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Holographic Model for Light Quarks in Anisotropic Background
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Abstract—We present a five-dimensional holographic model for light quarks in hot dense anisotropic QGP,
that is an expansion of our previous anisotropic solution [1, 2]. AdS5 black hole solution of EOM is obtained,
its thermodynamic properties are discussed. Confinement/deconfinement phase diagram is constructed.
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1. INTRODUCTION
In the holographic approach [3–5] to describe hot

dense anisotropic quark-gluon plasma (QGP), pro-
duced in heavy-ion collisions (HIC) [6, 7], we use the
following action and metric ansatz:

(I.1)

(I.2)

where 5-dim coordinates describe the energy scale of
the process that we consider.

In Eq. (1.1), the Maxwell field  is

set by  and serves to introduce the chem-
ical potential  describing the baryonic density. The
other Maxwell field  is needed to
support the anisotropy of the solution along the 
directions as opposed to the  direction. This anisot-
ropy parametrized by  describes the spacial anisot-
ropy of the QGP produced in HIC. Coupling func-
tions  and  are associated with the Maxwell
fields  and , respectively,  is the scalar
field and  is the scalar field potential.

In the metric (1.2),  is the blackening function and
 is the warp factor. The form of the warp-factor deter-

mines the quark mass that is considered in the model. In
our previous works [1, 2] we used the warp-factor

, thus investigating the holographic model for
heavy quarks (b, t). This time we follow [8] and take

(I.3)
that allows us to study light quarks’ (d, u) behavior,
and in all numerical calculations we admit ,

, ,  [9].
You can learn more on motivation, reasoning and

methods of the holographic approach in talk by
Aref’eva from this conference [10].

2. SOLUTION
To solve the EOM derived from (I.1) and satisfying

the ansatz (I.2) we assume  and take
the boundary conditions

(II.1)

where  is the horizon size and  is the boundary
condition point, .

For light quarks we get the following solution:

(II.2)

(II.3)
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(II.4)

(II.5)

(II.6)

An important feature of the solution is that in the
anisotropic case  we have logarithmic divergence

if the dilaton, , for . To establish a
smooth connection to the isotropic case we can use a
small enough, but non-zero value of . More details
on purposes and sequences of a boundary condition
choice for the scalar field are discussed in the talk by
P. Slepov from this conference [11].

3. THERMODYNAMICS
3.1. Temperature and Entropy

For the metric (1.2) and the chosen warp-factor,
the temperature can be written as:

(III.1)

In the isotropic case for  the temperature is a
monotonically decreasing function of horizon
(Fig. 1a). For nonzero chemical potential, 
becomes a three-digit function. Its local minimum
value is lesser for larger . Finally it reaches zero and a
second horizon appears. In the isotropic case this hap-
pens at . In the anisotropic case, the tem-
perature is a three-digit function even for . As for

the second horizon, it appears at about  for
 (Fig. 1b),  for  (Fig. 1c) and

 for  (Fig. 1d).
As it is shown below, these features of the tempera-

ture determine the phase diagram, so that in anisotro-
pic cases we have the Hawking–Page-like (BB) phase
transition line for zero  (Fig. 1b).

For (1.2) and the chosen warp-factor, the entropy
becomes

(III.2)

It decreases monotonocally and quickly with hori-
zon growth (Fig. 2a).

3.2. Free Energy and Phase Diagram

To get the Hawking–Page-like transition line we
need to consider the free energy as a function of tem-
perature:

(III.3)

where  for  and  is the second horizon
for :  for , ,

 for ,  and  for
, .

For the Hawking–Page-like phase transition the
free energy should be a multi-valued function of tem-
perature. Graphically it is displayed as a swallow-tail.
The point where the free energy curve corresponding
to some  intersects itself (or the -axis) determines
the temperature of the Hawking–Page-like phase
transition for this .

In Fig. 3 the function  for zero chemical
potential and different  is shown. For 
the free energy lies in the lower half-plane without any
self-intersection, therefore the Hawking–Page-like
phase transition for  exists. For  an
obtuse angle—a germ of the swallow-tail—appears.
Further anisotropy growth makes the swallow-tails
more pronounced. On the other hand, increasing the
anisotropy from  to  shifts the critical point to the
left towards the -axis, so the gap between them nar-
rows and quickly—when —closes. Starting
from this moment, the Hawking–Page transition line
exists for all chemical potential values .
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Fig. 1. Temperature as function of horizon for different  in isotropic (a) and anisotropic cases for  (b),  (c),  (d);
, , .
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Fig. 2. Entropy as function of horizon (a) and Hawking–Page-like-phase transition lines  for isotropic ( ) and anisotro-
pic ( ) cases (b); , , .
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Figure 2b shows the Hawking–Page-like phase
transition lines for ν = 1, 1.5, 3, 4.5. In the isotropic
case, the BB-phase transition starts from a critical
point ,  that fully coincides
with the previous result in [8]. One can see that isotro-

μ = .0 04779c = .0 1578cT
PHYSICS OF PARTICLES AND NUCLEI  Vol. 52  No. 
pisation leads to smaller chemical potential values, but
the temperature for given μ rises.

To get the full picture of the confinement/decon-
finement phase transition we also need to consider
temporal Wilson loops that depend on the quark pair
4  2021
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Fig. 3. Free energy as function of temperature  for

 in isotropic ( ) and slightly anisotropic (ν =

) cases; a =

, , .
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orientation. As the current model differs from the pre-

vious one by the form of the warp-factor only, all the

reasoning in [1, 2] remains applicable here. Therefore,

the dynamical wall equations become:
PHYSICS O

Fig. 4. Confinement/deconfinement phase diagram  in isotro

, , . Dashed lines show Hawking
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(III.4)

for longitudinal ( ) and transversal ( ) direction cor-
respondingly.

In Fig. 4a the isotropic case is depicted. The con-

finement/deconfinement phase transition is mostly

determined by the Hawking–Page-like transition
(BB-transition). Wilson loop is sufficient in a small

region of crossover for , i.e. till the point

(0.104, 0.153), where two phase transition lines inter-

sect.

In the anisotropic case, the isotropic Wilson line

splits into two. The line corresponding to the longitu-
dinal Wilson loop lies above the Hawking–Page-like

line and does not actually influence the phase transi-

tion. For larger anisotropy, the longitudinal Wilson
line has lower temperature values, but the difference

between it and the Hawking–Page-like line increases

with  (Figs. 4a–4d). The phase transition line corre-
sponding to the transversal Wilson loop almost coin-

cides with the Hawking–Page-like line, so there is no

evident crossover region as seen in the anisotropic

case. Therefore, the influence of the transversal Wil-
son line and the Hawking–Page-like line on the con-
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pic (a) and anisotropic cases for  (b),  (c),  (d);

–Page-like phase transitions (BB).
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finement-deconfinement phase transition could be
hardly distinguished from each other.

4. CONCLUSIONS

In this work a holographic model for light quarks is

constructed. The -dim solution, describing hot dense

anisotropic QCD within the AdS /CFT4 duality was

obtained. Peculiar thermodynamics properties of the
solution that influence the confinement/deconfine-
ment phase diagram are investigated.

Unlike the heavy quark model [1], the Hawking–
Page-like phase transition line does not break at a rel-

atively high temperature but lasts till . The main
role transfers from it to the transversal Wilson loop
with anisotropy growth. This transfer goes smoothly,
without jumps that took place on the heavy quark
phase diagram [1]. The longitudinal Wilson loop does
not actually take part in the picture of confine-
ment/deconfinement phase transition for light quarks.

As for further investigations, we plan to obtain a
more realistic, hybrid model, where both heavy and
light quarks would be included. The study of such a
mix should promote better understanding of the con-
finement/deconfinement phase transition and inter-
pretations of experimental data in future. We also plan
to study an HQCD model in an external magnetic
field by constructing a fully anisotropic solution, sim-
ilar to what has been done in [12].

We hope that the results presented in this paper and
their further possible adjustment to the phenomeno-
logical data can be of interest for experiments at the
future facilities of FAIR, NICA, for the RHIC’s BES
II program and CERN, III run.
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