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Abstract—The pulsed beam current in linear accelerators can approach significant values up to tens of
Amperes. Such high currents cause many specific adverse effects in the accelerators. One of such effects is the
repelling forces of the space charge as they become comparable to the forces of the electromagnetic acceler-
ating fields, and can influence the stability of phase and radial particle motion. In the numerical analysis of
the beam dynamics in linear accelerators, it is necessary to choose one of the different space charge models
depending on the desired accuracy, complexity, speed and computer resources availability. The most accurate
results are achieved by the numerical solution of the Poisson equation. However, this method may require sig-
nificant resources and time and may not be suitable when fast analysis is required in the linac design stages.
Analytical methods, on the other hands, base on the analytical solution of Poisson equations for the pre-
defined shape of the particles distribution inside the beam. One of the most popular analytical space charge
models is the ellipsoidal beam approximations. Despite being a well-developed model, many published
approaches lack some important features as fully three-dimensional ellipsoid asymmetry and multi-bunch
model. In this paper, we will derive the equations of the space charge field for the full-3D non-relativistic
ellipsoid bunch step by step, starting from the Poisson equation, and compare this model with the other

known models.
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1. INTRODUCTION

The problem of space charge forces inside the
accelerated beam and their influence on the particle
motion is in practice identical to the problem of the
gravitating mass distribution. In other words, it is
related to the theory of Newtonian potential. The clas-
sics of astronomy and mathematics addressed this
problem more than two centuries ago, and achieved
the significant progress of its solution in case when the
gravitating mass can be represented by a three-dimen-
sional ellipsoid. The obtained results were published
in the works [1—4] with the different level of details.
However, these results haven’t become well-known in
accelerator physics, which was studying the space
charge problems for a long time. In this case, it is
worth to mention the works [5, 6]. Unfortunately, in
these papers the beam is represented as a charge ellip-
soid of rotation, or in the other word is practically suit-
able only for 2D case. Likewise, the potential (and the
field) of the beam, provided in the work [5] is only
applicable for the particles located inside the ellipsoid
(orthe beam core). On the other hand, the expressions
from the work [6] for the fields outside the ellipsoid
were found only in the multipole approximation.

In the following sections, we will derive the derive
the equations of the space charge fields for the full-3D
relativistic ellipsoid bunch inside and outside the
beam core. We will start from the Poisson equation
and continue to solve it for different particle distribu-
tions. Appendixes present the solutions of some math-
ematical problems used in the text of this paper and are
presented for the self-consistency of the provided
solution.

2. POTENTIAL OF A UNIFORMLY
CHARGED 3D ELLIPSOID

We will start from the potential of the charged
3D ellipsoid based on the Dirichlet’s approach [7].
Thus, the potential of a uniformly charged 3D ellip-
soid with the density p and semi-axes (a,, a,, a,) in a
random point of space (x, y, z), as shown in Fig. 1, is:
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Fig. 1. Ellipsoid beam geometrical representation and
dimensions.

where the integration is expanded to the volume of the
ellipsoid:
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To overcome the problems related to the variability
of the integration boundaries, Dirichlet proposed to

use the special form-factor (so called “discontinuous
factor”):

1 forf <1,
Fo(f) =2 j SINT cos( e = {1/2 forf =1, (3)
0 forf >1.

Figure 2 demonstrates the distribution of Dirichlet
discontinuous factor for the argument values from 0 to
0.95 (top) and 0.95 to 1.0 (bottom). It is clearly seen
that the behivour of the form-factor is in the good
accordance with the expression (3).

For this problem, we chose the discontinuous fac-
tor in the form of
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Fig. 2. Dirichlet discontinuous factor as a function of
argument.
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Here, we will use the following expression:
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Since
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And by introducing the integrals
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This results means that since the exponent of inte-

gration function in the expression (12) can be pre-
sented as
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Now, let’s substitute the variable { for § =#/{. Then
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Now, to calculate the integral /(.S), we must use the
definition of the Dirichlet form-factor
/2 forf <1,

Nsint
SINE o5 frydr =
!;COS(f) {0 forf > 1.

When the variable { changes in the interval [0, o],
the variable & stays within the same interval. For all

(22)

points inside the ellipsoid x2/ ai + y2 / aj + zz/ az2 <1
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and § inside the whole range of its values, we can claim
that

2 y2 ZZ
S¢€) = 1.
©= a +§ a +§ a; +§<

(23)

Therefore, for all points (x, y, z) inside the ellipsoid
S(&) < 1, the integral 1(.S) equals to /2 and thus, for
all internal points the derivative will be:
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Now, let’s assume that the point (x, y, z) is located
outside of the ellipsoid. This point belongs to the other
ellipsoid, confocal to the original. The surface equa-
tion of this new ellipsoid will be
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And the integral /(S) = 0. On the other hand, when
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And the I(S) =r/2. Thus, for all external points of
the ellipsoid
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For these points, the potential derivative will be
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With A satisfying the characteristic equation (25).
But at the same time
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To provide the continuity of the potential due to
the transition through the surface of the ellipsoid, the
integration constants must be equal (C;, = C,,, = O).
This constant C is defined the following way: for an
infinitely distant point from the ellipsoid, the potential
equals to zero and A — oo. In this case, the sum with
respect to u = Xx, y, z can be neglected, so we automat-
ically get C = 1.

Thus, the final expressions for the potential will be:
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for the points inside the ellipsoid, A = 0, and for the out-
side points, A is a root of a characteristic equation (25).

The integrals in the expression (32) can be
expresses using the reduced elliptical integrals (as
shown, for example, in § 6.2 of [3]), but they seem to
be impractical in the numerical analysis.

3. CHARACTERISTIC EQUATION

In this section, we will show that the characteristic
equation, which can be presented in a form of

2 2 2
wh) = 22—+ L —+
a+A a,+A a;+A

-1=0, (33)

always has three real roots, one of which is always pos-
itive. Let’s assume that the semi-axe of the ellipsoid
satisfies the following condition: a, > a, > a,, and plot
the graph of the function y = w(A), as shown in Fig. 3.
This function has four asymptotes: one horizontal

(y =—1) and three vertical (A = —aﬁ, A=—-a

,, and

A= —az2 ). The function w(A) has following specifics:
when A — —oo it approaches the horizontal asymptote
from the bottom; when A — oo — from the top; it
approaches the vertical asymptotes from the bottom

when A — —aLf from the left, and from the top when
A — —a_ from the right; finally, w(0) = 1.
It is immediately clear from the plot in Fig. 3 that

the characteristic equation has a single positive root A,
and two negative A, ;, which are located inside the

intervals (—ai,—az2 ) and (—ai,—aﬁ) respectively. These
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Fig. 3. The roots of the characteristic equation.

roots can be analytically described with the Cardan’s
formulas:

pxbs cos(Q)
%= 2| {2¥rcos(o+2n/3) — L |.
A
2Rltcos(o + 4m/3)

(34)

Which uses the following sequence of the expres-
sions:
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=14 % a) (35)
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A 347 274 34> A
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T=,|-Z, @zarccos(—i.
27 2T

This qualitative analysis of the function w(l\)
demonstrates that for any values of the parameters of
the characteristic equation (25), it will always be that
p<0and

Rltcos(g) > B/(34) (37)
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L/a? for rotational stretched ellipsoid
(a,=a,=a,a,=c; a/c=0.333)
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\/a? for rotational compressed ellipsoid
(a,=a,=a, a,= c; a/c=3.000)
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Fig. 4. Value maps for of characteristic equation root for rotational ellipsoid (left, for a case of stretched ellipsoid; right, for a case

of compressed ellipsoid).

by closer investigation of the possible values of the
characteristic equation root for a rotational ellipsoid,
we found that A does not exceed values of a few hun-
dreds for stretched ellipsoid and several tens for com-
pressed ellipsoid, for reasonable range of beam shape
parameters ratios, as shown in Fig. 4.

4. POTENTIAL
OF A ROTATIONAL ELLIPSOID

In order to find the potential of the uniformly
charged rotational ellipsoid, it is the most convenient
to use the expression (32) for the potential outside the
3D ellipsoid. By using A = 0 in the found expression,
we will acquire the formulas for the points inside the
ellipsoid.

Now, we will consider the rotation ellipsoid that
can be described with the equation

2 2 2
XTIy Lz o (38)
a+i c+A
Where a, = a, = a, a, = c. In this case, the expres-

sion (32) for the potential outside the ellipsoid can be
written as
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X4y 2
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(39)

The values of integrals /,, I,,, and I, as shown in
Appendixes A and B, are different for the cases of

“compressed” (along the rotation axis) and
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“stretched” ellipsoids. Now, for the “compressed”
ellipsoid, a > c and

A

1 = )
0 a+\
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2
Vo’ - ¢

xy:

I S
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2 2 2 2
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(40)

z 2

so that
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2
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\[az - cz a +A
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2 2 > 2
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(a@—c¢) a+h Ve +A

(41)

In case of the “stretched” ellipsoid, ¢ > a and then
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The potentials inside the rotational ellipsoid can be
obtained when A = 0 is inserted into the expressions (41)
and (43), result ing in the expressions for the “com-

pressed” ellipsoid:
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And for the stretched ellipsoid:

stretched ( a)
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(40)

47)

The formulas (41), and (43)—(47) can be found in
[4]. The expressions (45) and (47) for the potential of
the rotational ellipsoid were described in [5] (however,
with unfortunate typos), and published in [6]. The

(44)

same paper also provides the expressions for the

potential outside the ellipsoid, however only in multi-

pole approximation (analog to (41), (43)).

5. POTENTIAL OF A SPHERE

The potential of a uniform sphere both inside and
outside, can be easily found. Nevertheless, it is useful
to derive it from the expressions for the rotational
ellipsoid by using a limiting transition ¢ = a, since the
expressions (41), and (43)—(47) don’t work in this

(45)

case. To do this, it is sufficient to modify only the for-

mula (41), and use A = 0 for the case inside the sphere.
Thus, the potential outside the sphere based on the
expression for the “compressed” rotational ellipsoid

will be the following:
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2
sphere 2 ¢+ A 2 2 1 ¢+ A \/(a —C )(C +7\;)
ot () = Tpa’c arccos -x"+y) - arccos\/
Pout S P y PR @ — " Ry JEINEY
(K1) (K2)
(48)
1 CHN d =
+27— arccos\/ —\/ .
(02_02)3/2[ a+\ A+
(K3)

Assume ¢ =a — d and §/2a < 1. Then, by using the
expressions for coefficients K; — Kj, described in the
Appendix C, we get

This expression shows that in the general case,
form-factors can be represented as single integrals.
But in case of rotational ellipsoid, they can be
expressed with the corresponding elementary func-

sphere F)=m @ 2 2 x* + y +2 tions. Here, we present the obvious expressions for all
(pout - p \/ 3/2 f —f
a+ 7» 3 (a + ) (49) orm-factors.
_ 2mpd’ - 1x° + y + 7 (A) Inside ellipsoid:
V@ +al 3+

By using A = 0, we can find the potential inside the
sphere

2 2 2
(p?:here(r) — 2npa2 (1_%)(«' +,V2 + 2z j
¢ (50)

—9 2( lrzj
= Tcpa 1———2 .
3a

To obtain the final expression for the potential out-
side the sphere, we will take into account the fact that
the expression (25) can be simplified:

az+7u=x2+y2+z2=r2.

(31

Which, therefore, simplifies the expression (49) to
its final form:

sphere 475p03 1_0
Pout ( ) - = -
3 r r

Obviously, this formula can be trivially found from
the Gauss theorem.

(52)

6. FORM-FACTORS
FOR ELECTRIC FIELD CALCULATIONS

The found expressions (32) for the potential of the
charged ellipsoid, as well as the formulas (41), and
(43)—(47) for the rotational ellipsoid, demonstrate
that in all cases the electric field grows linearly along
the corresponding coordinate, while the more com-
plex dependence on the parameters and coordinates is
accounted by the behavior of the form-factors M,:

_90() _ 5[ dE ;
oF ""U @ + @D(gJ (53)
= 2np M (a; A)F.

EF) =
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o d
M@0 = 25
0 (@, +&DO)
T £
% 2 2 2 2 ’
) (a; +EW(@ +E) (@ +E)(@ +E)
The dependences of form-factors inside ellipsoid

on different ratio of a,/a, for different ratio a,/a, for
typical realistic beam dimensions are shown in Fig. 5.

(B) Outside ellipsoid:
_ T dE
M (@A) = | —5—2—
!(ai +&)D(E)

= axaya;j: dé 5
(@2 +EN(@ +E)(@ +E)(d +E)

where A is the maximal positive root of a characteristic
equation.

(54)

(55)

(C) Inside the “compressed” rotational ellipsoid
(a,=a,=a,a,=c<a):

X,y

in;compressed
M Preseia, ¢;0)

)

- (56)

:c/—am arccos£ - €
[1—(c/a)] i a a

in;compressed .
M, (a,c;0)

-< arccos € .

__ 2 (e
_[1—<c/a)2]3/2_1 (a) a a

(D) Outside the “compressed” rotational ellipsoid
(a,=a,=a,a,=c<a):
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Fig. 5. Form-factors (x, y, and ) inside the ellipsoid as functions of ratios of a,/a, and a,/a,
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Fig. 6. Form-factors inside the rotational ellipsoid as func-
tion of longitudinal compression factor.

(F) Outside the “stretched” rotational ellipsoid
(a,=a,=a,a,=c >a):

C/Cl
[(c/a )’
—a)(+ N
a + A\ 7
~a) @+ 1|
~d)+n)|

2c/a
1]3/2

[(c/a)’

1+ -a)/ @+ [P_Z
AN

1—\/(0 —a)/(c* + 1)

It is easy to see that the pairs of form-factors for the

rotational ellipsoid are connected with each other by

the simple relationships. Outside the ellipsoid, regard-
less of compression or stretching:

t;stretched .
M g, 0,1 =
\/ 2
[ C

Log 1+\/(c
1—\/(c

Mout;stretched (d, c 7\’)

Z

1]3/2

(59)

X 1

M, (a,c;h) + % M (a,c;\)
a‘c
=—=-" -
(@ + Ve + A (60)
M (a,c;\)
2

=2|—42¢ ___ _M_(ac)) |

(@ + M + A ol )}

Inside the ellipsoid (A = 0) this relationship is sim-
plified even further:

1
M, (a,c;0) +~ M. (a,c;0) =1
xy(a,¢;0) 5 (a,¢;0) 61

— M _(a,c0) = 2[1 - Mx,y(a,c;O)].
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The dimensional dependencies of form-factor val-
ues inside the ellipsoid, calculated by using the expres-
sions (56), (58), and (61), are shown in Fig. 6.

Correspondingly, the dimensional dependencies of
form-factor values outside the ellipsoid, calculated by
using the expressions (57) and (59) for different A val-
ues, are shown in Figs. 6, 7.

7. MULTI-BUNCH REGIME

In case of a multi-bunch regime, each bunch can
be regarded as a uniformly charged ellipsoid, and
then this “reference” bunch will suffer from the fields
of all other bunches that will be external in respect to
it. The forces, thus, can be accounted by using the
expression (32). It is however, necessary to solve the
characteristic equation (25) for each external bunch.
Typically, the distance between the bunches (L) is
large comparing to its dimensions a,, a,, a,. Also, in this
case, the transverse coordinates inside the reference
bunch are small relative to the distance L: x, y << L, while
the longitudinal coordinate z is comparable to L.

It is possible to demonstrate that in this case, the
maximal root of the characteristic equation will be at
the order of z. If so, then it is possible to omit the terms
with x? and y? in the characteristic equation (25), so
that it takes the form:

/@ +n=1. (62)

With a, < A = L, it yields with A = z. For the more

strict solution, it is necessary to solve the characteristic

equation considering a,, a,, a,, x, y < z = L. In this
case, the coefficients (35) become:

4 2 2 2,2 2
2 22 2 27 2 2 ’
a.a, a.a, a.a, (63)
zz
D=-%.
a

z
Next, we need to calculating the coefficients (36)
using expressions (63) and obtain:

4 6
1Z4’ N_iz_e_)T -2
3a 27a 27

X

6 b
27a;  (64)

0= arccos(—i) = 0.
2t

Then, the maximal root of the characteristic equa-
tion, according to (34) becomes:

A=d (2%/%005({) - £)
34

2 2
= a)zc zz_z_ _lz_z = Zz.
3a; 3a;

Figure 8 demonstrates the dependence of a mximal
root of the characteristic equation on the distance
between leading and neighboring bunch for round and
flat beam.

(65)
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Fig. 7. Form-factors outside the rotational ellipsoid as function of longitudinal compression factor.

Now, it is easy to estimate the asymptotic values of the Characteristic equation (x =y = 0)

form-factor (55) for the neighbor bunches in respect to
the reference bunch (a,, a,, a,, < zand £E>2):

M(@7)
. p
=a,a,a, (66)
[ (@ + &N +E)a’ +E)d +E)
o 5= Luan ] 20

This result means that all form-factors are indenti-
cal in this case. Thus, the fields from the bunches with
the charge Q, located at the distance *L are equal to:

E(F)=2rpM.(d@;(z = L)’)-F

4 7 OF (67) Fig. 8. The roots of the characteristic equation in multi-
=_-Tnpa.a,a, 7 = 3 bunch regime as a function of normalized longitudinal
3 (zxL)y (zzxL) coordinate (red—round beam; blue—flat beam).
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Formfactor M, (x =y = 0)
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Fig. 9. Absolute (left) and relative (right) values of the form factor M, (red—round beam; blue—flat beam).

The expression (67) shows that the asymptotic val-
ues of the form factors are identical. Figure 9 demon-
strates the values of the “vertical” form factor M, cal-
culated with this formula and compares it with the
absolute values calculated with the expression (55).

It can be seen, that the difference in the values of
the factor and its asymptotic value is of the order of
20% at a distance between the bunches z/z,,,, = 2 and
does not exceed 10% for z/z,,,, = 3.

8. GAUSSIAN ELLIPSOID DISTRIBUTION

Finally, we will consider the case when the charge
distribution of the bunch is Gaussian in the whole
space and is characterized with the square deviation
parameters (O,, O), O,), so that it has the following
form:

p(0,,0,,0,;F")

S -~
26’

Here Q is the full charge of the bunch. The poten-
tial of the bunch in any point will be the following:

Which yields to the expression

o/Vn

3/2
(2m)""0,0,0,

jdr 1 J‘exp{———(u u)t} Ca)

O(G;7) =

oo U=X,y,2  —oo
u'=x",y"z'
1(u,0,;5t)
0/n

) m J. 1(x, Cx,t)[(y, Gy’t)l(z’ Gz:t)dt

The integrals I(u, 6,; f) can be found with a help of
a simple transformation:

2
2u—+(u u)t —(L+tl —2fuu' + £’

u Ll

—rw { ){ 1/20 o T
" (1/2cts§u+ t2] _(1/2ctsf,u+ ﬁ] }

o 0 72
(p(G’ r) = 3/2 4 2 ( )
n)""6,0,0, =AU - 12’%
2 y'2 Z.2 (69) / o, t+1?
xwwaXD _E_E_ki d' dv' d D SR | ru 2
£££ JF-7 raya 207 1/20, +1°
However, / 20, e u ’
| 0T e 1/26 +1 26 1/2<$f,+t2 '
e dr = \f T gt (70)
_J;, \/ F—F I Then
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e u? o t2u2/262 |
I(u,0,;1) = I exp|—— —(u —u')zt2 du' = I exp —ﬁ— —+ t2
- 20, - 120, +1 20,
%,_/
o
2
5 At ) S »
X |u —% du' = exp —% I e ™ du' (73)
120, +1 120, +1 ) 2,
ru’
exp| —
£i’[26. ) [n ; 14202
=exp| ———5—— |,/]= = V270, .
120, +1° )\a J1+ 262
And therefore
- o/Nm
O(G;7) = 3/2/— I I(x,0,;0)1(y,0,;0)](z,0;1)dt
(2n)""0,0,0, =,
ru’
" exp| —————
0o/\n 1+ 204
= 3/2/—[ I V2ro: 2Lt (74)
(270 GxGsz —oo U=X,),Z \/1 + 2(5ut
X2t2 y2t2 Z2t2
~EXP| — 22 2.2 2.2
_@I 1+20," 1+20," 1+20¢ dr
oy Ja+ 26271 + 2077) (1 + 2677)
From this equation it is easy to find the expression for the space charge field in any point of the space:
(_ ey B y212 B 2
. 0¢(G,,G,,0,;F P 14264 14204 14204
E[(0,,0,,6,;F) = —M = @Fu I = 3 2. (75)
or, Vi + 20,3;2)J(1 +2027)(1+20,7) (1 + 26247)
It is very convenient to make the following substi- I 0 =
tution & = 1/#2, and get the final expression for the E[(G7) = > ulies (77)
—— G, 0,0
field: xEyrz
= _ 20 where
EM(G;I') =7
Jn

2 2 2
X Y 4

_ _ _ 76)
exp[ 2 2 2 ] (
xﬁ,_[ 26,+& 20,+& 20.+E JE

) (20, + (207 +8)(20] +£)(20 +E)

This expression for the Gaussian distribution of the
bunch charge is actively used for beam-beam effects
studies [8, 9]. It is convenient to introduce the form
factors M, similar to the ones introduced in the previ-
ous Sections, so that:

=3

w EXP

M,(7;6) = 2426,0,0,

x2 y2 Z2
exp| —— -— -— (78)
20,+w 20,+w 20,+tw J
w.

262 + w262 + W)(26% + w)(26° + w)

d|

0

In the case of axially-symmetrical distribution

(o, =0,=0,), the expressions for the form-factors are
simplified:

E_

2 2
r <

2 T 52
20, +w 201+dew

_ _ 2
M, =M, =M, =2o,|

0

Q267 + W26 + w)

r

b

(79)
2 2

<

- EXP

(_

2
20,

+w 20§+w]

2
M, = 2x/§cs,c$Z J.
0
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Fig. 10. Form-factor values maps in z—r space for different values of beam compression factors.

By introducing the dimensionless integration vari-
able & = w/ 26§, both form-factors are found to be

dependent on the parameters o, = (53 / Gf , which char-
acterizes the degree of beam compression, and can be
written as following:

M, | —~+— =«
y[x/ics, V20, ]
2 2 2 2
20 20
exp _r/ ,_Z/ <

_OLT 1+o& 1+& g
L A+ad)1+E ’ (80)
r _z .
M: (ﬁor’ﬁcz’aj
2 2 2 2
exp _r/2c5, z /2Gz
l+af 1+&
:j T dE,
o (1+add+9)

The Fig. 10 demonstrate the typical behavior of
both form-factors for large and small values of the

PHYSICS OF PARTICLES AND NUCLEI

parameter o. It is clearly seen that the largest values of
the form-factors are naturally located in the center of
the beam.

Finally, the Fig. 11 demonstrate the dependence of
form-factors in the beam center as a function of beam
compression parameter. It is clearly seen, that in case of
the Gaussian density distribution the expression (61) is
fulfilled for the whole space.

9. COMPARISON OF THE MODELS

In this paragraph we will compare the accuracy of
the computer simulations, performed using the well-
known Lapostolle method [6], and the method
described in this paper. The simulations were done in
the recently upgraded [10], and benchmarked in Hell-
weg code [11] that support both models. We have sim-
ulated the beam propagation of 10 A electron beams
with the energy of 100 keV in the 50 cm drift space and
compared the output emittance growth for two mod-
els. The input Twiss parameters for all cases are iden-
tical (o, = 0.0, B, = 3.0 cm/rad, €, = 15 um, Az =
2.5cm). The following cases were simulated (see
Fig. 12):

2021
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Infinite gaussian distribution with axial symmetry

= My,
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Fig. 11. Form-factor values in the beam center as a function of beam compression factor.
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Fig. 12. Initial distribution of the simulated beams ((a) Round KV, (b) Round waterbag, (c) Round gaussian, (d) Elliptic gaussian).

(a) Round beam with 4D KV distribution; The simulation results for these cases are presented
in Fig. 13. As expected, the models produce similar

(b) Round beam with 6D waterbag distribution; results for uniform beams. However, when the halo is

(¢) Round beam with gaussian distribution. present, the Lapostolle model tends to overestimate
150
= — KV-lapostolle
—— KV-elliptic BT
120+ = = WB-lapostolle L
—— WB-elliptic -7
= = Gauss-lapostolle

£ 90 Gauss-elliptic

0 10 20 30 40 50
Z, cm

Fig. 13. Transverse emittance growth during the propagation in the drift space of the beam with different initial distributions
(red—round KV, blue—round waterbag, green—round Gaussian) calculated in Hellweg with Lapostolle (dashed) and the
described Elliptic (solid) space charge models.
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the space charge effects due to the inaccurate field
treatment outside of the beam core.

APPENDIX A

INTEGRALS
FOR THE “COMPRESSED” ELLIPSOID

The integral /, can be calculated by the following way:

‘9|:(a + &)\/c +&

EIDELMAN et al.

Then, we’ll find 7, for the compressed ellipsoid by
applying the variables substation used for 7,

'>|:(a +§) \/c +&
~f d(/c)
i@+ §/c2)2\/1 +§/c2

N @ + )1+t

© dE/c _ 2 K dy
) CJ. 4 (&é : 2 (A (@ - '[ & oY
% (a +c§/c )\/l+§/c \/1+7»/c2(1+ 5 zyj
[ dt @
=C | —5——H - Let’s introduce the following parameters for the
;};2 (@ + Nl +1 compressed ellipsoid:
After the variable substitution o= c2 / ( @ — c2) > 0. (A7)
y=A~l+t (A2) And the integral /;:
We get d(o,
N Ii(a) = 1 _[ 1 ( \/*y ) 2
o dydy +ocy + (Vo) (A8)
o CJ_L [@® + 7 =Dy = Larctan(\/&y).
14+A/ 2 A \/&
T dy (A3) Then
= 2 .
vl P L) _ [_ydy  _1l=l+(+y)ldy
a—c doL A+’ o 1+m?) (A9)
Next, the result depends on the fact whether the 1 dy 1 dy
ellipsoid is “compressed” (a > c¢) or “stretched” along =—— 3
the rotation axis. In case of the “compressed ellipsoid, o (1+ oy ) 1+ ay
the multiplier before y? in the integral function is pos-  or in the other words,
itive and thus: p a7
5 J. —y” =1+ oL@ _ arctan(f oy)
d(/ c y} (1 +ay?) 0. J_
2 2 % 2 2
I, = 2 |a_-c a —¢ + oci[ 1 arctan(vo, y)} arctan(«/_ oY)
JENPEL e : 7 Y doLor Jo (A10)
+A/e? ] 4 2c 5y 1 arctan(\/_y) +—= Ly
a-c 2o f 1+ oy’ 2o
= 22 >arctan zc 4 (A4) 1 {arctan(\/_ oy) + Jay }
N Vo’ —¢ N 2o 1+ oy’
2
_ 2 T aretan |€t A and thus,
a’—c\2 a’-c =
5 5 I = 2c J. L
_ 2 ¢+ A ¢+ A e
= = _Czarccos\/a2 _cz/[l+a2 _cz} (@’ —c’) W(l+o¢y
or / 2 [(AT)
> Z—W——arctan‘fc + o _C
I, = 2 AICCOS c2+k (AS) (@ -¢c%) a-c c +7\,
a2 —cC a + arccos (¢ +X)/(a +A) a — C
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or
;oo E 4 @+ M@ =) AL
w T T3 3573| AICCOS || - > . ( )
(a -c") a +Ai a +Ai
For the integral /,, we will repeat the similar steps:
]: _ IJ' d&/) _1 J‘ dt
! (@ +§)(c +87 el @+l +§/c Y2 e @+ I+
_2 T dy _2 J‘ 1 c2 dy
c a +cz(y2—1)]y y a-c +cy a-c
Evell € e
Ji+r/e? oo
I T B T — e 2 Ji—e (A13)
2 2 2 2 2 2 2 2 2 2
cla —c’)| V. a = ol 2c 2yz c(a c)\/c +A a —c c
“ 2
X dz2 = 22c > 1 _ 1 T _ arctan c2 +7”2
(Cz_*_k)/(”zicz)l +z c(a —-C ) \/6’2 +A \/612 - C2 a —c¢
arccosxl(cz+k)/(a2+k)
finally,
2 /az -’ /cz + A
I, = —arccos,[—— |. (Al14)
¢ (az—cz)m( S+ a + A
APPENDIX B
INTEGRALS FOR THE “STRETCHED” ELLIPSOID
The integral /, as show in in Appendix A (A3), is equal to:
[ — dy (B1)
¢ Vel + —=—— y2
a —-c
For the stretched ellipsoid, ¢ > a, so by introducing the parameter
o= -d)>1 (B2)
we have:
g o2 [ _dv _ 2 [ __dv  _2 d(x/&y)( 11 j
- ﬂ%l—(x/—y) c(cz—az)J%(\/ay)z—l cJ& 2 Woy-1 Joy+1
o fy_1|°° o J(1+x/c )/(c* —d?)+1 B3
\/cz—a ‘/_J’+1|«/1+x/c V- \/(l+k/c )/(c —a’) -1
L 1og‘/(c +0/@ -a)+1_ o 1+ -a)/ @ +M)
\/cz—a2 \/(c2+k)/(c2—a2)—1 \/cz—a 1 \/(c (12)/(c2 +A)
Thus,
1 + 2/ (® + A
Ve — & 1—\/(c a)/(c +A)
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Then, by using the expression (AS), we find

° dg 2c dy
I, = (B5)
1(" +ENE +E (a2 -y 11/ (1 + ¢ y2j2

and for the stretched ellipsoid:

;o2 dy _ 202 7 _dWoy) 2 ( dx (B6)
Xy T2 20 ) 27 3 2 R 2 2332 2\
(*—d)) HW( I 1) Vo sy -1 (@ -a) ﬁj—(cw(czaz)(x )

a —c
To calculate this integral, let’s introduce the other integral:
dx 1 x+PB
L) = =—1lo . B7
B sz—BZ 65 (B7)
Then
I dx 9 [ dx _18(1 x+Bj
e 73 =507l 7 a7 = aaaal ap 08
-BH” 0B x -B 2BIP\2PB x-P
(B8)
1 x+[3 1 x-B&x-P-C+PED _ 1 x—-B 2x
=-—5log— 2 =-—gllege——-5"5|
4p°  x— B 4p°x + P (x-P) 4B x+B x"-P
thus,
;oo 2 [ e _ 1 (logx—l_ 2 j"“
: (cz_az)S/zJﬁ—m'[(Zﬁ(xz—l)z A’ -a’)’? x+1 % =N
¢ (B9)
1 (\/(c 0/ - ) log\/(cz+7\.)/(c2—a2)—1
@ @@ -1 2 @@ —a)+1
or
o [J(c2+k)(c2—a2> 1og V=)@ + 1] ®10)
xy T 2 2\3/2 2
(* —a’) a + e —d)E+n)
Finally, using the intermediate result from the Appendix A, when calculated the integral /,, we have:
st v L/ oo
=] I S B [ dy __ 2
3/2 2_ 2 2_ 2 2 2_ 2
x(a +§)(c +&) cla —cH| Y. e i i 2c 2yz (a —¢)
a —c
le _2c2 d); :222 21_'_212
Ve +an ¢ -a el — 20 2y2 (a —C)_\/c +A Vil —a
¢ —a
I d(c/\/cz—azy) o 2 ’-a _d(oy)
X 2 2 2 = (o= 2 2)__ 2 2.3/2 (B11)
SN -y -1 o @y |V (o)’ ~1

’-d d(\/_y)( 1 j B 2
a)3/2 \/c Y JL Joy -1 \/—y+1 -’y
c-a 1 \/_y—l cz_az 1 \/c(1+7»/c )/(c —a)+1
X\ = —1 = 7 + =log -
N (C —a) c+h 2 \/cc(1+7»/c )/(c —a)-1

+
PHYSICS OF PARTICLES AND NUCLEI ~ Vol. 52 No.3 2021

A+ \/—y+1



ELLIPSOID SPACE CHARGE MODEL 495

or

f= 2 oy L@ -+ [P
(P -ay?|2 1—\/(c —a)[+n Ve

(B12)

APPENDIX C
TRANSITION FROM A COMPRESSED ELLIPSOID TO SPHERE

Let’s calculate the free term K in the expression (48) for the potential outside the compressed ellipsoid in tran-
sition from ellipsoid to sphere and the coefficients K, and K; in the same equation. Assuming

c=a-38 and §=382a<1 (C1)
we can calculate K| as
2 2 <
2arccos,/%\' 2arccos \/a + 2 = 2ai(l —9)
K, = a + — a_+
: \/‘12 — (a — 6)2 \/208(1 — 8) (C2)
= —1/2 1/2 _
= %arccos( —2ad 1 6}) = (Zero's order over 8) = \/;_aarccos (1 - 2a5 7).
a a + a a +

However, for small o0 <€ 1, arccos(1 — o)) =¢,and 1 — o0 = cost = 1 — 2/2, then

2 )
K, = marecos (l - a2a+ 7»)
2 2a8 2
" 2aVa +h N2

Then, by using the substitutions and the relations, obtained during the calculation of K|, we calculate K,:

arccos J(" —8)’ +%_ld’ —(a—8)’ll(a—35) + Al

(C3)

K, = a+ )\ a+ )\ _ 1
) la” = (= 81" (2a8)"*(1 - 8)""
y arccos(1—2a5 1-3 j 2451 = )[a® + A — 2a8(1 — 8)]J ()
| a+ A\ a + A

T\-3/2 22 T2 _ 1/2
=029 arecos| 1-ad 4= 8 _ad(-0y) | 2ad (1—8)1/2( —2a8-1= 5) .
(2ad) a+N 2ad+)N) a +Ai a + A\

=—0a

For small o < 1, arccos(1 — o) = ¢, but now we will keep the quadratic terms, so that 1 — ot = cost =~ 1 — /2 +

/24, and
<H\-3/2 22 2 22 2
-9 \/2081— L 80-3) {1+i(a61_ a8 S)H
(2a8)” a+N @ +N 120 +L 2+

12
ZZaSX(l_S)l/z( iy 8] 8) }

a + a +\ (C5)
<\=3/2 _ /2
z(1_8)32 \/ 22a6 1-3)" [ a5(] 8)} (1 @1 6) ( 2a81 6)
(2ady"”* Na* + A 2Ad” +\) 124> + A a+A
__1-3 (H@l—s La81-8 _ 61 S)N 1-8 4,51-38
2ad\a’ + A 4a°+h 12a°+L a +r 2a6\/a2+7\.3a a+A
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or
2/3
@ +/x>3“’ “
finally, by using all these results and methods:
2 2 2 \-3/2
Ky =— 1 2572 arccos\/(a _25) +7\,_\/a _(az_ O (1_6)3/2
[a” —c(a—08)7] a +Ai (a@-9)°" +A (2ad)

—2abé 1

J2ad(1 - )

1-5) "

572
a +k) -

X |:ElI‘CCOS (

_(
a’ +\—2ad(1 - S)} (2ad)”?
282(1

{\/251— 282(1 6)[ [aﬁl_
a+Lh (@ +\) 120 a +A

_ (1= Pad(1-3) (1 .
Qady"? \ a>+ )

ad(1 — 8)) (1 .
2d® + )

6)2ﬂ_ [ 2ad 1—81/2(1—2 81—8)_1/2 c7
2Ad” + N a+\ ( ) ¢ a+ A\ "

@12—Sj (1+ a81= 8) _
12a° + A a+ A\

1-98
2ada® + A\
~1/3

[l+a61 8 ,a81-8 | ,51- 6}
4a*+n 124 +) a + A\
Or
—1/3
C8
(a +7»)3/2 (5)
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SUMMARY

In this paper, we have provided the detailed analytical
solution for the space charge forces inside the non-symmet-
rical three-dimensional ellipsoid-shaped bunch of the
charged particles inside and outside of the bunch core. The
presented results generalize and include the commonly used
expressions for the space charge [5, 6] and can be readily
used in the beam dynamics simulation codes.
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