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Abstract—Several experimental groups reported the evidence of periodic modulations of nuclear decay con-
stants which amplitudes are of the order  and periods of one year, 24 h or about one month. We argue that
such deviations from radioactive decay law can be described in nonlinear quantum mechanics framework, in
which decay process obeys to nonlinear Shrödinger equation with Doebner–Goldin terms. Possible correc-
tions to Hamiltonian of quantum system interaction with gravitation field considered, it’s shown that they
correspond to some emergent gravity theories, in particular, bilocal field model. It’s shown that proposed
model describes decay parameter variations which agree with experimental results for Po-214 -decay life-
time oscillations.
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1. INTRODUCTION
Natural radioactivity law is one of most fundamen-

tal laws of modern physics, in accordance with it,
nuclear decay parameters are time-invariant and prac-
tically independent of environment [1]. However,
some recent experiments have reported the evidence
of periodic modulations of nuclear α- and β-decay
parameters of the order of  and with typical peri-
ods of one year, one day or about one month [2–6].
First results on essential deviations for β-decay rate
were obtained during the measurement of 32Si isotope
life-time [2]. Sinusoidal annual oscillations with the
amplitude 6 × 10–4 relative to total decay rate and
maximal rate at the end of February were found. Since
then, annual oscillations of β-decay rate for different
nuclei from Ba to Ra were reported, for all of them the
oscillation amplitude is of the order 5 × 10–4 with its
maximum on the average at mid-February [3]. Annual
oscillations of 238Pu -decay rate with the amplitude
of the order  also were reported [4]. Life-time of
short-living α-decayed isotope 214Po was measured
directly, the annual and daily oscillations with ampli-
tude of the order 9 × 10–4, with annual maxima at
mid-March and daily maxima around 6 a.m. were
found during three years of measurements [5]. Small
oscillations of decay electron energy spectra with
period 6 months were found in Tritium β-decay [6].
However, some other β-decay experiments exclude
any decay constant modulations as large as reported
ones [7].

Until now theoretical discussion of these results
had quite restricted character. In particular, oscilla-

tions of β-decay rate was hypothized as anomalous
interaction of Sun neutrino f lux with nuclei or sea-
sonal variations of fundamental constants [3]. Yet,
neither of these hypothesis can’t explain α-decay
parameter oscillations of the same order, because
nucleus α-decay stipulated by strong interaction and
should be insensitive to neutrino f lux or other electro-
weak processes. Therefore, observations of parameter
oscillations for both decay modes supposes that some
universal mechanism independent of particular type
of nuclear interactions induces the decay parameter
oscillations. Nowadays, the most universal micro-
scopic theory is quantum mechanics (QM), in its
framework, radioactive nucleus treated as metastable
quantum state [8, 9]. Evolution of such states was the
subject of many investigations and its principal fea-
tures are now well understood [9]. Notorious example
is Gamow theory of α-decay which describes it as
quantum tunneling of α-particle through the potential
barrier constituted by nuclear shell and nucleus Cou-
lomb field [10, 11]. However, in its standard formula-
tion, Gamow theory excludes any significant varia-
tions of decay parameters under influence of Sun
gravity and similar astrophysical factors. In this paper,
it’s argued that such influence can appear, if one
applies for α-decay description the nonlinear modifi-
cation of standard QM, which developed extensively
in the last years [12, 13]. In particular, we shall use
Doebner–Goldin formalism modified to account
nonlinear interaction of quantum systems with gravity
[14, 15]. Basing on it, Gamow α-decay theory with
nonlinear Hamiltonian constructed, and model calcu-
lations compared with experimental results for 214Po α-
decay life-time variations [5]. In its framework, influ-
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ence of Sun gravity on α-decay presumably correspond
to results of some emergent gravity theories [16].

2. NONLINEAR QM MODEL

Interest to nonlinear evolution equations can be
dated back to the early days of quantum physics, but at
that time they appeared in effective theories describing
collective effects [8]. Now it’s acknowledged also that
nonlinear corrections to standard QM Hamiltonian
can exist also at fundamental level [18, 19]. Significant
progress in the studies of such nonlinear QM formal-
ism was achieved in the 80s, marked by the seminal
papers of Bialynicki–Birula and Mycielcki (BM), and
Weinberg [12, 13]. Since then, many variants of non-
linear QM were considered in the literature (see [15]
and refs. therein). Some experimental tests of QM
nonlinearity were performed, but they didn’t have
universal character, rather they tested Weinberg and
BM models only [19]. Currently, there are two differ-
ent approaches to the nature of QM nonlinearity. The
main and historically first one supposes that dynami-
cal nonlinearity is universal and generic property of
quantum systems [12, 13]. In particular, it means that
nonlinear terms can influence their free evolution,
inducing soliton-like corrections to standard QM
wave packet [12]. Alternative concept of QM nonlin-
earity which can be called interactive, was proposed by
Kibble, it supposes that free system evolution should
be linear, so that nonlinear dynamics related exclu-
sively to the system interactions with external fields
[20]. Until now, detailed calculations of such nonlin-
ear effects were performed only for hard processes of
particle production in the strong fields [21, 22], this
formalism can’t be applied directly to nonrelativistic
processes, like nucleus decay. Due to it, to describe the
interaction of metastable state with external field, we’ll
start from consideration of universal nonlinear model
and develop its modification, which can incorporate
particle-field and nucleus-field interactions at low
energies.

In universal approach to QM nonlinearity, it sup-
posed that particle evolution described by nonlinear
Schrödinger equation of the form [8]

(1)

where m is particle mass, V is external potential, F is
arbitrary functional of system state. Currently, the
most popular and elaborated nonlinear QM model of
universal type is by Doebner and Goldin (DG)
[14, 15] with nonlinear term
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where λ is imaginary or real constant. With the
notation

we abbreviate (1) to . In fact, gen-
eral DG model describes six-parameter family of non-
linear Hamiltonians, but the action of all its nonlinear
terms on realistic quantum systems is similar to 
of (2), hence for the start only this ansatz will be used
in our calculations [15]. The choice of λ of (2) to be
imaginary prompted by results of nonrelativistic cur-
rent algebras [14], but they doesn’t have mandatory
character; below we’ll consider F terms both with
imaginary and real  for . Main properties of
Eq. (1) for imaginary λ were studied in [14], they can
be promptly extended on real  and summarized for
both cases as follows: (a) The probability is conserved.
(b) The equation is homogeneous. (c) The equation is
Euclidian- and time-translation invariant for .
(d) Noninteracting particle subsystem remain uncor-
related (separation property). Distinct values of  can
occur for different particle species. (e) Writing

 for operator expectation value, in

particular, since , the energy functional
for a solution of (1) is . For , plane

waves  with ,  =
 are solutions both for real and imaginary .

As was mentioned above, simple quantum model
of metastable state decay describes it as particle tun-
neling through the potential barrier with suitable
parameters [8]. It’s natural to expect that for small λ
the tunneling mechanism doesn’t change principally,
and resulting state difference from standard QM solu-
tions is small. Hence such linear solutions can be
treated as consistent approximations for incoming
states to nonlinear solutions for the same system
parameters. To illustrate the influence of nonlinear
DG term on particle tunneling, consider 1-dimen-
sional plane wave tunneling through the potential bar-
rier. Suppose that rectangular barrier of the height 
located between  and , and plane wave par-
ticle state with energy  spreads from .
Long-living metastable states appear for small trans-
mission coefficient , which corresponds to bar-
rier width  for fixed . For example, for U

-decay  [10]. We’ll study stationary solu-
tions of Eq. (1) basing on its asymptotic in this limit.
Standard QM stationary solution for 

with ; for  it gives , i.e.

nearly complete wave reflection from the barrier.
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Hence  can be decomposed as  =  where
the asymptotic state  = , α0 =

 where

(3)

Then,  where ,
i.e. is exponentially small. In distinction, for DG non-
linear Hamiltonian the incoming and reflected waves
suffer rescattering, so stationary state  for

. For real λ, the stationary solution can be
obtained performing nonolinear transformation of
solution of adjoined linear equation [14, 15]. Namely,
for real solution  of such Schrödinger equation,
the solution of nonlinear equation

where

and . Below for brevity such exponential
ansatz replaced by corresponding function rate. In
particular, asymptotic solution for  and 

with  and

Thus, asymptotic solution  differs from stan-
dard QM one, for finite a the correction to it can be
taken to be equal to , i.e.  ≈ . For imagi-
nary λ the corresponding nonlinear transformation
given in [14, 15], however, for complete wave reflec-
tion from the barrier the consistent asymptotic solu-
tion for  doesn’t exist, because  phase singulari-
ties appear at its nodes. In this case, the linear QM
solution  for the same system parameters can be
used as its approximation. For , both for real and
imaginary , the solution is  = , 
value calculated below.

To describe the tunneling, it’s necessary first to
find solution for  with  for ,
which is main term of tunneling state. For real , such
solution of Eq. (1) is  =  where
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In the linear QM formalism, for , it follows
that

For small  this formulae can be used with good accu-
racy also in nonlinear case substituting in it  of (3) by

. Analogously to standard QM, another solution,
which describes the secondary term, is  =

, yet , so  is exponen-
tially small in comparison with . Therefore, trans-
mission coefficient can be estimated with good accu-
racy accounting only main term , it gives

, so that  exponentially depends
on .

Due to dynamics nonlinearity, the superpositions
of two terms, in general, aren’t solutions. Analytic
solutions, which correspond to such superpositions,
exist in two cases only, defined by  ratio.
First, for imaginary  the solution is just ;
second, for  real

where

(4)

Other solutions, corresponding to complex , can
be approximated as the linear interpolation between
these two solutions. In the linear approximation

For typical -decay parameters , it corre-
spond to ,  values such that . Therefore,  can
be taken to be imaginary, and resulting  will be 
superposition. In this case, transmission coefficient

, so that  also has exponential dependence
on . For imaginary , the main term

 where

Transmission coefficient for main term is equal to
 where . It supposes
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real . Then, secondary term . Both
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defines  for . It’s notable that considered
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nonlinear Hamiltonian term  influences mainly the
transitions between degenerate states, as property (e)
demonstrates. Due to it, tunneling transmission coef-
ficients and related decay rates are sensitive to the
presence of nonlinear terms in evolution equation,
hence the study of such processes can be important
method of quantum nonlinearity search.

3. α-DECAY OSCILLATION MODEL

Gamow theory of nucleus -decay supposes that
in initial nuclei state, free -particle already exists
inside the nucleus, but its total energy  is smaller
than maximal height of potential barrier constituted by
nuclear forces and Coulomb potential [10]. Hence

-particle can leave nucleus volume only via quantum
tunneling through this barrier. For real nucleus, bar-
rier potential isn’t rectangular, but has complicated
form described by some function  defined experi-
mentally [10, 11]. In this case, to calculate transmis-
sion rate in our model, WKB approximation for Ham-
iltonian of (1) used [8]; its applicability to our nonlin-
ear Hamiltonian can be easily checked. The
calculations described here only for real , for imagi-
nary  they are similar. In this ansatz, 3-dimensional

-particle wave function reduced to ;

function  can be decomposed in  order
 [8]. Given -particle energy , one

can find the distances  from nucleus centre at
which . Then, for our nonlinear Hamilto-
nian the equation for  is

(5)

where  for ,  for ,
. Its solution for  can be written as

where  is normalization constant,

where . Account of higher order  terms
doesn’t change transmission coefficient which is
equal to

(6)

F

α
α

E

α

( )V r

λ
λ

α ψ = σ �
1 exp( )i
r

σ( )r �

σ = σ + σ + ...0 1 α E
,0 1R R

, =0 1( )V R E
σ0

( ) ∂σ⎛ ⎞Λ − = −⎜ ⎟∂⎝ ⎠

2
01 ( ),

2
E V r

m r

Λ = λ2 ≤ ≤0 1R r R Λ = 0 < 0r R
> 1r R ≤ ≤0 1R r R

⎡ ⎤
ψ = σ = − ε ε⎢ ⎥

⎢ ⎥⎣ ⎦
∫�

�
0

0
1 1exp( ) exp ( ) ,

r
r

R

Ci p d
r r

rC

−⎡ ⎤=
⎢ ⎥⎣ ⎦− Γ�

1
22 ( ( ) )1( ) ,

1 4
m V r Ep r

Γ = λ( ) ( )t m t σ

⎡ ⎤⎡ ⎤ ϕ⎢ ⎥= − ε ε = −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥− Γ⎣ ⎦

∫�
1

0

1
2

2exp ( ) exp ,
(1 4 )

R

R

D p d
PHYSICS OF PARTICLES AND NUCLEI  Vol. 51  No. 
here ϕ is constant, whereas Γ can change in time. For
imaginary  the calculations result in the same 
ansatz, but with

To calculate nucleus life-time,  should be multi-
plied by the number of -particle kicks into nucleus
potential wall per second [10].

To study decay parameter variations in external
field, we’ll suppose now that nonlinear Hamiltonian
term  depends on external field . In our model,
such field is gravity, characterized usually by its poten-
tial . In this case,  should be accounted in evo-
lution equation twice. First,  should be added to

, so that it changed to ; second,
nonlinear  term  can depend on  or some its
derivative. For minimal modification of DG model
we’ll assume that for  ansatz of (2) its possible
dependence on external field is restricted to parameter

 dependence: , so now  isn’t constant, but
the function of  and . It supposed also that 
for , so that free particle evolution is linear.
Considered model doesn’t permit to derive  depen-
dence on Sun gravity, but it can be obtained from its
comparison with experimental results for 214Po -
decay. We’ll suppose that  is function of gravitation
potential  where  is nucleus coordinate in
Sun reference frame (SRF). As follows from Eq. (6)
for small 

For 214Po decay, its life-time  s, model
estimate gives . For annual  variation the best
fit for 3 yr exposition has main harmonics

where  defined in days, , ,
 days [5]. Remind that Earth orbit is elliptic,

the minimal distance from Sun is at about January 3
and maximal at about July 5, maximal/minimal orbit
radius difference is about  [23]. Plainly, the
minima and maxima of  time derivative  will be
located approximately in the middle between these
dates, i.e. about April 5 and October 3, correspond-
ingly. In general, this dependence described as

here  days,  m2/s, as the result, such
model  value in a good agreement with experimental

 value. Thereon, it means that the plausible data fit is
, where  is interaction constant, which can
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be found from the data for 214Po decay. It follows from the
assumed equality of oscillation amplitudes 

that the resulting  .

Another experimentally found harmonic corre-
sponds to daily variations with best fit

where  defined in hours, , ,
 = 12 h [5]. Such oscillation can be attributed to

variation of Sun gravity due to daily lab. rotation
around Earth axe. It’s easy to check that nucleus life-
time dependence also coincides with  time depen-
dence with high precision. Really, it described as

with  h,  m2/s [23]. It follows that
; if to substitute in this equality  value,

calculated above, it gives , which is in a
reasonable agreement with its experimental value.

4. NONLINEARITY, NONLOCALITY 
AND CAUSALITY

In this paper, we studied hypothetical nonlinear
corrections to standard QM description of system
interaction with external fields. Such terms have
strictly quantum origin and disappear in classical
limit, their existence should be verified in dedicated
experiments. To study their general features, we con-
sidered the simple nonrelativistic model, which
includes the additional terms for the interaction of
quantum systems with gravitational field. It was
argued earlier that QM nonlinearity violates relativis-
tic causality for multiparticle systems, in particular, it
permits superluminal signaling for EPR-Bohm pair
states [24, 25]. However, this conclusion was objected
and still disputed [19]. Plainly, these arguments would
be even more controversial, if nonlinear effects exist
only inside the field volume. In particular, the meta-
stable state in external field can be considered as open
system, yet it was shown that superluminal signaling
between such systems is impossible [26]. Moreover,
heavy nucleus is strongly-bound system, so it’s unclear
whether it’s possible to prepare entangled state of two

-particles located initially inside two different nuclei.
It was supposed earlier that gravity is emergent

(induced) theory and originates, in fact, from some
nonlocal field theory [16, 17]. It follows then, that
gravity effects can be effectively described by multilo-
cal (collective) field  or by several multilocal field
modes . It was shown, in particular, that
bilocal scalar field  reproduces classical grav-
ity effects up to the second order [16]. Such bilocal
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field Φ2 supposedly can interact with bilocal operators
of massive fields, in particular, it can be nonrelativistic
particle systems. Such interaction doesn’t violate cau-
sality, if for the pair of separated quantum objects it
influence only their bilocal observables of EPR-Bohm
type [18, 24]. The simple example of such observable
is spin projection difference of two fermion system.

In our model, it assumed that in infrared limit the
gravity described by two terms  where

 is standard local potential. Denote as  the
coordinate of -particle,  the coordinate of remnant
nucleus centre of mass, and . For consid-
ered -decay model, the joint state of remnant
nucleus and α-particle is entangled, their bilocal
observable  is of EPR-Bohm type. It’s notable that
it’s equivalent to basic coordinates of bilocal field
which described by them as  where

 [16]. If gravity field is local then for
 it will act mainly on nucleus total state

, but not on nucleus internal state . Only
bilocal field can influence it, and as follows from our
analysis of 214Po α-decay, it’s plausible that for bilocal
scalar field . In accordance with it, for
D-G ansatz with  the corresponding non-
linear term of our Hamiltonian for nucleus

where  is arbitrary constant and . It means
that  interaction with nucleus described by nonlin-
ear operator; as the result, -particle transmission
coefficient  can oscillate around its constant value
for linear Gamow theory. For large  it can be sup-
posed that

(7)

As follows from equivalence principle, in lab. refer-
ence frame, located on Earth surface, Sun gravitation
potential , yet . It supposes that
nuclear decay process violates equivalence principle,
however, some theories of emergent gravity predict
that it can be violated in quantum processes [16, 27].
In addition, other results for 214Po -decay seems to
support such conclusion. Namely, beside described
life-time oscillations, these data contains also har-
monics with period 24 h 50 min, which is equal to
lunar day duration and so can be related to moon grav-
ity effect [5]. Studies in quantum gravity supposes that
this theory can be similar to QFT with massless mes-
senger called graviton. Notorious example of massless
messenger formalism represents QED.  It’s well
known yet that in its nonrelativistic limit there are
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some electromagnetic effects, like Casimir effect or
Lamb shift, which can't be described by Scroedinger
equation, but only via accounting higher order QED
terms. It seems possible that the observed decay oscil-
lations can have analogous origin corresponding to
the nonzero infrared limit of some hypothetical quan-
tum gravity terms. 
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