.
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At present, the theory of quantum coherent states is
well developed (see Glauber works [47, 48]). In the
Glauber formalism, the vector potential of the electro-
magnetic field  is represented by an operator in Hil-
bert space, which is expanded in terms of mode func-
tions :

Here, the index  is a multi-index determined by
both the projectors of wave vector  and the wave
polarization . Since it is much more convenient to
work with discrete indices than with continuous ones,
then it is considered that the system occupies a large
but finite volume. The functions  are solutions to
the wave equation

with the corresponding boundary conditions, form a
complete orthonormal set and satisfy the transversal-
ity requirement.

The quantum mechanical properties of  are com-
pletely fixed, by postulating that the operators  sat-
isfy the canonical permutation relations

After this, each mode can be considered separately.
The state of the electromagnetic field in the Glau-

ber formalism is described in terms of coherent states
 that satisfy the relation

where  is a complex number .
A state  can be considered as a Hilbert space

vector representing a tagged wave, for which  is a
parameter characterizing the wave amplitude, while

 is a parameter characterizing the position of some
tag that fixes the wave phase.

A simple illustrative example of a tagged wave is a
wave on the surface of water in which a f loat is swim-
ming. This f loat can be considered as a tag that marks
a definite phase of the wave at each moment of time. A
characteristic property of a f loat is that it moves coher-
ently with the wave.

Returning to the considered process of electron
scattering on the nucleus, accompanied by the emis-
sion of soft photons, we can notice a very strong simi-
larity with this example. Especially if we assume that
the electron moves coherently with the wave of soft
photons. Since the scattered electron and the soft
bremsstrahlung photons are produced in a single phys-
ical process, this assumption looks quite natural.

If the introduced vector k is related to the electron
momentum (  is the momentum of the electron),
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Â
±
kb

− + ± ±= δ =' ' '[ , ] , [ , ] 0.k k kk k kb b b b

βk

− β = β β ,k k k kb

βk β = β φexp( )k k ki
β | k

βk

φk

�k
F PARTICLES AND NUCLEI  Vol. 53  No. 3  2022



ALGEBRAIC AND STATISTICAL METHODS 737
then it is easy to recognize the de Broglie wave in the
tagged wave. It must be said that de Broglie himself did
not state that a quantum particle is a wave. He asserted
(see, e.g., [49]) that a particle is associated with a wave
with frequency . By the way, this statement is phys-
ically much more natural than the assertion that an
electron is both a wave and a particle simultaneously.
Of course, all the reasoning can be repeated by consid-
ering the scattering of the observed photon on the
nucleus. In this case, we will arrive at a tagged wave, in
which the observed photon will serve as a tag.

We want to find common features in the structure
of an atom and the Universe. It is known in advance
that electromagnetic forces and quantum phenomena
play an important role in the structure of the atom.
Electromagnetic forces also play an important role in
the structure of the Universe. In addition, gravity plays
a huge role. Therefore, it is highly desirable to consider
electromagnetic forces, quantum phenomena and
gravity from a unified standpoint.

As noted earlier, the algebraic approach allows us
to provide this consideration. Recall that the Born rule
automatically arises in it. It is possible to look upon
this rule also from this point of view. Born’s rule
reflects the experimental situation in quantum pro-
cesses. When quantum systems interact with classical
instruments that perform reproducible measurements
of quantum observables, the quantum system auto-
matically passes into the corresponding quantum
state, in which the distribution of values of quantum
observables obeys the Born rule.

Here the situation is very similar to that which takes
place in thermodynamics. The zeroth law of thermo-
dynamics states (see, e.g., [50]): “For each thermody-
namic system, there is a state of thermodynamic equi-
librium, which it spontaneously reaches under fixed
external conditions over time.” It suffices to replace
the definition “thermodynamic” with “quantum” and
the words “fixed external conditions” with “reproduc-
ible measurement of quantum observables.”

This means that quantum states have a preferred
property—quantum equilibrium (it can be said: stabil-
ity). Therefore, we can consider that the Postulate
(QM) (see Section 5) reflects the stability property of
the ensembles corresponding to the equivalence
classes. Otherwise, we can say that the average value of
the observable , which satisfies the relation

(50)

corresponds to a stable quantum distribution.
In (50),  is a certain one-dimensional projector

in the Hilbert space, in which the exact representation
of the algebra is implemented, while  is the operator
in this representation which corresponds to .

The presence of incompatible observables in quan-
tum systems significantly affects the procedure for
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describing the dynamics of these systems. The dynam-
ics of a classical system in the ideal case can be
described by Newton’s equations. This means that for
describing this system, it is sufficient to know all the
forces that act in the system and the full set of bound-
ary conditions. The initial conditions can be consid-
ered as an integral part of this set. Definitely, for real
systems this complete set is impossible to know. There
will always be uncontrollable perturbations, and,
strictly speaking, it is necessary to investigate the sta-
bility of motion with respect to these perturbations.

For quantum systems, the situation is aggravated.
Even in the ideal case, it is impossible to establish a
complete set of the boundary (initial) conditions,
since any set of measuring instruments can fix only a
set of compatible observables. Therefore, the issue of
motion stability becomes fundamentally important.
Actually, when formulating the laws of dynamics of
quantum systems, the Founders of quantum mechan-
ics did not especially deal with the motion stability
problem, but they successfully went along the path of
using not Newtonian mechanics but applying Hamil-
tonian formalism. In this formalism, the Hamiltonian
and the action play a central role. In terms of the alge-
braic approach, this means that these quantities must
be included in the algebra of observables.

It should be noted that the Newtonian formalism is
by no means always applicable to classical systems.
The simplest example is a gas in a thermal bath. It is
clear that it is completely hopeless to try to describe
the dynamics of this system in terms of the forces of
interaction between the gas molecules and the bath
walls and among themselves. On the other hand, this
system is quite successfully described in terms of tem-
perature and pressure, provided that an equilibrium
distribution in the gas is established. In this case, tem-
perature and pressure should be considered as observ-
ables. At the same time, with a very small number of
molecules, the Newtonian formalism, in which forces
are considered as observables, is quite applicable.
However, in this case, the condition of equilibrium
distribution will not be realistic.

Thus, the question of which quantities should be
included in the set of observables does not always have
an unambiguous answer. This set may depend on the
way of the system description, first of all on the
approximation that is used. The algebraic approach is
convenient for its f lexibility. It allows us to choose the
observables to be considered in various ways and to
group them in various ways into the ensembles under
study.

12. PHOTON BOSE CONDENSATE 
AND THE PROTON MODEL

In the Rutherford–Bohr model, the nucleus of an
atom was considered as a structureless force center; it
is now firmly established that the nucleus has a com-
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Fig. 3. Feynman diagrams describing the process of energy
concentration.
plex internal structure. Therefore, before building a
model of an atom, let us try to build a model of the
simplest nucleus—of a proton.

According to the now accepted Standard Model, a
proton consists of valence and sea quarks interacting
by exchanging gluons. We will not distinguish between
valence and sea quarks and combine them into a single
group. These quarks are not virtual, but one must be
very careful when talking about their mass, since they
are involved in the strong interaction, and a concept of
mass is strictly defined only for free particles.

By the way, we note that virtual particles are not
physical, but mathematical objects, convenient for
visualizing a series of the perturbation theory. Not
more than that, therefore, it is necessary to endow
them with some physical properties with even greater
caution.

Quarks are fermions and cannot form a condensate
of arbitrarily high density. This limitation is absent for
photons. Photons, in principle, can form a structure of
any density. In particular, they can form a Bose con-
densate.

Considering these facts, it is possible to offer a
quite plausible planetary model of the proton. “Plan-
etary” one means not in the sense of Rutherford, but
in the sense of the structure of an individual planet. A
proton, like a planet, consists of several spherical lay-
ers, the density of which, in accordance with the law of
Archimedes, decreases as it moves from the center to
the periphery.

In the proton center, there is a nucleus, in which
the main mass of proton is concentrated. The nucleus
appears as a Bose condensate of dark photons. Next,
the mantle comes, which consists of uncondensed
dark photons. Then the core comes, which involves a
suspension of quarks and gluons in a sea of photons. At
the very periphery, there is an atmosphere consisting
of dark photons, but with a density lower than that of
the core.
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Numerous unsuccessful attempts were made to
observe the Bose condensate of photons. Finally, one
of them was crowned with success (see [51, 52]).

To facilitate the localization of photons in the
microcavity, the authors of the experiment used
slightly curved mirrors as cavity walls. Due to the finite
curvature of the cavity walls, the photons were con-
centrated in the geometric center of the cavity. Pho-
tons interact with each other very weakly. Therefore,
in order to obtain a thermodynamically balanced
ensemble of photons, the authors filled the cavity with
liquid organic paint. The equilibrium was obtained
due to the balance between the processes of absorption
and reemission of photons by paint molecules. Laser
pumping was used to increase the number of photons
in the cavity. When a definite critical (for a given tem-
perature) density was reached, a phase transition to
the Bose condensate state occurred in the ensemble of
photons. This transition was observed visually: the
blurred photon “cloud” was transformed into a bright
narrow spot. In other words, a distinctive feature of
this phase transition was a sharp change in the reflec-
tive properties of many photons concentrated in the
cavity center.

Further, we will be interested in the case when the
considered microcavity is filled with a very large num-
ber of very soft photons. In this case, it is easy to deter-
mine a physical cause of this phase transition.

At a very high concentration of soft photons, the
process displayed in Fig. 3 may take place. This pro-
cess, in a sense, is the reverse of the process shown in
Fig. 2b. In the process of Fig. 3, a large number of soft
photons collide and a certain number of particles are
created (in the figure they are shown by solid arrows),
among which there are quite energetic ones.

Inside the cavity, photons will interact with each
other. Let  be the characteristic frequency of photons
and , where  is the electron mass. Then, the
calculation of a cross section for the photon–photon
scattering yields (see [53])

(51)

where  is the fine structure constant, and  is the so-
called classical electron radius:

Thanks to the factor  in Eq. (51), if a
photon with a frequency greater than  enters the cav-
ity, then the process shown in Fig. 3 becomes more
probable. In this process, photons with a frequency
higher than  will be created again. In other words, we
will get a probabilistic process with positive feedback,
which is typical for a phase transition.

Of course, at , the cross section given by
Eq. (51) will be very small, but at a very high concen-
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tration of photons, the described process can lead to
the development of a chain reaction, the consequence
of which will be the radiation observed in the experi-
ment with a photon Bose condensate. We call this
radiation as condensational.

For the start of a chain reaction, the initial pertur-
bation must be strong enough. This explains why ther-
malization of the photon ensemble was required in the
observed case. Photons of sufficiently high energy
appear in this ensemble.

The details of the described phase transition are
not of interest to us at the moment. Therefore, we con-
fine ourselves to the most general statement. This
transition proceeds in compliance with the energy
conservation law. In other words, the first law of ther-
modynamics holds for this transition. With the second
law of thermodynamics, this transition is not consis-
tent since the energy concentration rather than its dis-
sipation occurs in it.

But the second law of thermodynamics does not
follow from the fundamental laws of physics. It is a
conclusion made on the basis of the observation of
physical systems with a not very high concentration of
matter. Experimental data at a very high concentration
of matter have simply not been available so far.

Now let us return to our planetary proton model. It
is easy to see that in this model, the proton structure is
very similar to the cavity structure in the experiment
described in [51, 52]. The described cavity is bounded
by curved mirrors, which are designed to concentrate
photons in the cavity center. In the proton, quarks,
which are concentrated in the crust, can act as a spher-
ical mirror. The mirror is not absolutely perfect, since
scattering occurs not only towards the proton center,
but also towards the periphery. However, even in the
experiment with the Bose condensate, the mirror was
also not perfect. Therefore, a replenishment with laser
photons was required.

In the proton, such replenishment is implemented
by a strong gravitational field, due to which the pho-
tons located in the mantle and crust are concentrated
in the region near the proton core. The gravitational
field also acts on quarks. However, quarks are fermi-
ons and their concentration in a bounded cavity can-
not be too high. In addition, quarks have an electric
charge. Therefore, due to electromagnetic interaction,
they interact quite strongly with condensational radia-
tion, which will drive them away from the center. As a
result, quarks and gluons strongly interacting with
them cannot concentrate near the proton core but
form a crust. Thus, it is the photons that are concen-
trated by gravity in the center, the density of which can
become extremely high. In other words, prerequisites
for the emergence of a black microhole are created in
the vicinity of the core.

Thus, in the case of the proton core, we are just
dealing with a very high concentration. Accordingly,
the validity of the second law of thermodynamics in
PHYSICS OF PARTICLES AND NUCLEI  Vol. 53  No. 
this case becomes unclear. In a proton, after being
reflected in a quark mirror, a photon may lose energy,
but may also gain it. In other words, the mirror ther-
malizes photons in the mantle and plays the role of
paint molecules.

In other words, all the processes mentioned in
[51, 52] also operate in the proton. Therefore, the
result should be expected to be the same. In other
words, the proton core will be a source of condensa-
tional radiation. The intensity of this radiation will be
the greater, the more photons are fed to the proton
core from the environment. In this case, we get a prob-
abilistic process with negative feedback. These pro-
cesses lead to a stable dynamic equilibrium.

Simultaneously, the condensational radiation
makes it possible to avoid a great deal of trouble in the
physical interpretation of the processes under consid-
eration. Instead of the disappearance of matter at the
so-called singular point (in a black microhole), we will
deal with the transformation of the form of matter-
energy. The energy moves from a less concentrated
form to a more concentrated one.

It should be said that the very concept of “singular
point” is not physical, it is just a mathematical
abstraction. However, in the case under consideration,
this mathematical concept can be completely replaced
by a physical one: the “photon Bose condensate.”

Now let us try to make some numerical estimates.
We will consider a proton as a small Universe and
use the Friedmann equations with the -term (see,
e.g., [54]):

(52)

(53)

Here  is the dimensional scale factor (in our case,
a distance from the center of the proton core),  is the
gravitational constant,  and  are the density and
pressure of the observed matter,  is the speed of light,

 is the curvature parameter (in our case, ), and
 is the -term. We will not associate the latter with

zero oscillations of vacuum, but we will link it to the
buoyancy force of Archimedes and assume that  is
the density of the dark field. Note that in the system
under consideration, in addition to the observed mat-
ter, there are dark field photons. They are not recorded
by instruments, but they can influence the observed
matter according to Archimedes’ law.

We will be interested at what values of the parame-
ters characterizing the system under study, it can be in
equilibrium. This means that we need to find the val-
ues of these parameters for which Eqs. (52) and (53)
admit solution  and . Since we only need
the dynamic equilibrium, it is sufficient that this solu-
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tion existed for the values of the parameters averaged
over a small region in the space .

Let us first consider the region of the core and
mantle of the proton. In this area . Therefore,
in the equilibrium region, the following relation
should hold:

(54)

This relation can be rewritten as

(55)

where  is the proton mass,  is the mass of the
central proton region of radius ,  is the
so-called gravitational radius of the proton,

. The most natural physical inter-
pretation of Eq. (55) is as follows. The region of radius

 is the proton core, this region is dynamically bal-
anced, it discards the excess mass (entering it due to
the gravity) in the form of condensational radiation.
For parameters, it holds: , , and

.

Now, consider the region of the proton core. In this
region, in addition to photons, there are charged par-
ticles of the quark–gluon matter. We will again use
Eqs. (52) and (53). However, since the available exper-
imental data, relating to this region, deal with the elec-
tric charge distribution in this region, then we will
consider a density of quark–gluon matter as a density
of observables  in this region. Dark photons, as well
as photons of condensational radiation, will be
included in the -term. Since in this region, the elec-
tromagnetic interaction is much stronger than the
gravitational one, then the external influence on the
observed quark–gluon matter will be determined by
the electromagnetic interaction with the condensa-
tional radiation rather than by the buoyancy force of
Archimedes.

Let in (53) the pressure be related to the density by
the relation . Since we will evaluate the quan-
tities only by order of magnitude, the exact value of the
coefficient  is not important, it is sufficient that it be
less than 10. For simplicity, we set . Then it fol-
lows from Eq. (53) that  will vanish at . Sub-
stituting this value into Eq. (52) and setting  to zero,
we obtain the condition of dynamic equilibrium in this
region.

The experiment shows that the electric charge of
the proton is concentrated in a narrow spherical layer
of radius . Substituting this radius as a
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value of  in Eq. (54), we obtain for the density of
quark–gluon matter in a proton

(56)

This density can be compared with the electron
density. If we assume that the electron has the same
density, then its radius by order of magnitude should
be equal to  cm. This does not contradict the cur-
rent experimental data. The upper limit for the elec-
tron radius is  cm.

The proton stability in the vacuum is an experi-
mentally established fact. In the proposed model, this
stability is treated as a dynamic equilibrium of the
physical system that simulates a proton. The key role
in the proposed model is played by soft and supersoft
undetectable photons and their gravitational and elec-
tromagnetic interactions. In this model, a proton has
the properties of the black hole in which two oppo-
sitely directed processes take place. The first process is
the concentration of supersoft photons in the central
core. This concentration is provided by gravity. In turn,
this concentration increases the probability of a process
in which some of the soft photons are replaced by more
energetic particles (condensational radiation).

The competition of these two processes takes place
over the full proton size, including the proton bound-
ary, where soft photons of the proton come into con-
tact with soft photons of the surrounding vacuum. The
vacuum in the model under consideration is not an
empty space, but a space filled with soft and supersoft
undetectable photons. These photons are not virtual,
but quite real, only their energy is below the sensitivity
threshold of the measuring instruments used. With a
sufficiently high initial density of supersoft photons in
the center of the core, this construction must neces-
sarily have a point of dynamic equilibrium. The value
of this equilibrium point determines the mass of the
proton. Unfortunately, we cannot independently find
the equilibrium point, because this value is deter-
mined by the details of the strong interaction of
quarks. However, the very fact of the existence of equi-
librium point does not depend on these details.

It is striking that the proposed conception of pro-
ton is very similar to the design of a system placed in a
thermal bath. In this case, the role of the thermal bath
is played by the “photon vacuum,” which consists of
photons of dark matter and dark energy. Note that
Blokhintsev [55–58] was an ardent supporter of using
the analogy with the behavior of a physical system in a
thermal bath in quantum processes.

With minimal changes, all the arguments in this
section can be used to build a model of an electron. It
is only necessary to assume that there are some sub-
electron carriers of electric charge. In this case, just as
for the proton, the gravitational and charge radii will
arise by natural causes for an electron.
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13. MODEL OF THE HYDROGEN ATOM
Having a model of the proton, it is relatively easy to

construct a model of an atom, in any case, of hydro-
gen. It is necessary just to add an electron that inter-
acts electromagnetically with a proton.

However, the locality problem immediately arises
here. On the one hand, experiments on ultraprecise
measurement of the magnetic moment of an electron
[59] indicate that the electron is essentially a point
particle. On the other hand, experiments with atoms
show that the electron wave function is spread over a
spherical layer, the radius of which is close to that of
the atom. Contradictions of a similar type are encoun-
tered very often when the standard mathematical
apparatus of quantum theory is used. To bypass them,
even a special phenomenon was invented: the wave
function collapse. However, any viable physical expla-
nation for this phenomenon is usually not given. As
already mentioned, the algebraic approach is much
better suited for discussing local properties.

If there is an electron near a proton, then, contrary
to Bohr’s assumption, but in agreement with Newton,
it will fall on the proton with acceleration. Again, con-
trary to Bohr, but in agreement with Maxwell, it will
emit photons. These photons will break the dynamic
balance that was earlier between the proton atmo-
sphere and the environment. To restore the balance, a
part of the photons from the atmosphere must go into
the deeper layers of the proton breaking the dynamic
balance in them. This way the perturbation will even-
tually reach the core of the proton.

Now let us follow the fate of an electron. It will fall
at the quark–gluon proton shell. With some probabil-
ity, it will be reflected from it, while with some proba-
bility it will break through it and rush to the proton
core, breaking the dynamic balance in the deep layers
of the proton. Ultimately, it can reach the Bose con-
densate of the proton. Thanks to the gravity and all the
bremsstrahlung photons, which were generated by the
electron on its way, the condensate will be overloaded
with soft photons. Therefore, the process inside the
proton, such as shown in Fig. 3, becomes more prob-
able. The electromagnetic interaction between the
condensate photons and the electron is much stronger
than between the photons themselves. Therefore, the
process of energy concentration will primarily affect
namely the electron. As a result, the electron, together
with condensational radiation, will leave the proton
core, restoring its dynamic equilibrium. Further, like a
stone thrown from the surface of the earth, the elec-
tron will move along some parabolic trajectory. Of
course, on the way, it will again emit bremsstrahlung
photons.

However, as was explained in the previous section,
these additional photons will eventually enter the Bose
condensate, by generating the condensational radia-
tion in it. Thus, despite the emission of bremsstrah-
lung photons, the kinetic energy in the system will not
PHYSICS OF PARTICLES AND NUCLEI  Vol. 53  No. 
tend to zero but will f luctuate within a definite finite
interval. When the electron falls again on the conden-
sate, it will again move along some other parabolic tra-
jectory, and so on an infinite number of times.

Here, also as in thermodynamics, the “slow time”
should be distinguished from “fast time” (see [50]). In
thermodynamics, the fast time follows the particle
motion, described by Newtonian dynamics. The slow
time follows the change in mean values of the observ-
ables. Just as in thermodynamics, an infinitely small
interval of slow time  can be considered as infinitely
large for the fast time. Therefore, it can be assumed
that during this interval the electron will have time to
make infinitely many dives.

When moving through the photon atmosphere of
an atom, an electron will cause perturbations in it. So,
waves may occur in this atmosphere. The waves can be
of two types: radial and ring ones. The atom is a stable
system. For its stability, it is necessary that the motions
of the electron be consistent with oscillations in the
waves.

Here we are faced with a situation similar to that,
which arises in the previously mentioned macroscopic
experiment with a wandering drop. In our model, a
chain reaction in the condensate corresponds to the
vibrations in this experiment, an electron corresponds
to an oil droplet, soft photons correspond to the sili-
cone oil. There is also some difference. In the macro-
scopic experiment, there is one vertical direction and
one surface wave in the horizontal plane. In the pro-
posed model of the atom, there are infinitely many
vertical (radial) directions. Accordingly, there are also
infinitely many horizontal planes, and in each of them
a “surface” (ring) wave can form.

When studying the thermodynamics of a gas, it is
almost impossible to follow the “Newtonian” motion
of gas particles. Therefore, instead of Newtonian par-
ticles, “statistical” particles are monitored, in which
the internal parameters are the same as those of New-
tonian ones, but the trajectories are different. The val-
ues of kinematic parameters for statistical particles are
equal to the values averaged over the measuring time
of the corresponding parameters for Newtonian parti-
cles. The dynamics of statistical particles is determined
not by Newtonian forces, but by thermodynamic
potentials.

Like the situation in thermodynamics, it is impos-
sible to follow the Newtonian motion of an electron.
Therefore, instead of a “Newtonian” electron, the
movement of a “statistical” electron can be followed.
The latter has the same internal characteristics as the
Newtonian electron. By that it differs from the virtual
one, but its trajectory is different from the trajectory of
the Newtonian electron. At the same time, at the
points of a trajectory of the statistical electron, the val-
ues of its kinematic observables coincide with values of
the corresponding Newtonian quantities averaged
over the time interval  (the time required to record
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this value). Just as in thermodynamics, the dynamics
of the statistical electron is determined not by Newto-
nian forces, but by potentials.

Due to the process of energy concentration
(Fig. 3), all radiation losses during the accelerated
motion of the Newtonian electron return back to the
statistical electron. Therefore, we can assume that the
statistical electron moves without these losses.

In a stable wave, oscillations must be consistent
with the statistical electron momentum. In other
words, a stable wave of soft photons must be coherent
with a statistical electron. Thus, for the stability of an
atom, it is necessary that these waves have the struc-
ture of tagged waves, as this concept was introduced in
Section 11. The tag in this wave is a statistical electron
with the wave vector , while the function , which
determines the ring wave mode, must satisfy the peri-
odicity condition. Accordingly, the length of the orbit
must be equal to an integer number of wavelengths.

Under an external action on an atom, a statistical
electron can move from a stable circular orbit to a
quasi-stable one, by absorbing a definite portion of
energy. In the quasi-stable state, the dives of the New-
tonian electron will continue, causing oscillations in
the photon atmosphere. As a result, a radial tagged
wave will be formed, which will be emitted by the
excited atom. This gives grounds to assume that the
electron, like quarks, is never in a free state. It either
enters into the composition of an atom, molecule,
crystal, etc., or occurs as a marker in a tagged wave.
Therefore, we constantly detect wave properties in the
electron.

A tagged wave is a very interesting physical object.
With the help of macroscopic instruments, this wave
can be divided into two coherent parts: with a marker
and without a marker. The part without a marker car-
ries negligible energy but may contain significant
information. In principle, this may open up new pos-
sibilities for the transmission of information.

As noted in Section 11, on the one hand, tagged
waves can be considered as classical electromagnetic
waves with a definite localization in three-dimen-
sional space. On the other hand, these waves can be
viewed as vectors  in some Hilbert space .
Another space , which is a direct orthogonal sum
of spaces  with different , proves to be useful.

From the viewpoint of the algebraic approach, a
tagged wave can be considered as a quantum ensemble
consisting of a huge number of individual supersoft
photons. Therefore, it is not surprising that this wave
can be described by a vector in Hilbert space. How-
ever, from a physical point of view, it seems not very
good to consider that an individual supersoft photon is
in some elementary state. The point is that this ele-
mentary state is defined in Section 3 through the con-
cept of “observable,” while the distinguishing feature
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of a supersoft photon is the impossibility of its obser-
vation.

This inconsistency in mathematical and physical
interpretation can be eliminated as follows. Recall that
what we are actually following is a statistical electron
(or an observed photon), a marker of this wave, rather
than the supersoft photon waves. Let this electron
(photon) have a wave vector . During the time
required to register the characteristics of this electron
(photon), a Newtonian electron (photon) will pass
through the recording area a huge number of times.
Therefore, we will deal with an ensemble of these
waves, whose markers have a wave vector , rather
than with a separate tagged wave. The tags fixing a
phase in these waves will be placed randomly. Let us
identify a subensemble belonging to this ensemble, the
elements of which will be the tags. Let us make a stan-
dard assumption in probability theory that for each
position of the tag in the wave, the probability is the
same. In this case, the spatial arrangements of tags will
repeat the spatial arrangements of supersoft photons in
one tagged wave. Therefore, the ensemble of these tags
can be associated with a vector  in the Hilbert

space , which is isomorphic to the space .
Accordingly, the vector  will be the image of the
vector . Unlike the latter, the vector  cannot
be represented as a classical wave in which particles
interact with each other. This vector can only be inter-
preted as a probability wave. Instead, individual parti-
cles of this wave will be physically observable.

In the selected ensemble of tags, the transition from
one element of the ensemble to another can be inter-
preted either as the movement of the tags along the
orbit in the plane orthogonal to , or as the movement
of the tag along the radial direction. Bohr’s axioms will
be valid for this motion. In other words, we arrive at a
modified Rutherford–Bohr model. Accordingly, the
results obtained by Bohr will be valid for the hydrogen
atom.

At the same time, in the proposed model for a sta-
tistical electron, circular orbits are allowed, which cor-
respond to any other direction of the vector . By vir-
tue of spherical symmetry, all of them will be equally
probable. Therefore, an adequate description of the
states of an electron in an atom should be done not in
terms of orbits, but in terms of orbitals, as is done in
the standard modern model of the atom, i.e., in terms
of vectors in a space , isomorphic to .

In the proposed model of the atom, the soft and
supersoft photons play a central role. A special role is
assigned to their Bose condensate. This condensate
disposes of all motion waste and recycles it into new
motion. As a result, something similar to a perpetual-
motion machine occurs.

The existence of this engine does not contradict the
energy conservation law. On the contrary, it provides
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the enforcement of this law. It allows us to abandon
the assumption that there is a singularity point at
which it is not clear what happens to the energy.

The proposed scheme can also be very useful in
constructing a model for the evolution of black holes,
since in this case, it is also possible to avoid the
appearance of singularity points and the complete
annihilation of a black hole.

In this section, a fairly physically descriptive model
of the structure of an atom is proposed. The main pro-
visions of the proposed scheme can be used to build a
model of the evolution of the Universe. A possible
variant of this model is considered in [60].

14. MODEL OF THE UNIVERSE 
WITH A PHOTON BOSE CONDENSATE

Cosmology has been developing intensively in
recent years. Thanks to the development of new tech-
nologies, observational astronomy has achieved great
success. In particular, the following interesting facts
were established: the visible part of the Universe is
expanding, and the expansion occurs with accelera-
tion; on a large scale, the Universe is isotropic, homo-
geneous, and its curvature is close to zero. There is
almost no antimatter in the Universe.

An analysis of the experimental data makes it pos-
sible to reconstruct in sufficient detail the history of
the development of the Universe after the Big Bang,
which occurred approximately 13.5 billion years ago.
There are no experimental data on the period before
the Big Bang. This, it seems, opens up a wide scope for
speculations when building models for the develop-
ment of the Universe during this period.

Therefore, before building a model of the Universe,
it is desirable to agree on the rules that must be fol-
lowed in such a construction. First of all, the model
should not contradict any sufficiently firmly experi-
mentally established fact. Only after that it is necessary
to ensure that the largest possible number of experi-
mentally established facts are reproduced in the
model. Of course, one cannot demand that the model
reproduce all the facts. However, it should not prohibit
the reproduction of these facts.

Let us try to build a model of the Universe by using
the experience gained in building a model of the pro-
ton. We start with building a chain of physical objects
that can be considered as intermediate between the
proton and the Universe.

An acceptable variant of this chain is the following:
the nuclei of chemical elements; transuranic elements;
planets (in particular, the Earth); stars (in particular,
the Sun); galaxies; metagalaxies.

In this chain, we will first discuss the triton (the
nucleus of tritium). In its internal structure, it is very
similar to the proton. Therefore, to build its model, the
arguments can be used that were applied for the pro-
ton. The only difference between a proton and a triton
PHYSICS OF PARTICLES AND NUCLEI  Vol. 53  No. 
is a different set of quarks in the crust, but a specific
form of this set for the proton has not been discussed.

However, in its behavior, the triton differs signifi-
cantly from the proton. While the proton is a stable
particle, the triton undergoes the beta decay. In other
words, a microexplosion occurs in it.

Moving further along the links of the chosen chain,
we will encounter both stable and unstable elements.
Stability and instability depend on what the hadronic
content of the element in question is. It does not make
much sense to discuss the theory of this problem in
detail. Here the strong interaction of quarks plays an
essential role. Unfortunately, at present there is no
theory of this process.

As long as we are at the microlevel in our consider-
ation, we will encounter microexplosions. However,
we have already learned how to artificially select the
hadronic content in such a way that it is not microex-
plosions that occur, but explosions of very high power.
This refers to nuclear and thermonuclear weapons.
Moving further to the level of planets and stars, we will
encounter explosions on the astronomical scale.

All this indicates that the Big Bang should be con-
sidered as an ordinary rather than a unique phenome-
non. Let us pay special attention to the fact that among
all explosions in elements of the chain there is not a
single one in which something arose out of nothing
(even remotely resembling “nothing”). Moreover, the
latter phenomenon, in general, has never been
observed in nature. This allows us to consider it exper-
imentally firmly established that this can never be. Of
course, one can believe in a miracle, but this is already
beyond the scope of experimentally established facts.

Although there are no direct experimental data on
the properties of the Universe before the Big Bang, an
analysis of the links in the proposed chain makes it
possible to describe these properties with great confi-
dence.

Just before the Big Bang, the Universe was almost
the same globally as immediately after the explosion.
Precisely, before the explosion, the Universe was glob-
ally isotropic, homogeneous, and there were almost
no antiparticles in it. The mentioned properties could
change slightly as a result of the explosion, but against
the general background, these changes should be very
small. Observations show that this scenario of explo-
sions occurs in all links of the chain.

Numerous attempts have been made to theoreti-
cally interpret the observed facts. The most popular of
them is the so-called standard Big Bang scenario (see,
e.g., [61]). However, there are annoying gaps in this
scenario. What was before the Big Bang (or was there
nothing)? What caused the Big Bang (or was there no
cause)? The initial stage of the expansion of the Uni-
verse from a singular point to millimeter sizes (the
stage of inflation) is somehow incredibly f leeting. In
this case, the proposed process of inflation looks quite
artificial, and the Universe in the form of a singularity
3  2022
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point is somehow visually, in general, impossible to
imagine. The dark energy is proposed as a source of
acceleration of the expansion of the Universe, but
what it is, to put it mildly, is not entirely clear. It is not
very clear why there is almost no antimatter in the
Universe.

To avoid these complications, we can try to build
the model of the Universe using the experience gained
in building a model of the proton.

It is commonly said that the most abundant ele-
ment in outer space is hydrogen. However, from the
viewpoint of the physics of elementary particles, pro-
tons fundamentally differ little from photons, while
the number of the latter is much greater. Thus, accord-
ing to estimates (see, again, [61]), one cubic centime-
ter of cosmic space contains about  baryons
and 500 photons. This refers to photons that can be
recorded. Considering the bremsstrahlung photons,
the number of photons is much larger.

In space, photons are distributed more or less uni-
formly, but, of course, f luctuations are possible,
including very large ones. Too little time has passed
since the Big Bang, and the probability of a large f luc-
tuation is small. However, if world history did not
begin with the Big Bang, but had an infinitely long
prehistory, then a very large f luctuation is quite likely.

Due to density f luctuations in a definite region,
conditions could arise for the beginning of the black
hole formation. In this case, following the example of
formation of stars from a dust cloud, a superstar, con-
sisting of photons and baryonic matter (quarks and lep-
tons), could form, but the latter will be much smaller. It
can be expected that there will be approximately the
same number of baryons and antibaryons, but, of
course, the absolute equality is nearly impossible.

Following the example of the observed stars, the
resulting superstar may be stable, or it may be unsta-
ble. We will talk about instability a little later, but for
now we will assume that the stability period was quite
long. Due to numerous chaotic rescatterings during
the equilibrium time, the superstar should acquire the
spherical symmetry (in its own coordinate system) and
begin to rotate around an axis of its own.

If a superstar has dimensions numbered in giga-
parsecs or more, then a centimeter-sized region
located at a giga-parsec distance from the center will
be almost homogeneous. If it is dominated by the
baryonic matter, then due to rescattering, the baryonic
antimatter will have time to fully annihilate.

To model the internal structure of a superstar, we
make the same assumptions, as we did to model the
internal structure of a proton, corrected for the astro-
nomical dimensions of the superstar. In other words,
we suppose that a superstar has a core, magma, crust,
and atmosphere.

Again, let us assume that the core is a Bose conden-
sate of supersoft photons, which has the structure of a
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black hole. Only now it is not a micro black hole, but,
on the contrary, a gigantic black hole.

The superstar has a preferential direction towards
the star center. However, if we allocate a relatively
small area on the order of 1 cm2 (a preimage of our
Universe) in the superstar and associate the coordi-
nate system with this area, then there will be no pre-
ferred direction in this area. In addition, in this area,
the colossal force of attraction to the star center will
not be felt, since this force will be balanced by the cen-
trifugal force arising from the star rotation (weightless-
ness effect).

Just as in the case of the proton, we will assume that
the collapse of a superstar into a singular point will be
prevented by a chain reaction leading to the produc-
tion of condensational radiation. No antigravity is
needed here. However, depending on the baryon situ-
ation that has developed in the area where the chain
reaction began, two options for the further develop-
ment of events are possible. The first option is when
the chain reaction gradually fades. This option ensures
the stability of the superstar structure. The second
option is when the chain reaction becomes a runaway
one. In this case, a powerful explosion may occur,
which will be accompanied by a powerful blast wave.

This explosion is quite suitable for a role of the Big
Bang, which is believed to have begun the history of
our universe. In this case, there may be two significant
differences from the so-called standard scenario.
Firstly, the blast wave does not have to propagate at a
supersonic speed. Secondly, this wave arrives at an
earlier-prepared section of the superstar. As men-
tioned above, this section was already homogeneous
before the arrival of the blast wave and there was
almost no antimatter in it. In other words, it had the
properties that, in the standard scenario, should have
occurred at the time of the explosion.

It is natural to assume that the scenario of subse-
quent events was usual for the case of the arrival of a
powerful blast wave. In other words, at the area where
the wave arrives, the temperature should increase sig-
nificantly, the area should receive a large momentum
and should be broken into many fragments, which,
on average, will uniformly scatter in different direc-
tions. One fragment could later become our ancestral
homeland.

The standard scenario can be used to describe our
postexplosion Universe. In this case, it can be avoided
to use the very controversial “preexplosive” part of the
standard scenario. The assumption of the existence of
a mysterious inflaton is also not necessary. Instead,
one can make the following assumptions:

First, suppose that the period before the explosion
was not very short, but very long.

Second, there was no singularity.
Third, the Universe was a very small part of the

crust of a very large superstar.
Fourth, the fundamental laws of physics were the

same as they are now.
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After splitting into fragments in the zeroth approx-
imation, the general structure of the Universe will
remain the same. However, in the first approximation,
the structure may change. Some violation of isotropy
should be expected. The Universe will break up into
many miniuniverses, the structure of which can be
seen from Earth.

For the fragments (miniuniverses) that have not
gone beyond the horizon of visibility, it becomes pos-
sible to observe their internal structure. These results
should be expected. If there is a sufficiently powerful
radiation source in the quark–gluon crust of the frag-
ment, then it can be detected from the Earth. On the
other hand, if the condensational radiation frequency
for a fragment is sufficiently low, then the mantle
region of the fragment and its core will look as a dark
spot. Current astronomical observations suggest just
this cellular picture.

At the same time, the situation is also of interest, in
which the condensational radiation frequency is suffi-
ciently high. In this case, this radiation can be
observed from the Earth. Quasars may be quite suit-
able candidates for the role of these objects.

Now, repeating the technique of section 12, we will
try to make some numerical estimates using the Fried-
man equations with a -term (Eqs. (52), (53)):

(57)

(58)

The Universe in which we live is located in the
baryon layer of a superstar. The quantity  appearing
in Eqs. (57) and (58) is the average radius of this layer.
We recall that  is the gravitational constant,  and

are the density and pressure of the observed matter,
is the speed of light,  is the curvature parameter

(in our case ), and  is the -term.
Let us consider the zeroth approximation first. In

this approximation, the Universe is stable. Therefore,
it should be assumed that . We will also
assume that . Then, by solving the equations,
we find

Assuming that , for the average

radius we obtain .
The first approximation regards that  and  are

different from 0. In this case, it is convenient to rewrite
Eqs. (57), (58) in the form
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If we discard the physically meaningless solution
, then for given , , and , Eqs. (59) and (60)

uniquely determine  and . Existing experimental
data do not fix , , and  absolutely unequivocally.
However, they, at least, do not contradict the state-
ment that Eqs. (59) and (60) have physically reason-
able solutions.

Of course, the Universe is not just an enlarged copy
of the proton. In particular, the proton is known to be
nearly stable. On the contrary, it is known about the
Universe that it is stable only in the zeroth approxima-
tion, and unstable in the next approximations.

For a proton, the mass, gravitational radius, and
charge radius are known. For the Universe, all these
quantities are free parameters. Our Universe can
clearly be imagined in the form of a prominence that
develops in a superstar. Thus, we live in a developing
prominence.

15. MEASUREMENT PROCESS MODEL

In the quantum case, the elementary state 
of an individual physical system is a set of functionals

, each of which is a character of the maximum real
commutative subalgebra  of the algebra . The set

 ( ) of such subalgebras has the cardinality of
the continuum. Thus, the elementary state is a func-
tion-valued field over the set .

To set , it is necessary and sufficient to specify 
for each . In turn, to specify , it is sufficient to
specify a value  on each generator of the subalgebra

. We can assume that each generator of the subalge-
bra  is matched by a component of this function-
valued field . The value of the functional  on the
generator can be considered as the value of the field
component  at the point . Thus,  is a real

-numeric multicomponent field over the set .
Accordingly, even a quantum system, which is typ-

ically considered as a system with a finite number of
degrees of freedom (for example, a harmonic oscilla-
tor), in the quantum case is a field system, i.e., a sys-
tem with an infinite number of degrees of freedom.
From here it follows that in the elementary state of any
quantum system, in principle, an infinite volume of
information can be encrypted. However, this infinite
volume is not available for real use. The fact is that for
the information to be useful to us, we must be able to
control it with the help of classical instruments. How-
ever, classical instruments cannot distinguish one ele-
mentary state from another, they only distinguish
equivalence classes that correspond to quantum states.
Therefore, the amount of controlled information turns
out to be finite, but it can still be much larger than for
classical physical systems. This is a physical prerequi-
site for the possibility of building quantum computers.
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746 SLAVNOV
The elementary state of any physical system is the
field over the space  as well. The fact is that systems,
which are traditionally considered in quantum
mechanics as point systems, in reality are distributed
in the space .

Thus, the elementary state  of any quantum sys-
tem is described by a real -number field over the set

 and the space . This field has all the features of a
real classical field. If we accept the classical paradigm,
then it is permissible to assume that there is some mat-
ter field, the mathematical image of which is .

However, as was explained in Section 3, the depen-
dence of this matter field on  cannot be found by any
combination of measuring instruments. Therefore, we
will call this field as hidden. An example of a hidden
field is the field of dark photons.

The assumption of the material existence of a hid-
den field can help to solve one of the problems of
quantum theory: the wave–particle duality. Here the
term “corpuscular-field dualism” will be used for this
concept. The field properties of a quantum system are
naturally associated with a hidden field, i.e., with the
elementary state of the system. By comparison, the
corpuscular properties are related to observables of the
system, more precisely, to local observables.

The corpuscular properties of a quantum system
mean the following. A physical system has local
observables, i.e., observables associated with a limited
area in space . These observables, or more specifi-
cally their complex combinations, form an algebra of
local observables. There are stable sets of values of local
observables, which we treat as quantum particles of the
definite type: electrons, protons, nuclei, atoms, etc.

Measuring instruments perceive these observables
as an undivided entity. In this, the corpuscular proper-
ties of quantum systems are manifested. The reaction
of the measuring instrument is determined by the ele-
mentary state of the system (by a hidden field). In
turn, the structure (value) of the hidden field is deter-
mined by the spectra of the corresponding observ-
ables. Note that the spectrum point is an indivisible
entity. Thus, in a quantum system, the corpuscular
and field properties are closely interwoven.

In the standard approach to quantum mechanics, a
quantum state of a physical system is also associated
with a -number field—a wave function. However, the
wave function is complex-valued. Therefore, it cannot
directly correspond to the matter field. In the pro-
posed interpretation, a wave function is related only to
a probability, and rather indirectly. Namely, the aver-
age values of observables can be represented (but they
are not) in the form of mathematical expectations of
linear operators of some Hilbert space. In turn, the
vectors of this Hilbert space can be represented as wave
functions.

The hidden field can be considered as a physical
storage media of the physical state of a quantum
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ϕ
c
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object. To be this storage media, it must be consistent
(coherent) with the associated quantum object. This
makes it possible to build a rather plausible model of
the measurement process based on the hidden field.
We recall that many inconsistencies that exist in the
standard approach usually are attributed to the
absence of this model.

Let us describe a similar model. A measuring
instrument consists of an analyzer and a detector.
Sometimes these components of a measuring instru-
ment can be combined. An analyzer is a device with
one input channel and multiple output channels. If the
instrument is designed to measure the observable ,
then each output channel corresponds to a definite
part of the spectrum of this observable, i.e., each out-
put channel corresponds to a some equivalence class of
elementary states.

The hidden field associated with the measured
quantum object excites collective oscillations in the
analyzer that are coherent to the field. The oscillations
can be very weak, but due to coherence they interact
with the quantum object in a resonant way. A micro-
scopic description of this interaction is almost impos-
sible. However, the result of this interaction can be
described as a boundary condition. If the quantum
state of the measured object describes an equivalence
class that corresponds to one of the output channels,
then the object uniquely found in this output channel.
If the object under study is in a quantum state that
does not correspond to any of the output channels,
then the analyzer turns out to be a bifurcation region
for this object. In this case, the resonant interaction of
the object with the hidden field excited by the analyzer
oscillations turns out to be the random force that
directs the object to the definite output channel,
namely, into the channel corresponding to the equiva-
lence class to which the elementary state of the mea-
sured object belongs.

Here, the area of quantum object localization
means the area of localization of its local observables,
which can be recorded by classical measuring instru-
ments. Further, this localization area will be called the
kernel of a quantum object. An example of the kernel
is the localization area of tagged waves associated with
the physical object under study.

At the same time, as already was mentioned, a
quantum object is accompanied by a field, which, on
the one hand, is not recorded by measuring instru-
ments, while, on the other hand, is an integral part of
the hidden field. Therefore, the analyzer can become
the branching region of the hidden field. In each out-
put channel of the analyzer, the corresponding part of
the hidden field will fall.

The analyzer is a classical object. The interaction of
a hidden field with a classical object can be of two
types. With the first type, the coherence of the hidden
field with the radiating object is not violated; with the
second type, it is violated. Since we assume that in the

B̂
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analyzer, the hidden field excites oscillations, coherent
to the field, and they interact resonantly with the
quantum object, then it should be assumed that
the interaction with the analyzer does not violate the
field coherence. We will also assume that the impact
of the quantum object on the analyzer is macroscop-
ically undetectable. This recording takes place in the
detector.

The detector is a classical system in a state of unsta-
ble equilibrium. The detector strongly interacts with
the kernel of the quantum object. As a result of this
interaction, the detector leaves the equilibrium state.
A catastrophic, macroscopically recorded process
develops in it. The detector(s) is located at one (sev-
eral) output channel of the analyzer. As a result of the
triggering of the detector, the output channel of the
analyzer is fixed, into which the kernel of the quantum
object has fallen. This is how the value of the observ-
able of a quantum object is fixed. At the same time, the
equivalence class, to which the elementary state of the
measured object belongs, is fixed.

The reverse effect of the detector on the quantum
object is also strong. In the case of a nonreproducible
measurement, a complete change in the elementary
state of a quantum object occurs. In a reproducible
measurement, coherence is also violated, but the ele-
mentary state of the quantum object remains in the
equivalence class, which corresponds to the output
channel through which the kernel of the quantum
object has passed. The kernel of a quantum object and
the hidden field accompanying it cease to be coherent
with the parts of the hidden field that have passed
through other output channels of the analyzer.

If the detector is located at the output channel
through which the quantum object kernel has not
passed, then the detector experiences only a weak
effect from the hidden field that has passed through
this channel. The catastrophic process does not
develop in the detector, and the macroscopic effect is
not recorded. However, the reverse effect of the detec-
tor on the hidden field turns out to be significant. The
field in this channel loses coherence with the quantum
object kernel and the hidden field parts that have
passed through other channels.

If detectors are not placed in any of the channels of
the analyzer, then it is possible, in principle, to recon-
nect all parts of the hidden field that have passed
through different channels. They will coherently add
up, and the initial elementary state can be recreated. If
there is a detector in some channel, then the corre-
sponding part of the hidden field cannot take part in
the coherent summation. Effectively, from the view-
point of the elementary state of the quantum object,
this part of the hidden field is lost. A measurement
model similar to this one is described in [62].

Thus, a part of the hidden field that determines the
elementary state of a quantum object can effectively
“disappear” in two cases. Either the state of this part
PHYSICS OF PARTICLES AND NUCLEI  Vol. 53  No. 
of the field changes (with violation of coherence), or
nothing happens to this part of the field, but the state
of the quantum object kernel changes. In both cases,
the structure of the hidden field coherent to the kernel
changes. It is this field that determines the elementary
state of a quantum object. When the elementary state
changes, the quantum state naturally changes. This
change has all the markings of a quantum state col-
lapse in the measurement.

The hidden field performs the functions that are
usually attributed to hidden parameters. However,
unlike the situation with hidden parameters, here an
example of a hidden field is given. Therefore, there is
no problem of the existence of this field. All the argu-
ments that are often used against hidden parameters
have no probative force in the case of a hidden field.

In contrast to hidden parameters, a hidden field is
partially observable. It affects the behavior of the ker-
nel of a quantum object in the case when this kernel is
coherent to the hidden field. In turn, the detector of
the classical measuring instrument reacts to the ker-
nel. The classical instrument does not react in any way
to a hidden field that has lost coherence with the ker-
nel. However, this does not mean that the hidden field
has disappeared. It can manifest itself in the form of
dark matter or dark energy.

The idea that a quantum object consists of a kernel
and a hidden field allows us to give a clear interpreta-
tion, consistent with the principles of locality and cau-
sality, to a large number of quantum effects in which
these principles seem to be violated.

Let us start with the Aharonov–Bohm effect.

16. AHARONOV–BOHM EFFECT
The Aharonov–Bohm effect (AB effect) is one of

the key effects of quantum physics. It is closely con-
nected with a number of fundamental problems of
quantum theory. These include the problem of quan-
tum measurements, the relationship between quantum
quantities and their classical counterparts, and the
problem of locality and causality.

The effect was theoretically predicted in 1959 [63]
and received its first experimental confirmation a year
later [64]. However, many complaints have been made
about this result and a number of subsequent experi-
mental confirmations.

A very lively discussion developed, in which the
existence of the effect was questioned. Much later, in
1986, Professor Tonomura’s group [65] succeeded in
finally experimentally proving that the AB effect really
exists.

Already in [63], it was proposed to conclude from
the effect presence that “…unlike classical mechanics,
there exists an effect of potentials on a charged parti-
cle, even if in the area where it is located, all fields
(and, consequently, forces acting on the particle) dis-
appear,” and therefore “further development of the
3  2022
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Fig. 4. Schematic diagram of the AB effect.
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theory is necessary.” Two directions of this develop-
ment were proposed in the work. First, the locality
condition can be abandoned, and second, it is possible
to assign a special role to potentials in quantum theory.
In a recently published article by Aharonov and his
collaborators [66], the nonlocality is emphasized.
Here we focus on the second possibility.

The schematic diagram of the mental experiment
and the first one actually implemented is shown in
Fig. 4.

The experiment is as follows. A beam of electrons
with identical momenta falls on a biprism  from
the left. The biprism consists of an aluminized quartz
filament  with a diameter of 1.5 µm and two elec-
trodes  and . A thin solenoid of infinite length (in
the thought experiment) or a magnetized long rod
1 µm in diameter (in the real experiment) is placed in
the shadow of the filament . The filament and the
rod are perpendicular to the plane of the figure. To
simplify the mathematical calculations in the experi-
ment shown in the figure, plate I, perpendicular to the
plane of the figure, was taken as the electron source. In
the real experiment, an electron microscope was used as
the source, which rather would be well to depict as a dot.
However, since the distances  and  (  cm,

 cm) are much larger than the diameters of the
filament and rod, this introduces an insignificant dis-
tortion in the final result.

The filament  divides the incident electron
stream into two parts. One goes through the slit ,
the other through the slit . A small positive poten-
tial is applied to the filament, due to which, after
bypassing the filament  and the rod , these two
parts are combined into a single f lux of electrons scat-
tered in the biprism. Falling on the screen , these
electrons form interference fringes.

Outside the rod , the magnetic field strength is
zero. Therefore, according to classical electrodynam-
ics, the interference pattern on the screen should not
depend on the magnitude of the magnetic induction
flux passing through the rod . On the other hand, the
value  of the vector potential in the region of electron
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passage cannot be equal to zero everywhere, since,
according to the Stokes theorem, the integral of  over
any closed loop around the rod  must be equal to the
flux of magnetic induction through this loop. The
occurrence of the interference pattern dependence on
the magnetic induction flux is called the AB effect.

In the quantum consideration, the picture of the
process changes significantly. It is the vector potential

 that enters into the Schrödinger equation for an
electron, but not the magnetic field strength. There-
fore, the vector potential affects the electron behavior
even when the wave function of the electron is vanish-
ingly small in the region where the magnetic field
strength is different from zero. This gave grounds to
Aharonov and Bohm to assume the special role of
potentials in quantum theory. They even put this state-
ment in the title of their article [63].

As already mentioned, the AB effect immediately
provoked a lively discussion, the preliminary results of
which were summarized in Feinberg’s paper [67]. In
his article, Feinberg substantiates the assertion that
this role is not so special, and that something similar
can be seen also in the classical consideration. Next,
we will try to reveal the physical reasons for the influ-
ence of a magnetic rod on the behavior of scattered
electrons.

Let us first describe the dynamics in physical, intu-
itively comprehensible terms. Then, we will try to put
all this into a mathematical form. By assumption, the
considered physical system is homogeneous along the
axis perpendicular to the plane of the figure. There-
fore, we will assume that all events occur in the plane
of the figure. The consideration will start from the left
edge of the figure.

The source  emits a stream of electrons. As
explained in Section 14 dedicated to the atomic struc-
ture, this is not a set of free electrons, but a set of
tagged waves . All these waves have the same wave
vector  directed along the axis . Each wave has one
tag placed randomly. Further, each wave will be asso-
ciated with a Hilbert space vector. Therefore, from the
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very beginning, we will denote the waves by the same
symbols as the corresponding Hilbert space vectors.

The filament splits the wave into two coherent
parts:  and , which, respectively, will go to the
slits  and . An electron (tag) will randomly go with
one of the parts. When passing through the slits, the
wavevectors of the waves will receive random small
deviations in the direction of the axis . In addition,
Stokes’ theorem states that the magnetized rod affects
the structure of the electromagnetic field. In particu-
lar, it affects soft photons that form a tagged wave. As
a result, the waves  and , remaining coherent,
will acquire a phase difference. This can affect the
magnitude of wavevector deviations. Due to the posi-
tive potential on the filament , after passing through
the slits, the waves  and  coherently add up. In
the resulting wave, the wavevector will no longer be
directed along the axis . As a result, when soft pho-
tons hit the screen , they could form an interference
pattern on it. However, these photons have too small
an energy to leave a recorded trace.

At the same time, in each tagged wave, in addition
to soft photons, there is one electron. This electron has
enough energy to leave a trace on the screen in the
form of a dot. In reality, not a single tagged wave will
hit the screen, but an ensemble of these waves, each of
which contains one electron. These electrons will draw
an already visible interference pattern on the screen.
By virtue of what was said in Section 14, this pattern
should be an observable copy of an invisible interfer-
ence pattern formed by soft photons of one tagged
wave.

For an electron, the magnetized rod  is in the
shadow of the filament . Therefore, the electron does
not directly interact with the rod . On the other hand,
as already mentioned, any wave, including a tagged
one, is a relatively stable structure. This means that
between a set of soft photons and an electron included
in the same tagged wave, the interaction must be sig-
nificant. In other words, an electron interacts with a
magnetic rod through an intermediary. If we forget
about the mediator, then this interaction appears as a
nonlocal one. But locality, as a general principle of the
theory, is not violated.

Now let’s proceed to the mathematical calculation
of the interference pattern drawn by electrons. In the
light of what was said above, in this case, it is possible
to follow the soft photons of tagged waves rather than
the electrons. Ensembles of these waves will be
described by the corresponding Hilbert space vectors.
In our calculations, we will focus on relation (19) in
Section 5.

There, a functional was constructed that describes
the quantum average in the case when the commuta-
tive algebra defining the quantum state contains a
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one-dimensional projector. Let us start by construct-
ing a suitable projection operator .

As already was noted, in the algebraic approach, it
is necessary to choose a system of units so that all
observables become dimensionless. In the case under
consideration, it is convenient to choose a width of
each of the slits ( ) as the length unit,
and , as the unit of the wavevector.

The slit  will select soft photons in the wave,
which passed through it, the coordinate  of which lies
in the interval , where  is the radius of the fil-
ament  in units of . Therefore, the state of this wave
can be described by the vector

Similarly

As a result of the subsequent coherent addition of
these parts, the state of the wave will be described by
the vector

Here, the parameter  describes the shift of a phase
of wave  relative to a phase of wave . The value
of this parameter, according to Stokes’ theorem, is
determined by the magnetic f lux through the rod .

The main disputes between supporters and oppo-
nents of the AB effect focused precisely on this param-
eter. The fact is that Stokes’ theorem includes the vec-
tor potential  rather than the electromagnetic field
strength. On the other hand, the value  of the vector
potential is not uniquely determined but depends on
the chosen gauge. Therefore, opponents argued, a
vector potential cannot be an observable quantity and
cannot generate a physically observable effect.

Within the framework of the algebraic approach
used here, this reasoning is incompetent, since it is
possible to require definite values only from the
observables that are stable on the considered elemen-
tary states. Definiteness of values is not an obligatory
property of observables. A necessary property of
observables is that they belong to an algebra. It is quite
possible that some observables are not stable, but their
algebraic combinations are stable and have the definite
values.

It is this situation that is realized in the AB effect.
The change in the phases of each of the waves  and

, caused by the vector potential, does not have a
definite value, but the phase difference is a stable
observable and has a definite value. Note that a similar
situation is also characteristic of classical systems. The
speed of any one classical object does not have a defi-
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Fig. 5. Interference pattern in the scattering of electrons.

(a) (b) (c) (d) (e)
nite value (depends on the coordinate system), while
the relative velocity of two objects has a definite value
(it is a stable observable).

In Eq. (19), the projector operator  determines
the structure of the ensemble over which the observ-
able  is averaged. Accordingly, in our case, the oper-
ator  should be taken as this projector. As an
observable , we take the projector onto the state ,
in which the projection of the wavevector onto the axis

 has a definite value. In the coordinate representa-
tion, this state has the form 

In these notations, Eq. (19) takes the form
, which is equiva-

lent to

(61)
To rewrite formula (61) in dimensionless terms, it is

necessary to make the substitution .
Physically,  characterizes an angle of scattering of a
wave of soft photons. Accordingly,  has a meaning
of a density  of the number of soft photons scat-
tered through the angle . In Eq. (61),

By calculating the integral, Eq. (61) can be rewrit-
ten as

(62)

In the performed experiment, . Therefore,
we can put . The brightest part of the interference
pattern is the central one . The arrangement of
the fringes in it is controlled by the cosine. It can be
seen that with a change in the magnetic f lux (with a
change in ), the interference pattern shifts. It is this
shift that is the AB effect.

Formula (62) directly describes the interference
pattern that could be drawn by soft photons of one
coherent wave. Of course, the energy of these photons
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is too small to leave a visible trace on the recording
screen. However, as already was noted, when a large
number of tagged waves fall on the screen, tags (elec-
trons) statistically reproduce a visible copy of this
pattern.

Thus, we see that in order to explain the AB effect,
it is not necessary to invoke the assumption that the
quantum interaction is nonlocal. However, this non-
locality is required for other purposes. Namely, it is
required to justify the renormalization procedure
(elimination of ultraviolet divergences). In this case,
the nonlocality of the measurement procedure comes
into play. Any measuring device has finite dimensions
in four-dimensional space  and cannot capture the
details of the interaction at small distances. In the
renormalization procedure, just the indeterminacy
that arises in this case is used.

17. SCATTERING OF AN ELECTRON 
ON TWO SLITS

According to Feynman [69], this is “… such a phe-
nomenon that it is impossible, clearly, absolutely
impossible to explain in a classical way. In this phe-
nomenon, the very essence of quantum mechanics is
hidden.”

Despite this categorical statement by Feynman, let
us try to do it in a classical way. In other words, we
avoid using not very clear “quantum logic” but will try
to limit ourselves to the usual “classical logic.”

Of course, the use of classical logic does not make
scattering electrons to be classical particles. Their
quantum nature can be considered by treating them
not as free particles, but as tags in waves of unobserv-
able coherent soft photons.

Let us discuss the results obtained by the previously
mentioned group of Tonomura [70]. In these experi-
ments, the scattering of an electron beam in a biprism,
which is similar in its physical properties to a double-
slit screen, was studied.

A schematic diagram of the biprism is given in Sec-
tion 16. Only in this case there was no magnetized rod
(a). In addition, the intensity of the beam was so low
that, on average, there was less than one electron in the
setup at the same time. This made it possible to
neglect the influence of interaction of electrons with
each other on the experimental results. In addition, in
the experiment it was possible to fix a result of the pas-
sage of a small number of electrons.

The results of the experiment are shown in Fig. 5
borrowed from [70]. Individual photographs corre-
spond to different exposure times. Photo (a) shows
traces from 10 electrons; photo (b), from 200 elec-
trons; photo (c), from 6000 electrons; photo (d), from
40000 electrons; photo (e), from 140000 electrons.

It can be seen that when a small number of elec-
trons are recorded (photos (a) and (b)), no interfer-
ence pattern is visible. This picture appears only in the

M

F PARTICLES AND NUCLEI  Vol. 53  No. 3  2022



ALGEBRAIC AND STATISTICAL METHODS 751
case of recording of a very large number of electrons
(photos (d) and (e)).

This experiment speaks in favor of the fact that
wave properties do not appear in a single electron.
They appear only in an ensemble of electrons formed
in a special way. In the case under consideration, all
electrons had approximately the same momentum.

The tagged wave consists of a huge number of pho-
tons, each of which carries a very small portion of
energy. In this situation, to a good approximation, this
wave can be considered as a classical electromagnetic
wave. According to the laws of classical optics, it must
interfere on two slits.

The wave of soft bremsstrahlung photons itself does
not manifest itself in any way on the recording screen,
because these photons carry too little energy. A tag
leaves a trace on the screen. The tag, like a f loat on a
surface wave on water, can replace any photon of the
wave. It is natural to assume that the probability of
being replaced is the same for all wave photons. In this
case, first, traces from a small number of tags will be
randomly located on the screen. Second, traces from a
large number of markers on the recording screen will
be located with a density proportional to the probabil-
ity of soft wave photons to hit a given place. Accord-
ingly, an interference pattern will appear on the
recording screen. This is the result that was obtained in
Tonomura’s experiments.

This result can be confirmed by a quantum-
mechanical calculation performed within the alge-
braic approach that we used. However, a new calcula-
tion need not be carried out, but the result of the cal-
culation performed in the previous section can be
utilized.

Apart from the use of a source of electrons of very
low intensity, the only difference of the setup used in
the study of electron scattering on two slits, from the
setup in the experiment to study the Aharonov–Bohm
effect, is the absence of a magnetized rod. Therefore,
we can repeat all the calculations in the previous sec-
tion, while in the final result we can set  to zero.

As a result, for the density of the number of elec-
trons scattered through the angle , we obtain the
expression

(63)

Formula (63) itself describes the interference pat-
tern that could be drawn by soft photons of one coher-
ent wave. However, as already noted, the energy of
these photons is too small to leave a visible trace on the
recording screen. While a large number of tagged
waves fall on the screen, the tags (electrons) statisti-
cally reproduce a visible copy of this pattern.

In each individual event, the electron left a point
trace on the absorbing screen. This is in full agreement
with our presented picture of electron scattering. In
each individual event, we deal with one electron,
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which is a carrier of corpuscular properties and is
recorded as a point on the screen. Its accompanying
soft photons, which are carriers of wave properties,
have too little energy to leave any trace on the screen.
Thus, to interpret the result of the experiment, it is not
necessary to involve the assumption of the quantum
state collapse, which, from the viewpoint of classical
physics, seems to be extremely unnatural and contra-
dictory to the theory of relativity.

18. BEAM SPLITTERS
Most of the modern experiments that investigate

the locality and causality properties are carried out
with photons. Therefore, before the further consider-
ation of specific experiments, we describe the princi-
ples of operation of the two most commonly used opti-
cal instruments.

The first optical device is a polarizing beam splitter
PBS. It serves to separate the photon beam into two
subbeams polarized in two mutually orthogonal direc-
tions. The device geometry determines three orthogo-
nal directions (orthogonal polarization basis):  is the
direction of the incident beam,  is the horizontal
direction,  is the vertical direction. If the incident
photon beam is polarized horizontally, then after pass-
ing through the PBS the photons propagate in the
direction , if polarized vertically, then in the direc-
tion . If the incident beam is polarized at a definite
angle  ( ), then a part of the photons passing
through the PBS propagates in the direction  and
acquires the horizontal polarization, and the other
part, in the direction  and acquires the vertical polar-
ization.

As applied to an individual beam photon, this
physical phenomenon has essentially different inter-
pretations in the standard quantum mechanical
approach and in the described algebraic approach. In
the standard approach, it is preferable not to talk about
the polarization of an individual photon at all. If a
photon is known to belong to a polarized beam, then it
is said to have the corresponding polarization. If there
is no information about the prehistory of a photon,
then it is said that it has no polarization. It is said that
it acquired the definite polarization (horizontal or ver-
tical) only after passing through a PBS. This process is
random and is not caused by any physical reality.

In the proposed approach, the interpretation is
essentially different. Each photon is in a definite ele-
mentary state. This elementary state describes the
physical reality that predetermines a result of the inter-
action of a photon with a PBS for any orientation of
the horizontal and vertical directions, i.e., in any
polarization basis. Thus, it is predetermined in which
of the two possible directions the photon will propa-
gate after passing through the PBS for a given orienta-
tion of the polarization basis. However, if it is not
known in advance that in this basis the photon has a
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Fig. 6. A simple beam splitter.
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definite polarization (belongs to a beam having verti-
cal or horizontal polarization), then we cannot make a
corresponding prediction.

As a result of observing a photon that has passed
through the PBS, we acquire some information.
Namely, we find what polarization the photon had in
the polarization basis associated with the PBS. During
the passage through the PBS, the polarization of a
photon generally changes in an uncontrolled manner.
However, if PBS implements a reproducible measure-
ment, then the polarization does not change along the
directions of the PBS polarization basis. It is changing
in other directions. Thus, we can acquire information
about the polarization of a photon in any direction,
but only in one direction.

The second device is a (simple) beam splitter BS,
which serves to split a coherent photon beam into two
subbeams, or to mix two photon beams. Visually, this
device can be represented as a translucent plate (see
Fig. 6), on which beams of polarized photons are inci-
dent from two sides in the same plane perpendicular to
the plate and at the same angles.

In this case, the device geometry also determines
the polarization basis. We assume that the horizontal
direction lies in the plane of the beams, while the ver-
tical direction is perpendicular to this plane.

If photons from two beams fall on the plate not
simultaneously, then each of them, without a change
in polarization, either passes through the plate without
a change in phase or is reflected with a change in phase
by . These two options are random and have the
same probability. If two photons from different beams
fall on the plate simultaneously, then they interfere
according to the rule

(64)

In formulas (64),  means that a photon has
either horizontal polarization, i.e., is in a quantum
state , or vertical, i.e., is in a quantum state . In
every line of Eq. (64), the polarization on the left and
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on the right is the same, in different lines the polariza-
tions can be different. The index ( ) denotes that the
photon belongs to the up (down) beam, and the index
in (out) means that the photon belongs to the incoming
(outgoing) beam.

19. THE DELAYED CHOICE EXPERIMENT
The idea of tagged waves, in which sufficiently

energetic photons act as tags, makes it possible to give
a very illustrative interpretation of the so-called
delayed choice experiment.

In the traditional approach, the dual behavior of a
quantum system (wave or particle) is usually explained
by the influence of the environment. So, it is said that
when interacting with slits, the electron behaves like a
wave, and when interacting with a recording screen, as
a particle. To test this method of explanation, Wheeler
[71] proposed a thought experiment forty years ago,
which has recently been implemented in an almost
ideal form [72].

The schematic diagram of the experimental setup is
shown in Fig. 7. In the variant proposed by Wheeler,
instead of beam splitters  and , semitranspar-
ent mirrors appeared. The setup is a Mach–Zehnder
interferometer with long arms. In a real experiment,
they had a length of 48 m. At the classical level, the
principle of operation of the installation looks very
simple.

A beam of photons ( ) is directed to the input
translucent mirror (beam splitter ). In this mirror,
the beam splits into two coherent parts  and ,
which follow the paths  and , reflecting along the
way from the mirrors  and . There are two pos-
sible states of the setup. The first is when the output
mirror (beam splitter ) is absent. The interferom-
eter is said to be open. In this case, each part is found
in the corresponding detector (  or ). The second
state is that the output mirror is present (closed inter-
ferometer). In this case, coherent addition of both
parts of the beam occurs in the output mirror. The
result of this addition is determined by the fact that
when reflecting from the mirror, the phase changes by

, but when passing through the mirror, the phase
does not change. Taking this into account, it is ele-
mentary to establish that after addition in the output
mirror, the entire beam will arrive at the detector .

At the quantum level, the picture is much more
interesting. To get this picture in its pure form, the
beam intensity is sharply reduced so that no more than
one photon can be in the setup at the same time. Each
of these photons can have both corpuscular and wave
properties. We will assume that, depending on the
state of the environment (on the state of the experi-
mental setup), it exhibits either corpuscular or wave
properties. If corpuscular, then as a result of interac-
tion with the input mirror, the photon randomly
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Fig. 7. Schematic diagram of the delayed choice experiment.

P

Mb

Pb

BSin
Pa

Ma

BSout Db

Da
chooses one of the paths. If it has wave properties,
then in the input mirror the wave is divided into two
parts and propagates along both paths.

Let the state of the setup be such that there is no
output mirror. Then, with the corpuscular behavior of
the photon, one of the detectors will be triggered. By
fixing which of the detectors fired, we can determine
which path was chosen by the photon in the input mir-
ror. With wave behavior, both detectors must work
simultaneously. Now let the setup state be such that
the output mirror is present. Then, with the corpuscu-
lar behavior of the photon, one of the detectors will
again randomly fire. With the wave behavior the
detector  will be always triggered.

Thus, in order for the quantum picture to match
the classical one, in the absence of an output mirror,
the photon must behave like a particle, i.e., must
choose one of the paths. If the output mirror is pres-
ent, then the photon should behave like a wave and
propagate along both paths after the input mirror.

The choice of a separate path or both paths at once,
it seems, must made by the photon, at the moment of
passing the input mirror. To “disorientate” the pho-
ton, Wheeler suggested making the decision whether
or not to insert the output mirror after the photon had
passed the input mirror, and carried out that decision
before the photon reaches the location of the output
mirror. Thus, during the passage of the entrance mir-
ror, “the environment will still not be clear” for the
photon, However, in order to reproduce the classical
picture, the photon has to make the right choice every
time, i.e., it must guess in advance the whim of the
experimenter.

It proved to be very difficult to actually carry out
the manipulation of the mirror proposed by Wheeler.
It was necessary to keep within 160 ns, which a photon
spends on passing the interferometer base (48 m). The
experimenters were able to carry out all the required
manipulations in 40 ns. Of course, this cannot be done

bD
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with a translucent mirror. Therefore, instead of a mir-
ror, a beam splitter was used, which was switched on
and off by an electrooptical modulator. In this case,
the decision to turn the beam splitter on or off was
made by a random number generator. The geometry of
the setup was such that no signal propagating at a
speed of less than the speed of light could transfer
information about the decision made to the entrance
beam splitter until the photon under study passed
through it.

Despite all these precautions, the photon perfectly
predicted the decisions of the random number gener-
ator. This means that in the time interval between the
moments of passage of the input and output beam
splitters, the photon has no alternative to be localized
in one of the arms of the interferometer or in both at
once. In some mysterious way, both of these possibil-
ities are realized simultaneously. Formally, this does
not contradict the standard mathematical apparatus of
quantum mechanics. However, no clear physical pic-
ture of this phenomenon can be drawn up.

In contrast, in terms of elementary state, core, and
hidden field, the physical picture of the phenomenon
looks very simple. A photon entering the input beam
splitter interacts with it. Depending on the elementary
state of the photon, its core is either reflected in the
beam splitter or passes through it. At the same time, as
a result of the interaction, a hidden field is created that
is coherent to the core. In this case, the hidden field is
soft bremsstrahlung photons, and the core is a rather
hard recorded photon. The hidden field is divided into
two parts, one of which is distributed along one path,
the other part, along the other path. Thus, in the time
interval mentioned in the previous paragraph, the core
of the incident photon and one of the hidden field
parts are localized in one arm of the interferometer,
and the second part of the hidden field is in the other
arm. All parts of a photon retain coherence among
themselves.
3  2022
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Fig. 8. Scheme of the Vienna experiment.
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In the output beam splitter, both parts of the hid-
den field are coherently added, generating small sec-
ondary oscillations in the set of bremsstrahlung pho-
tons coherent to the core. These secondary oscillations
resonantly interact with the core. Considering the
phase shift between the hidden field parts, the result-
ing hidden field and the core after the output beam
splitter propagate towards the detector . When the
core hits the detector, the latter registers this fact.

When the output beam splitter is off, the core pro-
ceeds on the path selected in the input beam splitter
and enters one of the detectors, where it is recorded.
The part of the hidden field propagating along a differ-
ent path enters another detector. However, the detec-
tor does not react to the hidden field. In this case, the
picture looks as if the photon has only corpuscular
properties. Thus, the overall picture seems to be very
clear and fully consistent with the principles of locality
and causality.

20. ZEILINGER GROUP 
QUANTUM ERASER

The concepts of the core and hidden field make it
possible to give a quite illustrative interpretation of the
phenomenon, which is called the quantum eraser.

Let us first discuss the experiment of Zeilinger
group [73]. Two versions of the experiment were
implemented. The first one is Viennese with a base of
55 m. The second is Canaries with a base of 144 km.
The results of both experiments were identical, and we
will discuss only the first version.

The schematic diagram of the experiment is shown
in Fig. 8, borrowed from [73]. The recording elements
were located in three laboratories separated by dis-
tances which ensured that the experiments at different
laboratories were separated from each other by space-
like intervals. Based on this, the authors of the experi-
ment stated that their results contradict Einstein’s
locality condition. We will now see that contradictions
can be avoided.

bD
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The experiment uses a pair of photons: a signal
photon  and the surrounding photon . This pair is
in an entangled state

where  and  denote the horizontal and vertical
polarizations.

The source  of these photons is a nonlinear
crystal irradiated by an ultraviolet laser. Laser photons
are scattered in the crystal. As a rule, with this scatter-
ing, one photon at the input gives one photon at the
output. However, sometimes with much less probabil-
ity one photon generates two photons whose total
energy is equal to the energy of the incoming photon.
This phenomenon is called the parametric frequency
down-conversion. Depending on the properties of the
crystal, different types of correlations between the
polarizations of photons in the pair occur. If photons
are produced with orthogonal polarizations, then it is
said that this is a transformation of the second type.

One of the photons of the pair (photon ) is
directed to laboratory 1. The other (photon ) is
directed to laboratory 2. There it enters the electroop-
tical modulator EOM, which can be in two states: on,
off. Turning on and off is done by a random number
generator QRNG.

When the EOM is turned off, the photon  passes
through it without changing its polarization. When the
modulator is turned on, the cyclic polarization of the
photon  changes to linear. After the EOM modula-
tor, the photon  enters the polarization beam splitter
PBS2. Depending on its linear polarization, the pho-
ton  is directed either to the detector Det3 or to the
detector Det4.

The photon —a partner of photon  is directed
to the polarizing beam splitter PBS1. After this,
depending on its polarization, it is directed either to
the arm  or to the arm  of the interferometer. By
shifting the beam splitter PBS1, it is possible to change
the difference between the optical lengths of these
arms. Next, the photon enters a simple beam splitter
BS, after which it is directed either to the detector
Det1 or to the detector Det2.
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To collect statistics, the experiment is repeated
many times in two modes: EOM is on, EOM is off. In
both modes, the measurements are carried out for dif-
ferent shifts of the PBS1 beam splitter. The result of
the data taking is the following. When the EOM mod-
ulator is turned off, the probability of a photon  to
hit each of the detectors Det1 and Det2 is 1/2 and does
not depend on the position of the beam splitter PBS1.
When the EOM modulator is turned on, the probabil-
ity depends on the position of the beam splitter PBS1.
The graph of this dependence appears as a typical
interference pattern.

Simultaneously, the following was established.
With the EOM modulator switched off, the clicks of
the detectors Det3 and Det4 unequivocally fix the
arms  and , along which the photon  propa-
gates. When the EOM modulator is on, these clicks do
not provide this information.

Superficially, everything looks as if the random
number generator QRNG affects the behavior of pho-
tons that reach the detectors Det1 and Det2. In this
case, the following principle of complementarity is
valid. With the EOM modulator turned off, it is possi-
ble (using detectors Det3 and Det4) to obtain infor-
mation on which path the photon  propagates, but
no interference pattern occurs. When the EOM mod-
ulator is on, information about the path of propaga-
tion of photon  is erased, but an interference pat-
tern appears. It seems that the principle of causality is
violated.

Now we will see that such a conclusion can be
avoided. We will assume that the source (S) emits not
individual photons  and  in some quantum states,
but tagged waves, in which these photons are tags. As
noted earlier, when collecting statistics, a definite
coherent quantum state corresponds to the resulting
ensemble of tags. The ensemble of soft photons, which
forms a coherent de Broglie wave, corresponds to the
same quantum state. Mathematically, a quantum state
can be described by a Hilbert space vector, but Hilbert
space is ill-suited for describing local properties.

In contrast, a soft photon wave is a physical object
with well-defined local properties. Therefore, we will
try to trace the relation between mathematical opera-
tions on Hilbert space vectors and physical operations
on the corresponding wave of soft photons.

Let us first consider the case when the EOM mod-
ulator is turned off. After the EOM, the wave with the
marker  enters the polarizing beam splitter PBS2.
Depending on the polarization, it will go either to the
detector Det3 or to Det4. For definiteness, we will
assume that the wave with polarization  hits the
detector Det4. In this case, a click of the detector Det4
will mean that the wave with the marker  emitted by
the source (S) had a polarization , while its partner,
the wave with the marker , had a polarization .
Accordingly, after passing through the polarization
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beam splitter PBS1, it will go to the arm  of the
interferometer. Let us denote the quantum state vector
of this wave as .

Along the arm , this wave will reach a simple
beam splitter BS. In this case, the phase of the wave
will change by an angle , the value of which depends
on the arm length. In the beam splitter BS, the wave is
split into two parts. Half of the soft photons will pass
through without changing the phase as a wave 
going to the detector Det1, the other half will be
reflected with a phase change of  and will go to the
detector Det2 as a wave . For each wave photon,
the probability of hitting either of the two detectors is
1/2 and does not depend on the angle .

In terms of the Hilbert space, this process is as fol-
lows. Phase shift: . Passage of a beam
splitter BS:

(65)

Here

where a click of the detector Det(i) is the value 1 of the
observable . Obviously, .

Now consider the case when the modulator is on.
For definiteness, we assume that the modulator trans-
forms right-hand polarized photons into horizontally
polarized photons, and left-hand polarized photons
into vertically polarized ones. In this case, a click of
the detector Det3 means that when a photon  was
emitted from the source , it had a polarization .
Accordingly, its partner photon  must have polar-
ization . Similarly, a click of the detector Det4 indi-
cates that the photon  has a polarization .

When the modulator is on, an interference pattern
is observed. However, it is visible only after collecting
statistics, i.e., when we are dealing with ensembles of
events rather than with individual events. In the case
under consideration, these will be quantum ensembles
for which Postulate 6 of Section 3 is valid.

Recall that a functional was constructed there,
which describes the quantum average in the case when
the commutative algebra defining the quantum state
contains a one-dimensional projector.

For example, consider the case when the detector
Det3 clicked. This means that the corresponding pho-
ton  has a polarization . Dark (bremsstrahlung)
photons coherent to it will also have polarization . In
our approach, this does not mean that they do not
have any linear polarization. This fact means some-
thing else: in the set of these left-handed photons, half
of the photons have a polarization  and the other half
have a polarization .
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As a result, at the output of the beam splitter PBS1
we will have the following picture. The photon  will
go along one of the paths,  or , while the wave of
dark photons coherent with it will break into two parts.
One of them will follow the path  and the other will
follow the path . Immediately after the beam split-
ter PBS1, photons in different parts will have orthogo-
nal polarizations. However, after passing through the
polarization controls FPS, all photons will become
equally polarized.

Incident on the beam splitter BS, both waves will
add up coherently if the shift between phases is consid-
ered. This shift depends on the difference between the
optical lengths of paths  and . Consequently, the
number of wave photons that hit the detector Det1 and
the detector Det2 will depend on the phase shift.
Since, when collecting statistics, the probability of a
marker to hit each of these detectors is equal to the
probability of a wave photon to hit this detector, an
interference pattern will be observed when the EOM
modulator is on.

Again, let us see how this physical process can be
represented in terms of the Hilbert space. At the input
of the beam splitter PBS1, we have a soft photon wave,
which is described by the vector

(66)

Further, in a similar situation we will say that we
have a wave (66). The beam splitter PBS1 converts it
into the wave

After the regulator PPC, the waves  and  will
have the same polarization. Due to a shift of the beam
splitter PBS1, at the input of the beam splitter BS, we
will have the wave

According to Eq. (65), the beam splitter BS con-
verts it into the wave

This implies

With the click of Det4,  and  change places.
The EOM modulator has no effect on the value of

the observables  and  for each specific photon (s).
It affects a set of events over which the values of these
observables are averaged. Since data processing is car-
ried out after the end of all stages of the experiment, it
is completely indifferent how the individual stages are
separated from each other.
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Thus, there is no contradiction between Einstein’s
principle of causality and the results of this experi-
ment.

21. KIM GROUP’S QUANTUM ERASER

Let us now consider an experiment carried out by
Kim’s group [74]. In this experiment, events that are
correlated with each other are not separated by a
spacelike interval. This experiment is an example of a
delayed choice experiment in which the future seems
to influence the past.

The schematic diagram of the experiment is shown
in Fig. 9, borrowed from [74]. This experiment also
uses entangled photon pairs obtained using the para-
metric frequency down-conversion of the second
type. An ultraviolet laser irradiates a nonlinear BBO
crystal through a double-slit grating in two regions A
and B. In each individual event, one of these regions is
a source of an entangled pair of photons: a signal pho-
ton  and the surrounding photon . The photon 
is directed to the lens LS, in the focal plane of which
the detector  is located. This detector can move
along the focal plane and record the number of pho-
tons  incident on different points of the plane.

The photon  is directed to the interferometer
with arms of the same optical length. The interferom-
eter consists of a prism, three simple 50 : 50 beam
splitters (BSA, BSB, BS) and two mirrors  and .
Since the mirrors produce the same shifts of the phase,
these shifts can further be ignored. After passing
through the interferometer, the photon  enters one
of the detectors  (the detector  is not
shown in the figure). The signals from these detectors
and from the detector  are fed into a coincidence
circuit, which makes it possible to determine for each
photon (s), which of the detectors  its
partner, the photon (e), has hit. The overall dimen-
sions of the installation are chosen such that the time
of passage of a photon (e) to the detector  is much
less than the time of passage of its partner (e) to the
recording detector

Let us follow an entangled pair of photons (s) and
(e). Let the pair be created in region A. Photon (s),
having passed the lens LS, enters the detector . Its
partner (e), reflected from the prism, hits the beam
splitter BSA. After the beam splitter, it will hit the
detector  with a probability of 0.5, where it will be
recorded. With the same probability, this photon will
go to the mirror , after which it will fall into the
beam splitter BS. After this beam splitter, it will again
fall into the detector  with a probability of 0.5,
where it will be recorded. With the same probability, it
will go to the mirror , after which he will hit the
detector .
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Fig. 9. Scheme of the experiment of Kim’s group.
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A pair created in region B behaves similarly. The
only difference is that instead of a detector , a pho-
ton (e) can enter detector . Thus, a click of detector

 unambiguously indicates that the pair was created
in area A, while a click of detector  unambiguously
indicates that the pair was created in region B. Clicks
of detectors  and  give no information about the
place where the pair was created.

An analysis of the detector operation results shows
that if events with clicks of the detector  or detector

 are selected, then the detector  does not record
any interference pattern. Let us pay attention to the
fact that in these cases it is uniquely known in which
region the photon pair was created.

If events with clicks of detector  or detector 
are selected, then the detector  reproduces the inter-
ference patterns. In these two cases, information about
the place of the creation of the pair turns out to be
erased.

Such an analysis of the experimental results
allowed the authors to conclude that if information
about the production place of a pair cannot be
obtained from the results of the experiment, then an
interference pattern takes place, and if this informa-
tion can be obtained, then there is no interference pat-
tern. Thus, it seems that the presence or absence of an

3D
4D

3D
4D

1D 2D

3D
4D 0D
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0D
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interference pattern is determined by the results of
operation of the detectors , and on the
other hand, the interference pattern itself is built from
the detector readings that were obtained before the
detectors were triggered. In other words, indeed,
everything looks as if the future influences the past.

Now let us see how the experiment results can be
interpreted in terms of the concept of tagged waves. We
will assume that it is tagged waves, in which the
observed photons are tags, rather than individual laser
photons fall on the lattice along the axis z. Let us
denote the width of each slit in the lattice as a, and the
distance between the slits as r. Let us direct the axis x
perpendicular to the slits in the lattice plane.

It is clear that only the waves whose tags passed
either through one slit or through another one will take
part in the formation of the interference pattern. The
interference pattern itself is determined by a probabi-
listic distribution  of projections of the tag momenta
onto the axis x. Thus, a lattice with two slits will form
an ensemble of physical systems that will leave traces
on the recording screen.

Each of these systems is described by a large num-
ber of observables related to both the tag and wave
photons. In each this system, we single out a subsys-
tem with observables:  and . Strictly speaking,
these observables are not elements of the -algebra,

1 2 3 4, , ,D D D D

xk

xk x̂
*C
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but their spectral projectors  and  are the
-algebra elements. Recall that in the theory of self-

adjoint operators in a Hilbert space, each section of
the operator spectrum is associated with a definite
projector operator.

A two-slit lattice selects subsystems in which tags
pass through one or another slit. This means that when
passing through the lattice, the coordinate of any of
these tags will satisfy the condition

(67)

and these tags will have the same value of the observ-
able —the projector corresponding to a region in
the spectrum (67). So, the lattice will form a quantum
ensemble (class of equivalence of elementary states).
In this ensemble, the probability distribution must sat-
isfy Postulate 6 from Section 3, and we can use the
Eq. (19)

This formula involves operators of the exact repre-
sentation of the -algebra in the Hilbert space, there-
fore we can perform further mathematical calculations
using the standard technique of quantum mechanics.

Since we are only interested in the general view of a
picture at the screen, we somewhat idealize the exper-
imental conditions. In particular, we will assume that
when a pumping photon decays into photons  and
(e), both energy and momentum are conserved, and
they are distributed equally between these photons. In
reality, this is true only on average. For more detailed
calculations, it is possible to use the technique consid-
ered in [75].

Let us first follow the events when the detector 
is clicked. We will trace tagged waves, but, just as in the
previous section, we will depict them as Hilbert space
vectors describing the quantum state of these waves.
Again, these vectors will be called waves. After passing
through the lattice, we will deal with two waves

(68)

Here we introduced two functions:

and

In (68), the first term corresponds to the wave with
a tag passing through the slit A, and the second term
corresponds to the wave with a tag passing through the
slit B. Further, the functions  and  will play
a role of wave functions of the corresponding quantum
states in the x-representation. After the BBO crystal,
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each of the terms in (68) will describe two waves with
tags (e) and (s) coming out of region A or region B.

Lest the formulas be cluttered up, we will further
omit the terms corresponding to the waves going to the
detectors  and . After passing the beam splitters
BSA, BSB and BS, there will be another separation of
the tagged waves into waves in which photons (e)
propagate towards the detector , or detector . The
result of this separation in terms of Hilbert space vec-
tors can be represented as follows:

where we considered a phase change of the wave
tagged by the photon (e) upon reflection in the beam
splitter. If we select the events in which the detector 
is clicked, then we get an ensemble of waves tagged by
photons (s), which is described by the vector

(69)

In terms of probability theory (see, e.g., [4, 21]), this
ensemble is described by the conditional probability

In this formula  is the probability of the event
,  is the probability of the simultaneous

implementation of events  and . Although the term
“simultaneous” is used here, it has nothing to do with
time. It means that both events occurred, while in
what sequence, or with what time interval they
occurred, is completely indifferent.  is the
probability of an event  given that the event  also
occurred. In our case,  is the probability of
clicking of the detector .

We can easily calculate —the condi-
tional average of the number of photons (s) having the
x-projection of momentum in the interval —pro-
vided that the photon (e) hits the detector . To this
end, we use Eq. (19), in which we substitute the oper-
ator  as a projector , while 
we substitute as . In this case, Eq. (19) can be rewrit-
ten as

(70)
Here

By integrating, we get
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Substituting , this formula can be
given the form

(71)

Here,  is the average density of the number of
photons (s) that hit the point x of the recording screen,
f is the focal length of the lens, .

Under the condition that the tag (e) is recorded by
the detector , we similarly obtain for the density of
the number of photons (s) falling at the point x of the
recording screen, we obtain the expression

Now consider the events when the detector  is
clicked. Again, omitting the waves with the tag (e),
which go to the detectors , , and , in this case,
instead of Eq. (69), we will have

Accordingly, for the conditional average number of
photons (s), for which the x-projection of the momen-
tum falls into , provided that the photon (e) is
recorded by the detector , instead of Eq. (70), we
obtain

(72)

The factor 1/2 on the right-hand side of this for-
mula appeared due to the fact that in this case only half
of the pumping photons contribute to the average
number of coincidences: these are photons that have
passed through the slit A. In the experiment, when cal-
culating the number of coincidences, the number of
pumping photons was taken as the initial quantity.

In Eq. (72),

Thus,
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For events when the detector  is clicked, the cal-
culations and results are similar.

The presented calculation results are in good agree-
ment with the experimental results given in [74]. How-
ever, the conclusions that follow from these results are
quite different. The results of the operation of the
detectors , ,  and  in each specific elemen-
tary event do not affect the operation of the detector

 in any way. They influence the statistical process-
ing of these results when we move from elementary
events to random events. The latter most essentially
depend on the fact of which elementary events are
included in the random event of interest to us.

The probability of a random event may have noth-
ing to do with the localization of individual elementary
events. Thus, the results of the work of Kim’s group in
no way contradict Einstein’s principle of causality.

22. ENTANGLED STATES, 
QUANTUM TELEPORTATION

When discussing the problems of locality, the most
interesting and mysterious are the so-called entangled
states. The term was once introduced by Schrödinger
[76], and in the original it appeared as: “Ver-
schrankung”. The translation—“interwoven states”—
would be more accurate, but the term “entangled
states” has taken root in the Russian-language litera-
ture, though it sounds somewhat ambiguous. For a
system consisting of two particles, each of which can
be in two quantum states, orthogonal to each other, 
and , the examples of typical entangled states are

(73)

Here  depict the state vectors in the Hilbert
space of a two-particle system, while  and  are
the state vectors of the 1st and 2nd particles in the Hil-
bert space of one-particle systems,  is the direct
product of the corresponding vectors. The quantum
states depicted in formulas (73) are often called Bell
states.

A distinctive feature of entangled states is that clas-
sical instruments can be used to prepare the corre-
sponding pure states of a many-particle (in the case of
formulas (73) two-particle) system. However, even
after this it is impossible to say, in what pure quantum
state each of the particles, which make up the system,
is. On the other hand, if further measurements are
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made on one particle, then it is possible to establish
not only the pure state of this particle, but also the pure
quantum state of its partner, which was not subjected
to measurement.

For example, if it is known that a two-particle sys-
tem is in a quantum state , then nothing can be
said in which of the two possible states,  or , each
of the particles is. However, if as a result of a subse-
quent measurement on the 1st particle it is found that
it is in the state , then with a probability of 1 it can
be predicted that during the measurement on the 2nd
particle we will find it in the state .

This state of affairs in the standard approach to
quantum mechanics is fixed in the form of the so-
called projection principle [1]. According to this prin-
ciple, a measurement carried out on a part of the phys-
ical system under study leads to a change (reduction)
in the quantum state of the entire system. In this case,
the characteristics of not only the part of the system
that was affected by the measuring device, but also the
other part, which was not subjected to this impact,
may change. Thus, in the case considered above, as a
result of measuring the characteristics of the 1st parti-
cle, the state  is reduced (collapses) into the
state .

As a recipe for a mathematical description of the
effect of a measuring instrument on a quantum object,
the projection principle generally works very well.
However, it is not possible to give this principle any
visual physical interpretation consistent with the the-
ory of relativity in the standard approach.

In his famous book [1], von Neumann introduces
the notion of two types of influence on a physical sys-
tem. As a result of the impact, which von Neumann
attributed to the second type, the quantum state
changes according to the Schrödinger equation. This
change obeys the principle of causality and is unam-
biguously predictable. This is how the quantum state
of the system changes when it interacts with another
quantum system or an external classical field.

Von Neumann attributed an impact of a measuring
device on a physical system to the first type. With this
impact, the quantum state changes randomly and,
according to von Neumann, is causeless. It looks very
strange, since any measuring device can be considered
either as some kind of quantum system, or as an exter-
nal classical field. The only distinctive feature of the
interaction of the measuring device with the physical
system under study is that as a result of this interaction
we obtain some information about the system. In this
regard, von Neumann introduced the concept of psy-
chophysical parallelism. According to this principle,
in describing the impact of the first type, the inner self
of the researcher plays a fundamental role. By this, von
Neumann tried to explain the unusual properties of
this type of impact.
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Unlike other reasoning of von Neumann, this
argument does not seem to be in any way convincing.
Subsequently, numerous attempts were made to sub-
stantiate the projection principle, but all of them, to
put it mildly, from a physical point of view, seem dis-
putable.

Further, we will not discuss the projection princi-
ple in general (on this subject, see [10]), but will focus
our attention on the problems that arise when applying
this principle in one specific case, namely, in the so-
called quantum teleportation.

Since the state is usually used when discussing the
Einstein–Podolsky–Rosen paradox, in modern liter-
ature this quantum state is often called an EPR state,
and the corresponding two-particle system is named
an EPR pair.

The idea of the nonlocal nature of quantum mea-
surements gave rise to great hopes for the possibility of
a fundamentally new way of transmitting information
(see, e.g., [78]). In the scientific literature, this
method is called “quantum teleportation.” Numerous
experiments have already been carried out, which
seem to confirm these hopes. At the same time, the
element of mystery inherent in the “teleportation”
concept is also preserved in the scientific literature.
Next, we will try to remove this veil of mystery. See
also [20] on this subject.

The essence of the teleportation phenomenon can
be understood by considering a thought experiment, a
scheme of which is shown in Fig. 10.

Here  is the source of the initial state;  is the
source of EPR pairs;  is the Bell state analyzer
(Alice);  is the unitary converter (Bob);  is the
classical communication channel; {1} is the carrier of
the initial teleportable state; {2}–{3} is the EPR pair;
{4} is the carrier of the final teleportable state.

In the standard form, the description of the tele-
portation phenomenon is as follows (see, e.g., [80]).
The source S emits a particle {1} in the quantum state

, which is matched by the Hilbert space vector
, where α and β are complex num-

bers satisfying the condition . Particle {1}
is heading towards Alice. The EPR source emits an
EPR pair {2} and {3} in the state  (vector ,
see Eq. (73)). One of the particles ({2}) of the pair goes
to Alice, the other particle ({3}) goes to Bob.

According to the standard rules of quantum
mechanics, the state of a three-particle system (parti-
cles {1}, {2}, {3}) is described by the quantum state
vector . This vector can be repre-
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Fig. 10. Scheme of quantum teleportation.
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sented as an expansion in terms  the Bell states of
particles {1} and {2} (see Eq. (73)):

(74)

Alice, by using the analyzer , determines, in what
of the four possible Bell states, the particles {1} and {2}
are, which have fallen to her. Let, e.g., them be in the
state . After this measurement, according to the
projection principle of standard quantum mechanics,
the three-particle state is reduced as follows

(75)

Through the classical communication channel,
Alice reports the result of her observation to Bob. Hav-
ing received the message that Alice has recorded the
state , Bob, without doing anything, further
transmits the particle {3}. This particle, according to
the right-hand side of Eq. (96), will be in the state

.

The quantum states described by the vectors 
and  coincide. Initially, there was no correlation
between the quantum states of particles {1} and {3}.
Alice manipulated only particles {1} and {2}. At the
moment of these manipulations, the particle {3} could
be in the region of space , the space-like region of
Alice’s manipulations. However, particle {3} somehow
mysteriously turned out to be in the quantum state that
particle {1} was in. In this case, neither Alice nor Bob
could know what quantum state the particle {1} was in.

If Alice gets a different result for {1} and {2} and
reports it to Bob via the classical communication
channel, then Bob will have to work a little. If the
result is , then Bob should perform a unitary
operation on particle {3}, which reduces to the trans-
formation . If the result is , then a
transformation  is necessary. If the result is

, then the transformation  is
needed. After these operations, particle {3} will turn
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out in the state  that coincides with the quantum
state . In these cases, due to the additional opera-
tions available, the paradoxical nature of the situation
proves to be veiled. However, from the ordinary view-
point, it looks as absurd as in the first case.

The standard words that are pronounced in this sit-
uation are something like this: “A lot of what is absurd
from an ordinary viewpoint is the norm in the quan-
tum world.” However, one can do without this weak
consolation.

For greater clarity, we will assume that the two-
particle system under consideration consists of two
particles, each of which has a spin equal to 1/2. In this
case,  means the quantum state of the first particle
with the spin projection on the selected axis (axis )
equal to +1/2, and , with the spin projection equal
to . Similarly for the second particle.

Then, when using the concept of elementary state,
the fact that the source  emits particles in a definite
quantum state means the following. The source emits
a beam of particles whose elementary states are differ-
ent, but they all belong to one specific equivalence
class. The beam need not be localized either in time or
space. The equivalence class may not be known to
anyone. The latter means that the numbers α and β
appearing in the expansion of , in terms of the
basis , , may not be known, but they are the same
for all beam particles (with an accuracy to a common
phase factor). Therefore, there is such a coordinate
system in three-dimensional space in which all parti-
cles of the beam will have a spin projection on the axis

 equal to +1/2. In this coordinate system,
 is matched by ;  cor-

responds to the state vector . The  axis
can be directed so that the vector  was
matched by , and the vector  was
matched by .

Each particle of the beam emitted by the source 
is analyzed by Alice together with the particle of the
EPR pair emitted by the source . Different EPR
pairs are in different elementary states, but in each pair
the elementary state of one particle is a negative copy
of the elementary state of another particle. A physical
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system consisting of an analyzer and a particle {1} can
be considered as a complex measuring instrument.
With this device, Alice sorts particles {2} into four
groups. Each group includes particles {2}, which,
together with the particle {1}, are in a two-particle ele-
mentary state belonging to one of the four quantum
Bell states.

Since each of particles {2} has an EPR pair partner,
this sorting can be considered as a splitting of the beam
of particles {3} into four subbeams. According to
Eq. (95), each such subbeam will contain particles {3}
that have the definite value of the spin projection
either onto the axis  or onto the axis . This is
because the elementary state of each particle {3} is
strongly correlated with the elementary state of the
partner-particle {2}.

Since Alice determines into which group each of
particles {2} fell, she receives information about the
group, into which the corresponding particle {3} fell.
Alice communicates this information to Bob through
the classical communication channel. This informa-
tion is enough for him to choose the desired unitary
transformation. With the help of this transformation,
he changes the elementary state of particle {3} such
that it turns out to be in a quantum state .

By her measurement, Alice did not affect the ele-
mentary state of particle {3} in any way, she only
obtained some information about this elementary
state with the help of indirect measurement, which she
shared with Bob. After that, Bob performed some
manipulations on particle {3}. As a result of these
manipulations, the elementary state of particle {3} did
not become an exact copy of the elementary state of
particle {1}. Therefore, the term “teleportation” in this
case does not seem particularly successful. Bob only
succeeded in driving particle {3} into the same equiva-
lence class as particle {1}.

A real experiment in which the quantum teleporta-
tion was observed (see [81]) was carried out with pho-
tons. A discussion of this experiment using the con-
cept of an elementary state can be found in [20].

23. COMPUTER MODEL OF THE QUBIT

Recently, a new scientific direction that lies at the
intersection of quantum physics and information the-
ory, the physics of quantum information, has been
intensively developed (see, e.g., [78]).

In classical information theory, a bit is accepted as
an elementary unit. This is information available in
any classical system, which can be in two mutually
exclusive states: yes–no, 0–1, on–off, etc.

The elementary unit in quantum information the-
ory is called a qubit. It is believed that the qubit carrier
is a quantum system which has an observable that can
take two values. For example, a particle with spin 1/2
can be in states in which the spin projection onto the

z x

Ψ1
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selected axis is either +1/2, or –1/2. A photon can
have a helicity equal to either +1, or –1, etc.

At the same time, it is believed that, unlike a classi-
cal system, a quantum system can be in a superposi-
tion of these states. Therefore, a qubit can potentially
contain much more information than a bit. It is with
this property of quantum systems that very high hopes
are associated for their practical use in the field of stor-
age, processing, and transmission of information.

From the viewpoint of information theory, the
physical realization of the information carrier is com-
pletely irrelevant. Therefore, further, we will use the
terms bit and qubit to refer not only to units of infor-
mation, but also to carriers of the corresponding infor-
mation. Potentially, a qubit seems to have great advan-
tages over a bit. However, at the current level of tech-
nological development, it is practically very difficult to
work with qubits. In particular, the problem of deco-
herence is very acute.

Here we will try to replace the qubit with the so-
called soft qubit, or squbit for short. On the one hand,
the squbit must carry the same observed information as
the “hard” qubit, and on the other hand, the squbit must
be capable of being implemented as a computer program.
Unlike the state of a “hard” qubit, a computer program
can be stored almost indefinitely and can be transmitted
almost without distortion over any distance.

Technically, working with a squbit is incomparably
easier than with a qubit. Therefore, the squbit is a
much more convenient object for experiments. Of
course, there is a danger that in the squbit we have not
reproduced all the observable properties of the qubit.
Therefore, the final word remains with qubit experi-
ments. However, squbit experiments can be very good
blueprints for qubit experiments. In addition, these
experiments may cast doubt on many of the stereo-
types that have developed in large numbers in quan-
tum physics.

24. SINGLE SQUBIT
In the physics of quantum information, it is

believed that the (pure) state of a qubit is described by
a vector of a single-particle Hilbert space. However,
this vector is related to the results of the experiment in
a very indirect way. Namely, it is considered that the
mathematical expectation of a definite self-adjoint
linear operator on this vector is equal to the average
value of the corresponding observable obtained in a
series of experiments.

From the experimental data, this average value is
calculated according to the laws of standard classical
probability theory. This means that within the Kolm-
ogorov approach, each result of a single experiment
corresponds to an elementary event. However, it is
believed that Kolmogorov’s probability theory is not
applicable in quantum physics. Indeed, the standard
mathematical apparatus of quantum mechanics does
F PARTICLES AND NUCLEI  Vol. 53  No. 3  2022
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not contain an ingredient that has the properties of an
elementary event. On the other hand, an elementary
event is the basic concept of Kolmogorov’s probability
theory.

In the previous sections, a new approach to quan-
tum mechanics was developed, in which a new con-
cept of “elementary state” was introduced. On the one
hand, this state is associated with a more complete
description of a quantum system than a quantum state.
On the other hand, it has the properties of an elemen-
tary event in Kolmogorov’s probability theory.

Accordingly, we will assume that a single squbit
should be characterized in more detail by an elemen-
tary state rather than by a quantum state. This will
make it possible to work with squbits using Kolmog-
orov’s theory of probability.

Just like a normal qubit, a squbit can be imple-
mented in a variety of ways. We will use the method
proposed in [11]. In this version, the squbit appears as
a multilayered, gray-colored sphere of unit radius.
Each layer is colored as follows. The positive pole is
black , the negative pole is white . Intermedi-
ate regions have a gray color, the saturation of which
with black changes according to the law

where  is the unit radius-vector drawn to the current
gray point, while  is the unit radius-vector drawn to
the positive pole. Different layers may have different
orientations. In addition, with each layer having a
number , a function  is associated, which, for
all , firstly, satisfies the conditions

(76)
secondly, one of the conditions

(77)
or

(78)
The layer for which condition (77) is satisfied will

be called active, while that for which condition (78) is
satisfied, we will call passive.

When looking at the function , an association
immediately arises with the distribution function of
the average value of the spin projection on the direc-
tion  for a particle with spin 1/2, which is in a fixed
quantum state. This is quite natural. If we want the
squbit to model the properties of the qubit, then those
properties should somehow be embedded in the defi-
nition of the squbit. It is highly desirable that this defi-
nition (in particular, function ) be the same for
all processes that we are going to describe using squ-
bits. Otherwise, we will deal with the simulation of a
separate quantum process (which seems to be a much
less interesting task) rather than with the simulation of
a qubit.
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Further, for a squbit, the terminology is used,
which is used for the qubit realized as a quantum par-
ticle with spin 1/2. The elementary state of a squbit is
fixed uniquely if  and  are given for all  and
. This requires an infinite amount of information.

Therefore, it may seem that the very concept of an ele-
mentary state is rather useless. In reality, this is not the
case due to the specific nature of quantum measure-
ments. As we will see below, in most cases, to obtain
the numerical value of the observable under study, it is
sufficient to know the characteristics of a small num-
ber of external layers. In addition, since in each indi-
vidual measurement it is possible to measure the spin
projection  in only one direction , then to fix the
measurement result it is sufficient to fix values of the
functions  only for this direction .

The statistical nature of the measurements is easy
to visualize, assuming the presence of a certain “host
of an elementary event,” which personifies all uncon-
trolled effects on the object under study. This host
selects one particular event from all the allowed ele-
mentary events. In the case of a squbit, it chooses 
and , keeping  fixed. In a computer implemen-
tation of a squbit, a random number generator can act
as this host.

We assume that the instrument measuring the spin
projection  responds only to the active layer. If

, then , if , then
. Thus, the result of a particular measure-

ment depends on one controlled parameter  (con-
trolled by the measuring instrument) and two uncon-
trolled parameters: the number of the active layer 

and the pole of the active layer . These two param-
eters are determined by the parameters  and

, which are chosen by the host.
In Kolmogorov’s theory of probability, no proba-

bility measure can be assigned to an elementary event
(in our case, an elementary state) in the general case.
These measures can be attributed only to some subsets
of the set of elementary events. These subsets must
form a σ-algebra (see Section 4). A distinctive feature
of quantum systems is that it is impossible to construct
a general σ-algebra for them, which would make it
possible to describe the probabilities of events con-
taining the definite values of incompatible observables
(see [9, 20]). For each group of compatible observ-
ables, its own σ-algebra should be constructed. For
squbits, as generators of these σ-algebras, the sets of
elementary states can be taken (see [11]), for which

 lie inside small solid angles , while ,
inside small intervals . For each value r, its own σ-
algebra and, accordingly, its own probability measures
should be constructed. In numerous “proofs” of the
assertion that quantum distributions cannot be repro-
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764 SLAVNOV
duced within the Kolmogorov probability theory, it is
regularly forgotten, first, that the σ-algebra must be
fixed, and second, that it cannot be fixed for incom-
patible observables. For example, in the proofs of var-
ious versions of Bell’s inequalities, there is even no
mention of σ-algebra, though σ-algebra is the basic
concept of Kolmogorov’s probability theory.

Let us now describe the effect on the squbit, which
is implemented by a device that is analogous to a
device that is called in optics a polarization beam split-
ter PBS. In optics, this device splits an unpolarized
beam of light into two beams polarized in two orthog-
onal directions. In our case, we will assume that the
geometry of the device prefers a definite direction n
(a unit vector) and divides the squbit ensemble into
two subensembles  and . For each individual
squbit, the measurement result is determined by the
actions of the host of the elementary event (random
number generator). The host generates values  and

 for the first squbit layer. If ,
then PBS records the value  and directs

the squbit to the sub-ensemble . If
, then PBS records the value

 and directs the squbit to the subensemble

. If , then the PBS does not
record any value, but makes a second attempt, by
going to the second layer and repeating the whole pro-
cedure. From a physical point of view, the host must
first generate a large number of layers, and only then
should these layers be checked for activity. However,
from the computer’s point of view, this sequence is
associated with a waste of resources. Note that the
parameters of the second layer  and  do not
depend on the values of the parameters of the first
layer. The process continues until a definite value 
is registered for the squbit under investigation. Theo-
retically, this may take an infinite number of attempts.
However, in practice, the probability of an event with
a large number of steps proves to be extremely small.

At first glance, it seems that subensembles  and
 correspond to quantum states with the definite val-

ues  and , respectively. How-
ever, the matter is more complicated. The fact is that,
indeed, for each of the subensembles, a definite value

 is recorded, but this is not sufficient. A quantum
state is characterized by a well-defined probability dis-
tribution for the values of spin projections to other
directions r.

In addition, as a result of the interaction of a qubit
(squbit) with a measuring instrument, its elementary
state may change. Here three options are possible.
First, the elementary state can change in an uncon-
trolled way. In this case, there is no need to talk about
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some kind of quantum state. Second, the elementary
state may not change. This occurs in so-called indirect
measurements, in which the measurement takes place
without a physical contact of the measured particle
with the measuring instrument. This is possible if it is
known in advance that the elementary states of two
particles, which are distant from each other, are cor-
related. Then, by measuring the characteristics of one
of the particles, we obtain information about the char-
acteristics of the other. In this case, the answer to the
question about the quantum state depends on the
ensemble characteristics before the measurement.

Finally, a third variant is possible, when the mea-
suring instrument prepares the quantum state. This
happens when the device changes the elementary state
in a quite definite way. In our case, when, after mea-
surements,   are randomly distributed over

 the upper hemisphere with a central vector n, and
for passive layers,   are distributed over the

entire sphere . The functions  for all  are ran-
domly distributed over the interval . For

, the vector  must be randomly dis-

tributed over the hemisphere  with the central vec-
tor .

Consider an event (a subset of elementary states) in
which  and  are fixed, , 

,  or .

Let us start with the first layer, i.e., let . The
probability of realization of inequality (77) with an
additional condition  ( ), or with an
additional condition  ( ), is described
by the expression

(79)

Here  is the normalization factor,
,  is the Heaviside threshold

function. From (79) it follows

(80)

The probability of realization of inequality (78) is
described by the expression

(81)
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From formulas (80) and (81) we get  and

(82)

For the second layer , the same reasoning
can be repeated. We only need to consider that, thanks
to Eq. (82), we will have to deal with the second layer
with a probability of 2/3. Continuing this process, we
get that for fixed ,  and , the probability for the
active layer to have a number  with an additional

condition  is

(83)

while the probability of detecting a number greater
than  for the active layer is equal to

(84)

This probability decreases rapidly as  increases.
Therefore, to obtain the final result, in practice, it will
be necessary to generate the characteristics of only a
small number of layers.

From Eq. (83), we obtain

(85)

Since

(86)

Then

(87)

This formula correctly describes the distribution of
the values of the spin projections on the direction  in
the quantum state in which . The same
final result is obtained when squbits are included in
the subensemble , for which  for all lay-
ers. This means that this sample is quite representative
of the quantum state with . Note that the
quantum state arises after the moment of measurement.

From (87) it turns out that the average value of the
projection of the spin on the direction  is given by the
formula

(88)

A schematic diagram of a computer program that
makes it possible to come to the result (88) is as follows:
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(2) The random number generator generates a unit
vector  and .

(3) One calculates .
(4) If inequality (77) is satisfied, then  is calcu-

lated. If , then the number 1 is added to mem-
ory , if , then the number 1 is added to
memory . On this, the experiment with this squbit
is considered completed.

(5) If inequality (78) is satisfied in item (3), then
the program returns to the step (2), and so on.

(6) After the loop breaks (or is artificially broken by
a limiter), the program proceeds to the study of the
next squbit.

(7) After processing a sufficient number of squbits,
the average value of the spin projection is calculated
using the formula

Here, the symbols  denote the numbers accu-
mulated in the respective memories.

In this scheme, the vector  should be considered
not as a characteristic of an individual squbit, but as a
characteristic of a subensemble  of all squbits for
which , since for an individual squbit it is
impossible to calculate the average value of .
Thus, as a representative of a quantum state, we con-
sider here a subensemble  rather than a Hilbert
space vector.

The actual implementation of this program is
described in [82].

At first glance, it seems that the subensemble 
has nothing to do with the Hilbert space vector, using
which the quantum state is described in the standard
mathematical apparatus of quantum mechanics.
However, the canonical Gelfand–Naimark–Segal
(GNS) construction provides this link. In the case,
when the observables are the -algebra elements and
a linear positive normalized functional is given on this
algebra, the GNS construction allows one to construct
a Hilbert space (see, e.g., [6, 13]), in which self-
adjoint operators uniquely correspond to the observ-
ables, while linear functionals are represented as
mathematical expectations of operators on vectors of
this space.

In our case, these linear functionals are given by
Eq. (88). On the right-hand side, the vector  distin-
guishes one functional from another, while the vector 
is an argument of this functional. Since, by construc-
tion, functionals (88) have the meaning of the average
values of observables over the corresponding suben-
sembles of squbits, there is no need for the Born
axiom. In the standard mathematical apparatus of

+∈ℜnR ε ∈ − +( ) ( 1 2, 1 2)r

+ ε( )Rr r
Rr

> 0Rr
+M < 0Rr

−M

+ −

+ −

−=
+

1( ) .
2

M MS
M M

r

±M

n

+Ψn
+∈ℜnR

( )S r

+Ψn

+Ψn

*C

n
r

3  2022



766 SLAVNOV
quantum mechanics, the primary concept is the Hil-
bert space, while the average values of observables are
secondary. In our scheme, the values of observables
are primary, and the Hilbert space, through the GNS
construction, is a secondary element. While the values
of the observables have a visual physical meaning, nei-
ther the Hilbert space nor the Born rule have a visual
physical meaning.

Let us pay attention to the fact that when calculating
the average value , we checked inequalities (77)
and (78), in which the vector  appears. This means
that for the same set of vectors  ( ), a scheme
for calculating the average values for different  will
be different. In terms of probability theory, this means
that the set of elementary events is the same, but the
probability measures are different. Recall that in the
Kolmogorov theory, the probability measures depend
not only on the set of elementary events, but also on
the σ-algebra with which this set is equipped. In our
case, the observables describing the spin projections
onto different directions  are incompatible, and for
these observables, a common σ-algebra cannot be
constructed.

25. SINGLET STATE OF TWO SQUBITS
A characteristic property of the singlet state of two

particles is that when measuring the spin projections of
the first and second particles  and  onto any
direction , the following equality always holds:

(89)
In the approach under consideration, equality (89)

assumes a strong correlation between the elementary
states of squbits 1 and 2. This correlation can be imple-
mented by requiring the fulfillment of the equalities

(90)

Here,  and  are the orientation vectors of
the th layer for the first and second squbits, 

 are the functions  for these squbits. It
immediately follows from equalities (90) that the
numbers of active layers for the first and second squ-
bits coincide, and relation (89) is satisfied for any
direction, regardless of the distance between the squ-
bits at the time of measurement. In other words, the
situation of the Einstein–Podolsky–Rosen paradox
occurs [28]. Correlation (89) arises not at the moment
of measurement of spin projections, but at the
moment of preparation of a singlet two-squbit state.
Particles with this correlation are often referred to as
an EPR-pair.

Let us see to what correlations this leads for the
squbit spin projections ,  on the directions

 and , respectively. Just as for a one-squbit system,
no probability measure can be assigned to the elemen-
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tary state of a two-squbit system. Therefore, we con-
sider an event in which ,  and  are fixed, while

,  or . We also intro-
duce two parameters  and : , if ;

, if ; , if ; , if
. Both squbits have the same active layer

number.
Let , , ,  and  be fixed. Let . Then the

probability of implementation of inequality (77) for
squbit 1 is described by the expression

(91)

From here we get

(92)

The probability of implementation of inequality (78)
is described by the expression

(93)

From (92) and (93) we obtain

Repeating calculations for a one-squbit system, we
get that for fixed , , , , , the probability of the
active layer to have a number  is described by the
formula

(94)

while the probability of finding a higher number than
 for the active layer is described by the expression

Further, following a procedure similar to that
which led to Eqs. (85), (86), and (87), we obtain

(95)

This expression describes the probability of finding
the spin projection of the first squbit in the direction 
equal to , and the probability to detect the spin
projection of the second squbit in the direction 
which is equal to .

Probability (95) coincides with that obtained in the
standard approach to quantum mechanics. As
expected, formula (95) is symmetrical with respect to
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Fig. 11. Scheme of quantum teleportation.
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squbits 1 and 2, although the original formula (91) is
not symmetrical. This is explained by the fact that
when fixing a probability measure, we must somehow
combine elementary events (elementary states) into
events that can be assigned a probability measure. In
formula (91), this unification is made according to the
features , . Owing to equalities
(90), it is no longer necessary to fix  and . Note
that each of the functions must satisfy inequalities
(76), (77), and (78). In addition, functions  are
needed only to select the active layer, and their specific
values are not of interest. When combining by attribute

, we combined elementary events according
to the distribution of active layers for squbit 1. Auto-
matically, the same distribution will be for squbit 2. On
the other hand, in order to restore the distribution of
values of the functions  from this distribution,
the explicit form of all functions  should be set,
which is a very difficult task, which is of no practical
interest in this case.

From Eq. (95), for the correlation function, we
obtain the expression

(96)

which violates Bell’s inequality.

Correlation (96) has a nonlocal character, since it
connects the measured values of the projections of
squbit spins, which at the time instant of the measure-
ment can be at any distance. However, this correlation
does not miraculously occur at the measurement
moment. It arose at the time moment of preparation of
the singlet state.

26. COMPUTER MODEL 
OF TELEPORTATION

Let us briefly recall the main provisions of the stan-
dard description of quantum teleportation. This phe-

∈ℜ( )
1
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1
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nomenon is associated with entangled quantum states.
As such, the so-called Bell states are most often used:

(97)

These states form an orthonormal basis in a two-
particle Hilbert space. They are built from single-par-
ticle states  . The state  is singlet,
the states , , and  are triplet.

The physical implementation of these states can be
different. In theoretical reasoning, spin states of a par-
ticle with spin 1/2 are usually considered as . In
experiments, photons with different polarizations are
typically used. We will use the spin terminology.

Figure 11 shows a schematic diagram of quantum
teleportation:  is the source of the initial state; 
is the source of EPR pairs;  is the Bell state analyzer
(Alice);  is the unitary converter (Bob);  is the
classical communication channel; {1} is the carrier of
the initial teleportable state; {2}–{3} is the EPR pair;
{4} is the carrier of the final teleported state.

The standard description of the teleportation
scheme is as follows. The source  emits a particle {1}
in the quantum state , where α and
β are complex numbers ( ). Particle {1} is
sent to Alice. The EPR source emits the EPR pair of
{2} and {3} in the singlet state . One particle
({2}) of the pair is sent to Alice, the other particle ({3})
is sent to Bob.

According to the rules of quantum mechanics, the
state of a system of three particles ({1}, {2}, {3}) is
described by the vector . This
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vector can be decomposed into Bell states (97) of par-
ticles {1} and {2}:

(98)

Alice decides in which of the four states (97) the
particles {1} and {2} are. Experimentally, this is rela-
tively easy to do for the state . Therefore, other
states are usually simply discarded. This reduces the
teleportation effectiveness by four times, but this is
accepted. Alice communicates the result of her obser-
vation to Bob via the channel .

If Alice recorded this result, then, according to the
projection principle, the three-particle system col-
lapses into the state .
In this case, particle {3} is already in the same state as
particle {1} (see (97)) and Bob has nothing to do. If
Alice has recorded one of the triplet states, then Bob
will have to perform some unitary transformations of
the state of particle {3} (to change some signs of the
coefficients α and β) to obtain the state (of particle
{4}) that matches the state of particle {1}. In real exper-
iments, a simple beam splitter BS is usually used as an
analyzer of the two-particle states of particles {1} and
{2}. It singles out a singlet state but cannot distinguish
between triplet states.

Now let us see how this phenomenon can be imple-
mented using squbits. First, let us describe the pro-
gram that will act as the device BS. We will also call
this program BS. The geometry of the device BS allo-
cates in space a definite Cartesian coordinate system
with direction vectors , , . We require that the
device BS be able to distinguish between a singlet and
three triplet states. These states can be characterized
by the products of the spin projections for the first and
second particles. These observables are compatible.
The combination [ , ] is
characteristic of the singlet state. The combinations
[ , ], [ ,

], [ , ] are
typical for three triplet states.

Let squbits {1} and {2} arrive at the device BS. We
assume that the BS device responds to the active layers
of squbits {1}, {2} and measures the signs of ,

. Thus, our device BS distinguishes all four
orthogonal two-particle states. Therefore, with its
help, you can achieve one hundred percent efficiency
of teleportation.

Note that we only use projections on two axes, not
on all three. The point is this. Consider, e.g., a singlet
state. In the standard formalism of quantum mechan-
ics, it corresponds to the following combinations of
spin projection values: , ,

{

}

−

+ −

+

Ψ = Ψ −α + − β −

+ Ψ −α + + β − + Φ
× α − + β + + Φ α − − β +
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PHYSICS O
S1(y)S2(y) < 0, though the first two conditions are suffi-
cient to uniquely fix a quantum state. For two squbits, in
addition to the specified set, the following is also possi-
ble: , , .
This set does not correspond to any quantum state of
the two-particle system. Similar reasoning is also valid
for the three variants corresponding to the triplet state.
Thus, we cannot assert that the pair under consider-
ation is in any one of the quantum states. We can only
state that this pair belongs to one of the four prequan-
tum states. The latter means that an instrument that
measures the products of spin projections onto only
two directions gives a result that is characteristic of the
corresponding quantum state.

On the other hand, a BS can be not only a measur-
ing device, but can also prepare a singlet quantum
state. In this case, the device BS, having received an
elementary state of squbits with the set ,

, at the input, should give an elementary
state of squbits with the set ,

, . This again indicates
that the readings of the measuring device are deter-
mined by the elementary state of the squbits immedi-
ately before the moment of measurement and determine
the quantum state after the moment of measurement. It
can be expected that the latter is true not only for squ-
bits, but also for qubits.

As noted in Section 23.1, if for the active layer
, then . From here it follows

that if , then . It is similar
for the second squbit and for projections onto .
Therefore, the combination [ , ] is
characteristic of a singlet state, while the combinations
[ , ], [ , ], [ ,

] are characteristic of triplet states. Thus, we
can assume that the device BS directly sorts the squbits
not by the spin projections, but by the projections , 
of the vectors  that specify the orientation of active
layers of squbits. For a computer implementation, this
is much more convenient.

Now let us turn to Fig. 24.1. The source  sends
Alice a beam of squbits {1} polarized along the vector .
Let the vectors  characterize the orientation of the
active layers of squbits {1}, and let  be the
values of the functions  for these layers. Then for the
squbits sent by the source , the inequality is valid:

(99)

The source  emits EPR pairs of squbits {2}–
{3}, the vectors  characterize orientations of
the active layers for these squbits, while  are
the values of the corresponding functions ε for the
direction .
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Reproducing the conditions of a real experiment,
we assume that the device BS selects the pairs of squ-
bits {1}–{2} for which it records a singlet prequantum
state. In our case, these are pairs for which for active
layers  and . This is equivalent to the
fact that the BS selects pairs {1}–{3} that have

(100)

Note that the BS device are not in contact with
squbits {3}. Therefore, it does not change their initial
elementary states.

For squbits for whom

(101)

teleportation was successful, while for squbits, for
whom

(102)

teleportation turned out to be unsuccessful.
Considering Eqs. (99)–(102), we obtain that the

number of squbits, for which teleportation was suc-
cessful, is given by the formula

(103)

and the number of squbits for which teleportation
failed is given by the formula

(104)

Here  is the normalization factor.
The teleportation quality is estimated by the num-

ber , which is commonly called
fidelity.

The standard mathematical formalism of quan-
tum mechanics predicts the fidelity  for all
directions . A real experiment [83] gave fidelity val-
ues: for ,  at

. The minimum fidelity  was
achieved for . The relative fidelity (a
ratio to the maximum value) at the minimum had a
value .

In our case, the quantities  and  are deter-
mined by Eqs. (103) and (104).

Let us make a replacement in them:

and a similar substitution for . After that, the
integrals appearing in them, related to squbits {1}

1 2 < 0x x 1 2 < 0z z

> >1 3 1 30, 0.x x z z
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and {3}, are factorized and easily calculated. As a
result, up to a common factor, it is obtained

Hence for fidelity we get

Considering the experimental errors, this is in
good agreement with the experimental value for the
relative fidelity. Note that we did not use any fitting
parameters.

We did not make any assumptions about the
dynamics of the system under consideration. All the
quantum effects that we have considered are purely
statistical. In this case, they are not consequences of
any special quantum probability theory. They play
perfectly into the standard Kolmogorov probability
theory. The only thing to keep in mind is that the prob-
ability space must be equipped with a σ-algebra. There
is a fundamental difference between classical and
quantum systems. While for a classical system it is pos-
sible to introduce a single σ-algebra that can serve all
the observables characteristic of the system, in a quan-
tum system for each group of compatible observables,
it is necessary to introduce its own σ-algebra and,
accordingly, its own system of probability measures. In
our case, in the construction of these measures, an
important role was played by functions  whose val-
ues depend on . Recall that the observables we are
considering—the spin projections onto directions —
are incompatible for different .
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