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Abstract—It is well-known that if the physical system is located in the restricted area, additional “surface
terms” emerge in the traditional form of hypervirial and/or Erenfest theorems. In the current literature
mainly one-dimensional Schrodinger equation was considered in this respect. Our observation consists in
that this situation emerges automatically in spherical coordinates, as well as one of the coordinates, namely
radial distance, is restricted by a half-line. In particular, these considerations are clearly manifested, when
one consider spherically symmetric potentials and operators, depended only on distance. Evidently, these
additional terms give rise owing the boundary conditions for wave functions and the behavior of the consid-
ered operators at the origin of coordinates. We have analyzed the role of these additional terms for various
model- potentials in the Schrodinger equation. We consider regular, as well as soft-singular potentials and
show that the inclusion of these terms is very important for obtaining correct physical results. Some compli-
cated integrals for hypergeometric functions are also derived. The modified virial relations, derived below, is
converted into the usual relations, when the additional terms are absent and when present, they give reason-
able corrections in correct direction. This fact also provides its legitimacy.

Keywords: singular operators, time derivative, hypervirial theorem, Ehrenfest theorem, Coulomb and oscilla-
tor potentials, solvable potentials, soft-singular potentials, mean values and corresponding integrals
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1. INTRODUCTION

It is well known that when the system is located in
finite volume the inclusion of boundary conditions
becomes necessary as well as imposing restrictions on
the allowed classes of wave functions. Therefore, it is
remarkable to shed light whether or not some of well-
known results are altered, when the problems con-
nected to the boundary behavior come into play.

Remarkable contributions were made in this
respect in series of [1–8], especially after the pioneer-
ing works of J. Esteve and collaborators [1, 9], where
the strong mathematic definitions of operators and
their various combinations are established according
to their domains. It is also specified how the boundary
contributions appear in various forms of virial-like
relations. As regards of Ehrenfest-like theorems the
strong mathematical grounds were considered in [10].

Such theorems are different forms of virial consid-
erations, known already from classical mechanics.
There are known many ways of their generalization in
quantum mechanics. They mainly are rested on some
manipulations upon the Hamiltonians and the Schro-
dinger equation. In derivation of such theorems, as a
rule, the whole space had been considered [11, 12].

In case of restricted motion wave functions and
operators obey some boundary conditions and there-
fore, several “surface terms” can be non-vanishing.

It is very interesting that in two and more dimen-
sions, if we have a central symmetry, the radial variable
is restricted by a half-line, and hence the boundary
behavior can have an effect on corresponding theo-
rems. Partly this problem was solved in [13], where
elaboration of some fundamental relations in 3-dimen-
sional quantum mechanics was made taking into
account the restricted character of areas in radial dis-
tance. In such cases the boundary behavior of the
radial wave function and singularity of operators at the
origin of coordinates contribute to these relations. It
was derived the relations between the average values of
the operators’ time derivative and the time derivative
of average values of these operators, which is usually
considered to be the same by definition [11]. The devi-
ation from the known result was deduced and mani-
fested by extra terms, depended on the boundary
behavior mentioned above.

The general form for this extra term takes place in
the hypervirial-like theorems. As a particular case, the
virial theorem for Coulomb and oscillator potentials
was considered and corrections to the Kramers’ sum
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rule was derived. Moreover, the corrected Ehrenfest
theorem was deduced and its consistency with real
physical picture was demonstrated [13].

Our goal in the present paper is to apply this and
related problems in 3-dimensional space, where some
specific peculiarities occur, especially when the cen-
tral symmetric potential in the Schrodinger equation is
singular or considered operators are singular at the ori-
gin of coordinates. This paper continues the investiga-
tion, carrying out in our previous article (see [13]),
concerning to a systematic consideration of hyper-
virial relations.

Below we want to investigate the role of the extra
contribution for various exactly solvable potential
models in the Schrodinger equation.

This article is constructed as follows: In Sections 2
and 3 the brief review of theoretical reasoning is con-
veyed leading to modification of hypervirial and
Ehrenfest theorems, in parallel their validity for Cou-
lomb and oscillator potentials is verified. Remaining
place is devoted to examination of the additional terms
for other regular, as well as soft-singular potentials. We
show that for all considered potentials the additional
contribution works in correct direction and its pres-
ence in above mentioned theorems is essential.

2. MODIFIED HYPERVIRIAL THEOREM
2.1. General Consideration

We consider the central symmetric potential 
in the radial Schrodinger Hamiltonian

(2.1)

and explicitly time-independent operator , which
depends only on radial distance . Under such cir-
cumstances the new hypervirial theorem for stationary
states takes place [9, 13]

(2.2)

Moreover, we have derived there that the relation
for time derivative of the operator’s mean value has the
form [13]

(2.3)

In the last two relations the additional term is [13]

(2.4)

Here  is the total radial wave function for
bound state solution, which decreases at infinity, but,
in general, gives a finite contribution at the origin of
coordinates. For it we take

(2.5)
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It corresponds to the Dirichlet boundary condition
for the reduced wave function , and it follows
under very general assumptions (for details, see
[14‒18]). Naturally, the degree of turning to zero
explicitly depends on the potential under consider-
ation. We follow to the traditional classification
[13, 18]

(1) Regular potentials:

(2.6)

For which

(2.7)

Clearly, the second term is very singular and con-
tradicts to (2.5) and therefore, we must retain only the
first term ( ) or take

(2.8)

(2) Singular potentials, for which

(2.9)

For them the “falling to the center” happens and is
not interesting for us now.

(3) “Soft singular” potentials, for which

(2.10)

 Here the (+) sign corresponds to repulsion, while
the (–) sign—to attraction. For such potentials the
wave function has the following behavior [14–17]:

(2.11)

where

(2.12)

In the region  the second solution sat-
isfies also to the boundary condition (2.5), therefore,
it must be retained in general and hence the self-
adjoint extension need to be performed [17]. As for the
region  only the first (standard or regular)
solution remains.

After this information let us return to consideration
of the additional contribution (2.4). Below we restrict
ourselves only by regular solutions both for regular and
soft-singular potentials, i.e. the first terms in above
Eqs. (2.8) and (2.11). It is obvious that upon calcula-
tion of the limit in Eq. (2.4) the behavior of the oper-
ator  in the origin will be also important. We take it as
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Here, it is implied not only explicit dependence on
, but also its scale dimension (derivative et al.). Tak-

ing all these into account, we chose

(2.14)
Then, we have (for regular potentials (2.6))

(2.15)

In order for this expression not to be diverging we
must require

(2.16)
In this case the additional term vanishes. If the

inequality is reflected, then the divergent result will
follow and we will be unable to write Eq. (2.3), so in
this case the time derivative is not defined on the
whole.

On the other hand, if the operator is such that
(2.17)

the extra term survives on the right-hand side (2.2)

(2.18)

Just so happens also in case of the soft-singular
potential (2.10), restricting ourselves by regular (or
standard) solution only:
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ther applications let us calculate their left-hand-sides
for widespread used events.

We first discuss the consequences of these relations
for specific radial operators and then move further.

Consider the following operator [19]

(2.23)

where  is a Hermitian operator of radial momentum

(2.24)

and  is a three-times differentiable function. Cal-
culate the commutator

(2.25)

Entering here  and  can be rewritten by
means of
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where
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Here  is given by (2.15) and/or (2.20).
Taking into account (2.29) and (2.30) we obtain the

most general hypervirial theorem for the Schrodinger
equation [13]

(2.31)

( )=ˆ ˆ ,rA p f r

ˆrp

( )∂= +
∂

� 1ˆrp
i r r

( )f r

{ }
( ) ( )

  = − + − 

++ −

� �

� �

22
2 2

2

3
3

ˆˆ,
2 2

1
.

r r r
df df d fiH A p p p

m dr dr m dr
l ldVi f r i f

dr mr
2ˆrp ˆrp

( )+− = − + +�
22

2

1
,

2 2
r l lp H V
m mr

 − = +
  

� �
2 2

2 , ''' .
2r

d f dfi p H f
m dr mdr

  = −     � �
3ˆˆ ˆ, , ' ,
2

H A i Q i H f

( )
( ) ( )

= − −
+   ′′′+ − − +  

�
�

2
2

2 3

2 '
'1

' .
4

Q f H V
fl l f f f r V

m mr r

− = Π  
3 ˆ, ' .
2

Q H f

Π

( ) ( )

( )

→

+  − − + −  

− + =

   × − − +  
   

  + − + +   
  

�

� �

2
2 3

2 2

2
2 2

0

2
2 2

2

'1
2 '

''' '
4 2

lim " ' '

3' " " .
2

r

fl l ff H V
m r r

f f r V
m m

Rr R f RR f
r

RR RR f R f
r

1  2021



158 ANZOR KHELASHVILI, TEIMURAZ NADAREISHVILI
Now if one considers a particular case, f = rS + 1

applied in [20], a simple calculation gives:
—for regular potentials

(2.32)

—and for soft-singular potentials

(2.33)

Analogous to relation (2.32) was derived in [21] by
different method. We display it here in order to show
that our consideration gives the correct result. Note
that if we substitute  into Eq. (2.32), we obtain
the relation (11) of J. Sukumar [21]. See also [22].
More details for a generalization of Quigg and Rosner
method [23] in connection to [21] may be found in
[22]. Therefore, it means that above calculation by
commutator gives the same result as a calculation
based on manipulations applied in [21–23].

As for (2.33), it is really a new relation, which
incorporates a soft-singular potential too. Using it for
the Coulomb and oscillator potentials, we have, corre-
spondingly:
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Exactly these sides balance obtained sum rules, as
we’ll see below.
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For example, modified Kramers’ relation accord-
ing to Eq. (2.34) for the Coulomb potential, looks like:

(2.36)

On the other hand, it follows from the Coulomb
wave function

(2.37)

that

(2.38)

Then the Kramers’ modified relation (2.36) takes
the form
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The analogous situation appears in oscillator
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ens out the validity of Kramers’ relation. For details
see [13].
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3. MODIFIED EHRENFEST THEOREM
The Ehrenfest’s equations signify that the average

values of position and linear momentum operators
evolve classically. We now simply analyze what hap-
pens with the Ehrenfest theorem in ordinary quantum
mechanics in light of influences of presented bound-
ary behavior in spherical coordinates.

Consider again the operator of radial momentum
 (2.24) and substitute it into Eq. (2.3), we have

(3.1)

where

(3.2)

It is clear from this relation that for , ,
while for , it diverges. But for  it survives

(3.3)

Therefore, for singular potential the usual Ehren-
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tional textbooks this fact is not mentioned.

Let us now calculate the commutator in (3.1).
We find
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We conclude here that for regular potentials the
usual Ehrenfest theorem is valid only in case  while
in case , there appears an extra term (3.7).

Now let us show that Eq. (3.6) gives correct results
for Coulomb potential. Note that for stationary states
time derivative of mean value of time independent
operator must be zero. Therefore, the left-hand side
of (3.8) is zero and it remains

(3.8)

Let us check this relation. Consider first the case of
nonzero angular momentum . In this case, 
and remaining terms on the right-hand side

 compensate each other’s for

Coulomb potential [26, 27].
On the other hand, the case  is more interest-

ing and crucial. In this case we have no centrifugal
term, and the additional term is given by (3.7),
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meaningless result follows: .

All the above consideration tells us that the inclu-
sion of the additional term into virial and Ehrenfest
theorems is necessary.

4. OTHER REGULAR POTENTIALS
Let us now consider other regular potentials which

have a wide application in quantum mechanics. Our
aim will be further analyzing the modified Ehrenfest
theorem (3.6) first for various regular potentials, and
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absent, Π = 0. Moreover for stationary case, the left-
hand side of Eq. (3.6) must be zero, i.e. the following
sum rule must be valid

(4.1)

Because , (4.1) takes more familiar form

(4.2)

Remember that this relation can be derived from
Eq. (2.31) if we take . (4.2) is a well-known
formula in current literature, see [23, 28]. We have proved
it from modified Ehrenfest equation (3.6).
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we obtain

(4.10)

Inserting these results into Eq. (4.4) for  we get
the relation

(4.11)

On the other hand, from (4.3) with  and (4.5),

 (4.7) it follows

(4.12)

Substituting it into (4.11) we are convinced that this
relation is satisfied exactly or the relation (4.6) is cor-
rect for . Correctness of Eq. (4.6) may be verified
easily for all values of  applying the so-called Paster-
nak-type inversion property [30] (here the dimension-
less values are used):

(4.13)

The form (4.4) has an independent significance, as
it connects different mean values. It can be very useful
even in cases when the Schrodinger equation is not
solvable analytically. For example, in case of linear
potential

(4.14)

The Schrodinger equation is solvable only in
S-state . But the above (4.4) formula for (4.14)
potential gives for any 

(4.15)

Let us consider the well-known quarkonium poten-
tial [23]

(4.16)

It follows from (4.4) that

(4.17)

Here we do not know the exact solution of Schro-
dinger equation, but different averages are related.

The case  is more interesting, because the
additional term contributes. Now it follows from (3.6)
and (3.7) that for stationary states

(4.18)
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Remark here that , but

because , then the total wave function is

(4.19)

Therefore (4.18) gives the well-known relation
[23, 28]

(4.20)

This shows ones again that the inclusion of the
additional term is necessary. The ordinary Kramers’
theorem does not work in this case.

It is easy exercise to verify (4.18) for linear poten-
tial (4.14) because solution in Airy functions is well
known [11]. The reduced Schrodinger equation for
this problem has a form

(4.21)

where

(4.22)

Its solution that falls at infinity is an Airy function

(4.23)

 is a radial quantum number describing excitation
states. Energy levels can be found from zero boundary
condition 

(4.24)

Taking this into account we derive

(4.25)

Therefore, from (2.8)

(4.26)

where eigenvalues  are determined from (4.24) by
zeros of the Airy function
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Here  are placed in increasing order. Then after
substituting all of that into Eq. (4.18), which has the
following form in this case

(4.28)

we derive

(4.29)

From which we obtain the normalization constant

(4.30)

It coincides with the results, obtained in the
book [31].

Linear and simple harmonic potentials are consid-
ered previously by C. Sukumar [21]. It is easy to con-
vince that any powers of radial distance can be found
by successive application of (2.32). So, this relation is
a successive recurrence formula for power low regular
potentials.

4.1. Other Solvable Potentials in  State

It may be remarked that for  states the Schro-
dinger equation has solution for several potentials,
which have a wide application in physics. Note that
such examples are not considered in [21].

Below we consider such problems:
(1) Exponential potential,

(4.31)

This potential is well-known from deuterium prob-
lem in nuclear physics.

The wave function is [32]

(4.32)

where  is a normalization constant, index zero
means that .  is the Bessel function of order 
and

(4.33)

Energy spectrum is obtained from the condition

(4.34)

But the mean values are not known. In our
case (4.18) gives

(4.35)
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and here C1 is to be established. Evidently

(4.36)

Therefore,

(4.37)

This relation can be obtained also more simply
from the definition (2.7)

(4.38)

Substituting (4.37) into (4.35) we get

(4.39)

or

(4.40)

Taking into account notations (4.33) it follows the
resulting integral

(4.41)

The only unknown parameter here is , but really
it is obtainable from zeros of Bessel function (See,
Eq. (4.34)). Our above derivation is much simpler
than that given in [33].

Using (2.31) one can derive other helpful integral
also: substituting there  the virial theorem
follows in the form

(4.42)

Explicitly it gives

(4.43)

It means
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So, this new integral is expressed by previous
one (4.41). According to notations (4.33), it can be
reduced to the alternate form

(4.45)

Other solvable cases are done in the Appendix
below.

5. HYPERVIRIAL THEOREM 
FOR THE SOFT-SINGULAR POTENTIALS
As was noted in the introduction, our main goal in

this article is a verification of validity of a new modi-
fied virial theorem for various potentials, included the
soft-singular ones. For such potentials the master
uquation is (2.33). This equation involves several
parameters. Assigning them specific values, one can
derive various sum rules for a given potential. We do
not report them here. Because a nontrivial factor is an
extra term, we concentrate our attention to cases,
when this term is not zero, i.e. when the right-hand
side of (2.33) is nonvanishing. It happens when

(5.1)

In this case (2.33) takes the following form

(5.2)

Let us introduce a new parameter k, by the relation

(5.3)

It coincides to the power degree of the regular part
of (2.11), . It follows from (5.2)

(5.4)

Here  denotes th derivative and the evi-
dent relation is used

(5.5)

Equation (5.4) is a generalization of Khare’s
known relation [34]. Indeed, when  it follows
Khare’s relation in case of regular potentials
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Morever the form (5.4) may be used in the
Van Royen–Weisskopf formula [35] for decay rates in
case of soft-singular potential.

In course of deriving these equations we have used
the definition (2.12), from which it follows

(5.7)

Let us now study the following class of soft-singular
potentials

(5.8)

where  is less singular, than . Evidently
Eq. (5.4) is legitimated for such potentials. It follows

(5.9)

i.e. formally it coincides to (5.6), but is valid for all
. One can easily repeat all theorems, given in [34]

by suitable changes .
Substitute (5.8) into (2.33), we arrive at

(5.9)

But when  and because

, this equation simplifies sig-

nificantly

(5.10)

We see, that the trace of singular part is eliminated
completely apart from the exponent of wave function
behavior at the origin  and from the solution itself in
the averaging procedure.

If now we take the potential like (5.8), it follows

(5.11)

Because a parameter  is arbitrary so long, con-
sider case, when the first term here vanishes

. Then (5.11) reads as

(5.12)

Let us study which values of β are allowed in case
of  and  here. From the definition (2.12) it
follows

(5.13)

And it can be easily verified that this definition
does not contradict to the physically interesting poten-
tials, namely:  (valence electron model) and

 (singular oscillator, with ), considering of
which we are going to.

6. THE VALENCE ELECTRON 
AND THE SINGULAR OSCILLATOR MODELS

Consider now the valence electron model potential

(6.1)

Such potential arises in atomic physics in describ-
ing of alkali metals [11]. We substitute into (5.12)

. It follows

(6.2)

We are going to check this formula. The standard
solution in case of potential (6.1) is [11, 16]

(6.3)

where
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Considering the behavior of (6.3) at the origin, one
derives
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On the other hand, together with Eq. (6.2) and
, we have to verify the relation
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(6.7)

Taken into account that in our case

(6.8)

and , we obtain the

general formula

(6.9)

Substituting  into (6.9), it follows the expres-
sion for the normalization constant

(6.10)

For some negative integer values of  the Eq. (6.9)
gives also closed answers. For example,

(6.11)

(6.12)

Moreover, for positive degrees

(6.13)

etc.
It is evident that for integer  (positive or negative)

the series (6.9) would truncate somewhere. Consider
now fractional values of . In such cases it is more con-
venient to consider some of first values of . For
example for 

(6.14)

(6.15)

Using these relations one can easily verify the
validity of (6.6) even for other values of 
Therefore, we come now to the problem by another
way—assume that the Eq. (6.6) is valid and calculate

 with the aid of standard solution for considered
potential [16], using the spectral formula

(6.16)

which for  becomes

(6.17)

Therefore, according to notation (6.4) we find

(6.18)

And finally

(6.19)

Let us underline, that the relation (6.9) can have
many other powerful applications, especially, together
with virial like considerations. One more example is
given below for singular oscillator.

• Singular oscillator potential has the form

(6.20)

This potential is interesting for the Calogero model
[38]. In this case the standard wave function of the
Schrodinger equation is [39]

(6.21)
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Energy levels is given by obvious relation

(6.22)

Here the following notations are used

(6.23)

According the definition (2.11)
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we have to calculate
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Comparison to Eq. (6.7) dictates
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This relation is analogous to (6.9). The normaliza-
tion constant can be calculated inserting here .
We find

(6.29)
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lows (remember, that according to definition
 we have  for ):

(6.32)

Thus, (6.31) runs into

(6.33)

It follows

(6.34)

Inserting here  from (6.23), we derive

(6.35)

which coincides with proper energy (6.22) as .
Therefore, we have finished the verification of

virial relations in these cases also. It is remarkable to
note that the more general relation (5.11) for singular
oscillator may be used for arbitrary  to relate various
even degrees of to each other’s.

7. CONCLUSIONS

Collecting all above derived results one can con-
clude that:

Modified hypervirial theorems (2.32), (2.33) gave
us true physical results in various considered cases.
They coincide to the usual relations, when the addi-
tional terms are absent. In cases, when the additional
contributions appear, modified relations give reason-
able corrections and supplement deficient contribu-
tions. We have checked the validity of additional term
for various potentials (regular and soft-singular)
explicitly and established its legitimacy.

Equations (2.32) and (2.33) are sources for obtain-
ing relations between mean values of various degrees
of radius for large classes of potentials—both regular
and soft-singular. Assigning some values to parameter

 and specified potentials, one can derive a generaliza-
tion of Kramers’ relation and correct the Ehrenfest
theorem in a true direction, as well as higher order
derivatives of radial function at the origin, which may
have an application in the Van Royen–Waisscopf for-
mula for decay probabilities. As a byproduct, some
complicated integrals for hypergeometric functions
are also derived, which are exhibited in the Appendix
below.

APPENDIX

Let consider various examples and find corre-
sponding integrals:
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(2) The Hulten potential:

(A.1)

The solution of the Schrodinger equation in this
case ( ) is [36]

(A.2)

Here

(A.3)

is a Hypergeometric function, —normaliza-
tion constant, and energy levels are obtainable from
the condition

(A.4)

For this potential Eq. (4.18) takes the form

(A.5)

Behavior of (A.2) at the origin gives

(A.6)

or

(A.7)

Then Eq. (4.18) gives
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and finally, we get

(A.11)

Moreover, again from (A.3)

(A.12)

Therefore

(A.13)

Now we can use the recurrence relation for deriva-
tives of this function [37]

(A.14)

And at the end we have

(A.15)

(3) The Morse potential:

(A.16)

This potential has a wide application in Chemistry
for studying two-atomic molecules.

The solution of the s-wave Schrodinger equation
looks like [36]

(A.17)

Here is a confluent hypergeometric function,
and the following notations are used

(A.18)

Eigenvalues equation is
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Proceeding in a similar way as above, one finds the
following equality

(A.20)

Consider now relation (4.42), which gives

(A.21)

In explicit form this equation means, according to
notations (A.18)

(A.22)

(4) Wood–Saxon potential:

(A.23)

It is applied for description of neutron-nucleus
interaction. For s-wave Schrodinger equation the
solution is [36]

(A.24)

Here  is a hypergeometric function and
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Spectrum is derived by the condition
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(A.28)

Analogous consideration, as above, gives the fol-
lowing relation

(A.29)

We do not find these integrals (A.15), (A.20),
(A.22) and (A.29) in accessible to us Tables and Hand-
books.
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