
ISSN 1063-7796, Physics of Particles and Nuclei, 2020, Vol. 51, No. 4, pp. 772–780. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2020, Vol. 51, No. 4.
Conventional Quantum Statistics with a Probability Distribution 
Describing Quantum System States

V. I. Man’koa, b, *, O. V. Man’koa, c, **, and V. N. Chernegaa, ***
aLebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia

bMoscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow oblast, 141701 Russia
cBauman Moscow State Technical University, Moscow, 105005 Russia

*e-mail: mankovi@lebedev.ru
**e-mail: mankoov@lebedev.ru

***e-mail: vchernega@gmail.com
Received December 20, 2019; revised January 16, 2020; accepted January 29, 2020

Abstract—The review of a new probability representation of quantum states is presented, where the states are
described by conventional probability distribution functions. The invertible map of the probability distribu-
tion onto density operators in the Hilbert space is found using the introduced operators called a quantizer–
dequantizer, which specify the invertible map of operators of quantum observables onto functions and a prod-
uct of the operators onto an associative product (star product) of the functions. Examples of a quantum oscil-
lator and a spin-1/2 particle are considered. The kinetic equations for probabilities, specifying the evolution
of the states of a quantum system, which are equivalent to Schrödinger and von Neumann equations, are
derived explicitly.
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INTRODUCTION
In quantum mechanics, quantum field theory [1],

and quantum statistics, the physical system states are
described by wavefunctions [2], density matrices
[3, 4], as well as by vectors in a Hilbert space [5]. In
classical statistical mechanics, the system states are
described by probability distributions [6] in the phase
space. The evolution of classical states is described by
the Liouville equation for the probability density

 in the phase space of the system or by the
Boltzmann equation [7, 8]. The evolution of pure
quantum states, identified with wavefunctions of sys-
tems with a Hamiltonian, is described by the
Schrödinger equation, while the von Neumann equa-
tion describes the evolution of a density matrix of
mixed states. The description of classical states by
probability distribution functions and the description
of quantum states by wavefunctions or by density
matrices are very different. The description of quan-
tum states intuitively requires the additional interpre-
tation from the standpoint of equivalence with the
classical picture of physical phenomena. In this con-
nection, the other descriptions of quantum states were
suggested, e.g., with the employment of the quasi-
probability distributions in the phase space of systems:
Wigner functions [9], Husimi–Kano functions
[10, 11], and Glauber–Sudarshan functions [12, 13].
The description of states by a function in the phase

state was proposed by Blokhintsev [14]. All these
quantum state descriptions deal with functions in the
formal phase space of the system, but these functions
are not the probability distributions. It is not possible
to describe a particle state by the joint coordinate and
momentum distribution function due to the uncer-
tainty relation [15–17]. Indeed, its quantum nature is
such that it is impossible to specify (to measure)
simultaneously both the particle coordinate and
momentum. Therefore, a joint distribution function of
these stochastic quantities does not exist. However,
the uncertainty relation allows the state to be described
by the probability distribution of a single quantity, e.g.,
only of a coordinate. This description was proposed
[18, 19] based on the experimental approach to mea-
suring the photon state, identified with the Wigner
function [20], by using of a homodyne detector. The
latter makes it possible to measure the photon optical
tomogram—a distribution function of the quadrature
component of a photon at the fixed phase of the local
oscillator. It is known [21, 22] that, using the Radon
transformation [23], from the optical tomogram, mea-
sured in the conducted experiments, the Wigner func-
tion, identified with a quantum state, is reconstructed.
From the standpoint of the mechanical model of elec-
tromagnetic field oscillations (photon state), this cor-
responds to an oscillation. A state of a quantum oscil-
lator in this case is specified by the probability distri-
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CONVENTIONAL QUANTUM STATISTICS 773
bution of only one random oscillator coordinate which
is measured in the ensemble of reference frames in the
phase space. Thus, there are no conflicts with the
Heisenberg uncertainty relation, since a random
momentum of the oscillator is not an argument of the
probability distribution function, which only depends
on a random coordinate and on values of parameters
of the reference frame, in which this random coordi-
nate is measured.

A goal of this work is to show that quantum system
states can be specified by standard probability distri-
butions for both systems with continuous variables
(oscillator) and with discrete variables (electron spin).
This implies that there exist the invertible maps of
density operators onto probability distributions. These
maps are linear and, therefore, linear equations of
quantum mechanics (e.g., the von Neumann equation
for the density operator [4]) are mapped to kinetic
equations for probability distributions [18, 24], which
specify the quantum system states in the probability
representation of quantum mechanics. The problem
of describing quantum states, connected with proba-
bility distributions, was discussed, e.g., in [25–27], see
also the recent review [28] and references therein.
Aspects relating to this problem were also touched
upon in [29, 30].

STATES OF A CLASSICAL HARMONIC 
OSCILLATOR IN TOMOGRAPHIC 
PROBABILITY REPRESENTATION

To clarify the physical meaning of the probability
distribution specifying a quantum system state, we
consider an example of the classical oscillator state
with the Hamiltonian  in the pres-
ence of f luctuations within classical statistical
mechanics [1]. The oscillator state at any instant is
described on the phase space of the system by the joint
probability distribution function  which
satisfies the normalization condition

 We introduce a new coordinate
system in the phase space of the system, using the
symplectic transformation of the coordinate 
and momentum , specified by the matrix of
the form

(1)

The meaning of this transformation is that we first
change the scale of spatial coordinates 

 = , and then rotate the abscissa and ordi-
nate axes: ,  +

. We introduce the variables ,

 Let us consider the following problem. If
at the time  the oscillator state is given by the joint

= +2 22 2clH p q

, , ≥( ) 0f q p t

, , =∫ ( ) 1.f q p t dqdp

→q X
→p 3

−

−

⎛ ⎞θ θ⎛ ⎞ ⎛ ⎞= .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− θ θ⎝ ⎠ ⎝ ⎠⎝ ⎠

1

1

cos sin

sin

X s s q
ps s cos3

→ = ,'q q sq

→ 'p p −1s p
= θ + θ'cos 'sinX q p = − θ' sinq3

θ' cosp μ = θcoss
−ν = θ.1 sins

t

PHYSICS OF PARTICLES AND NUCLEI  Vol. 51  No. 
distribution function f(q, p, t) of two random vari-
ables  and p, then which is the distribution function
of a single random function , denoted

? It is easy to verify that this function is
given by the Radon transformation [23] of the distri-
bution function , that is,

(2)

The function  is called the symplectic
tomographic probability distribution or the symplectic
tomogram. This transformation is invertible, and the
probability distribution of two random quantities

 is reconstructed if the symplectic tomogram
is known, namely,

(3)

It is evident that symplectic tomogram (2) is non-
negative and normalized:  The
variable  has the meaning of a particle coordinate,
measured in the reference frame on the phase space of
the particle with coordinate axes rotated by the angle

; in this case before the rotation, the scale transfor-
mation of the coordinate  and the velocity
(momentum)  is performed. The transfor-
mation under study can be interpreted as a transfor-
mation in the space of coordinates  and velocities ,
at which the coordinate scale changes, while the
velocity scale is preserved. The symplectic tomogram

 of the classical particle is a conditional
probability distribution of the coordinate , when
specified, the parameters  and  of the reference
frame are determined in the phase space of the particle
where this coordinate is measured. By the Bayes for-
mula, the joint probability distribution function

 of three random variables  , and ,
which both define the coordinate  and the random
parameters  and  characterizing the reference frame
in the phase space of the particle, can be introduced.
This function can be shown by the formula

(4)

where . This function is the distribution
function of two random quantities  and ν, which is
normalized by the condition

(5)

In particular, it can be specified by the normal
probability distribution

(6)

q
= μ + νX q p
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The distribution function  is reconstructed
by using (4):

(7)

For a classical particle, the following distribution
functions are admissible:

(8)

where  and  describe a particle trajectory. The
tomogram of the particle state in the classical mechan-
ics with distribution function (8) is written as

(9)

In (9),  and  describe a trajectory of the
particle in its phase space. For instance, in the case of
the mentioned classical oscillator, the symplectic
tomogram

(10)

is admissible with arbitrary initial values of the coordi-
nate  and momentum . For a quantum oscillator,
due to the Heisenberg uncertainty relation [15], the
distribution function  does not exist. There-
fore, for the quantum oscillator, the tomogram of form
(10), which is connected with distribution (8) and vio-
lates the uncertainty relation, does not exist. However,
distribution (10) depends only on the coordinate 
and is independent of the momentum ; therefore,
the existence of tomograms, which describe the states
not violating the uncertainty relation, is possible.
Below, these cases are considered by using the quanti-
zation procedure based on the method of star product
of functions. Using a particular case of the tomogram

 with , , we derive the
probability distribution , called the optical
tomogram. It specifies also a symplectic tomogram
due to the property of the Dirac delta function  =

, which leads to the formula

(11)

The optical tomogram of the classical oscillator
state, defined by Eq. (10), has the form of probability
distribution

(12)
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QUANTIZATION USING 
THE STAR-PRODUCT FORMALISM 

EMPLOYING THE QUANTIZER 
AND DEQUANTIZER

Let us pass to a description of the quantum system
states. All possible quantum state representations can
be formulated using the quantization procedure,
understandable as a rule of the invertible mapping of
operators , acting on a Hilbert space , onto the
functions , called symbols of operators ,
depending on the set of discrete or continuous vari-
ables , where some numbers

 run over the continuous set of values,
while certain numbers run over the discrete set of values.
The invertible mapping is given by two relations [31]

(13)

(14)

The operator  is called a dequantizer. The
operator  is called a quantizer. If a part of vari-
ables  is discrete, the relevant integral in (14) is
replaced by the sum over these variables. The dequan-
tizer and quantizer ,  should satisfy the con-
dition that for all operators , acting on , this equal-
ity holds

(15)

In the particular case, the following relation can be
satisfied:  =  With the fulfill-
ment of (13), (14), and (15), the symbol of the operator
product , where  = , is spec-

ified by the star product of symbols of the operators 
and , i.e.,

(16)

The operator product is associative, i.e.,  =
, and the star product of functions  

is also associative:  =
 Since the product of the operators

 and  in a general case is noncommutative, the star
product of their symbols in general is also noncommu-
tative. Substituting (13) and (14) to (16), we derive the
kernel of the star product of functions, expressed
through the quantizer and dequantizer:

(17)

If we take two sets of operators ,  and
, , which are quantizers and dequantizers,
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Â *

( ) ( )χ χ χ χ = χ .∫ ˆ ˆˆ ˆ ˆ ˆTr ( ) ( ')Tr ( ') ' Tr ( )U D U A d AU

( )χ χˆ ˆTr ( ) ( ')U D δ χ − χ .( ')

χ( )ABf χ( )ABf ( )χˆ ˆ ˆTr ( )ABU

Â
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satisfying (13), (14), and (15), then symbols of the
operators—functions  and , where  =

  = ,—are related by the
integral relationship

(18)

The kernel of the integral transformation of sym-
bols of the operators  is given by the expression

(19)
All available representations of the density opera-

tors of quantum states and the observables specified by
the Hermitian operators, acting on a Hilbert space ,
are described by their pairs of quantizers and dequan-
tizers [31, 32].

SYMPLECTIC TOMOGRAPHIC PROBABILITY 
DISTRIBUTION OF QUANTUM STATES 

BY EXAMPLE OF AN OSCILLATOR
As shown in [21, 22], the Radon transformation

[23] of the Wigner function of the photon state (optical
tomogram , measured by the homodyne
detection [20], is the probability distribution function
of the random quantity , called the photon quadra-
ture. The optical tomogram depends also on the angu-
lar variable , called the phase of the local oscillator.
The Radon transformation of the Wigner function
specifies the expression for the optical tomogram
[21, 22]. In this case, if the pure state  with the
wavefunction  is considered, then the optical
tomogram is expressed through the wavefunction in
the following way:

(20)

Tomogram (20) is nonnegative and normalized
with all values of the phase  of the local oscillator.
Since the density operator of the mixed state is the
convex sum of density operators of pure states, the
conditions of nonnegativity and normalization for the
tomogram of the mixed state are also satisfied. Thus,
an optical tomogram is the conditional probability of
the  quadrature with the given parameter . The
Radon transformation is invertible; therefore, the
knowing of the optical tomogram allowed the Wigner
function of the photon, identified with its quantum
state, to be reconstructed. In [22], a tomogram is con-
sidered as a technical method for finding a quantum
state which is identified with the Wigner function. In
[18], a notion of the symplectic probability distribu-
tion was introduced and the quantum states are pro-
posed to be identified with this distribution as well as

χ(1)( )Af ξ(2)( )Af χ
χ ,χ , , χ ,1 2( )N… ξ ξ ,ξ , , ξ1 2( )M…

,χ = χ,ξ ξ ξ.∫
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Â

( ), χ, ξ = χ ξ .(1 2)
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ψ
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ψ θ =
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∫
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with the optical tomographic distribution, regarding
them as primary objects.

We define a dequantizer by the expression 
, where the real variables 

specify the operator

(21)

The density operator symbol , called the symplec-
tic tomogram, e.g., of oscillator state, is given by

(22)

We define the quantizer  by the
expression

(23)

From delta function properties, the normalization
relation follows. Since ,

(24)

for any values of the parameters  and . An optical
tomogram is a particular case of the symplectic tomo-
gram with the parameter values , .
For pure states , as in the case of optical tomogram,
the symplectic tomogram can be expressed through
the wavefunction  [34]

(25)

From this expression, the nonnegativity follows,
while from properties of the Dirac delta function the
normalizability of symplectic tomogram results. Sim-
ilar properties are also valid for the convex sum of den-
sity operators; consequently, the symplectic tomo-
gram  of any mixed state is also nonnegative
and normalized. Although the symplectic tomogram
depends on three variables ( ), while the optical
tomogram is dependent of two variables ( ), they
are expressed, as in the classical case, through each
other (see Eq. (11)).

Let us consider an example of a harmonic oscillator
with the Hamiltonian  = .
For the coherent state , which is the proper normal-
ized state of the annihilation operator , i.e.,

 with the complex eigenvalue  +
, we derive the symplectic tomogram in the form

of the normal distribution of the random variable ,
which depends on  and 

(26)
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1 ˆˆ ˆ ˆ( ) exp ( 1 )

2
D X i X q p

ρ =ˆTr 1

μ,ν =∫ ( ) 1w X dX

μ ν

μ = θcos ν = θsin
ψ

ψ( )y

ψ μ, ν

⎛ ⎞μ= ψ − .⎜ ⎟π ν ν ν⎝ ⎠
∫

22

( )

1 ( )exp
2 2

w X

i y iXyy dy

| μ,ν( )w X

,μ, νX
, θX

= +2 2ˆ ˆ2 2H p q +†ˆ ˆ 1 2a a
α

â
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with a mean value  and vari-
ance  = . For the Fock state , the
tomogram has a form of the distribution

(27)

where  is the Hermitian polynomial. The optical
tomogram of the coherent state  is derived from
(27) by substitution of ,  and has the
form of a normal distribution. The optical tomogram
of the Fock state  is independent of the phase of the
local oscillator and specified by the probability distri-
bution of the random quantity , that is,  =

.

EVOLUTION OF QUANTUM STATES 
IN PROBABILITY REPRESENTATION

The density operator  of quantum state in
describing systems with the Hamiltonian  obeys the
von Neumann equation

(28)

In this case, the density operator  can be
expressed through the density operator  and the
unitary evolution operator , specifying the vector

 =  in the following form:

(29)

In this case, the operators of coordinate  and
momentum  in the Heisenberg representation
can be also expressed through the operators of coordi-
nate  and momentum  in the Schrödinger representa-
tion:  = ,  = . The evolu-
tion operation  satisfies the Schrödinger equation

(30)

Using definition (22) for the symplectic tomogram
of the oscillator, we derive a value of the symplectic
tomographic probability distribution at time  in
the form

(31)

Using the properties of the operation for taking the
trace of the operator product in (31), we derive the
expression for probability distribution
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Ĥ

∂ρ + ,ρ = .
∂
ˆ( ) ˆ ˆ[ ( )] 0t i H t

t
ρ̂( )t
ρ̂(0)

(̂ )u t
ψ( )t ψ(̂ ) (0)u t

ρ = ρ .†ˆ ˆ ˆ( ) ( ) (0) ( )t u t u t

ˆ ( )Hq t
( )ˆH tp

q̂ p̂
ˆ ( )Hq t †ˆ ˆˆ( ) ( )u t qu t ˆ ( )Hp t †ˆ ˆ ˆ( ) ( )u t pu t

(̂ )u t

∂ = , = .
∂
(̂ ) ˆˆ ˆ ˆ( ) (0) 1u ti Hu t u
t

t

μ, ν,
⎡ ⎤= ρ δ − μ − ν .⎣ ⎦

†

( )
ˆˆˆ ˆ ˆ ˆTr ( ) (0) ( ) ( 1 )

w X t

u t u t X q p

μ, ν, = ρ δ − μ − ν .† ˆˆ ˆ ˆ ˆ ˆ( ) Tr[ (0)[ ( ) ( 1 ) ( )]]w X t u t X q p u t
PHYSICS O
Thus, this probability distribution can  expressed
using the coordinate and momentum operators in the
Heisenberg representation:

(33)

For  we have the tomogram ,
where  . For the harmonic oscil-
lator ,

(34)

Therefore, the tomographic probability distribu-
tion, which is equal for  to , evolves as
follows:

(35)

Due to Eq. (34), we derive the evolution of oscilla-
tor state tomograms, knowing initial values of distri-
bution function for , that is,

(36)

For example, the tomographic probability distribu-
tion  of the Fock stationary state  is given
by (27). Relation (27) corresponds to the condition

(37)

which is satisfied, since the oscillator evolution opera-
tor  =  commutes with the
operator  The optical tomogram, given at the
initial moment as the function  turns at time 
into the function of the form

(38)

The Heisenberg uncertainty relations impose the
integral conditions on the tomogram of quantum
states. For the optical tomogram , we have the
inequality

(39)

This condition is not satisfied by tomogram (9) of
the classical oscillator state, which violates the
Heisenberg uncertainty relations. Since in the experi-
ment [20] for the determination of the Wigner func-
tion of photon state, the optical tomogram  is
measured, inequality (39) can be verified immediately.
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EVOLUTION EQUATION 
FOR THE DENSITY OPERATOR SYMBOL 

IN QUANTIZATION SCHEMES 
WITH DIFFERENT DEQUANTIZERS 

AND QUANTIZERS

In this section, we consider the equation of quan-
tum state evolution, using the quantizer and dequan-
tizer [24], and the kinetic equation for probability dis-
tribution, which specifies a quantum state. The von
Neumann equation for the unitary evolution of the
density operator is given by the Hamiltonian  act-
ing on the Hilbert space , and it has the form of (28).
We multiply this operator equation by the dequantizer

 and take the trace of the derived operator rela-
tion. For the density operator symbol , we
derive a linear integral equation of the form

(40)

The kernel of this equation is given by the Hamilto-
nian, as well as by the quantizer  and dequantizer

, and is written as

(41)

If the probability representation of quantum states
is used, then Eq. (40) is the kinetic equation for the
probability distribution , specifying a quantum
state. As an example, for the symplectic tomographic
probability distribution, the kernel of the integral kinetic
equation, which describes the evolution of quantum state
given by the tomogram  = , where

, is specified by the expression
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Thus, the kinetic equation for the quantum state
evolution—probability distribution —is
given by
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for the probability distribution , is given by
the relation

(44)

Let us express the probability ,
derived according to the Born rule, through the quan-
tizer and dequantizer. We derive

(45)

In case of the symplectic probability quantum state
representation, we derive the probability as

(46)

For all pure states,  and the tomogram sat-
isfies the condition

(47)

With the given Hamiltonian , the stationary
states , corresponding to the given energy , satisfy

the condition  and . The symbol

 of the operator  satisfies the integral matrix
equation

(48)

Equation (48), written through the symbols of
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product of operator symbols is written as
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tion, we derive the equation for the tomogram
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For the harmonic oscillator, ,
tomograms (27) satisfy Eq. (50). Equation (50) is
reduced to the form

(51)

where the kernel of the star product of tomographic
symbols of operators is found in [31].

PROBABILITY REPRESENTATION 
OF QUBIT STATES (SPIN 1/2)

Let us consider the probability representation of
system states with discrete variables using the example
of spin 1/2. The Hilbert space is two-dimensional, and
for matrices of operators, acting on this space, we con-
sider four matrices (dequantizers) [35]

(52)

and four matrices (quantizers)

(53)

It can be verified that the density matrix

, such that  

, can be presented in the form [36–39]
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Moreover,  The physical

meaning of parameters , , and  is that in the state
with the density matrix , according to the Born rule,
they are probabilities of projections of the spin
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Indeed, the matrices   and  are the density
matrices of pure states with the state vectors
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PHYSICS O
These states are  eigenvectors of operators of
spin projections onto the directions , , and , which
are specified by Pauli matrices , 

 with eigenvalues . In accor-

dance with the Born rule, numbers , ,  have the
physical meaning of the relevant probabilities. For-
mula (54) is verified immediately. Therefore, the
operators  , , are a dequantizer
and a quantizer for any matrix observable. Thus, a
state of the spin-1/2 particle can be completely speci-
fied by three probability distributions ,

, and  of projections of the spin
 onto the directions , , and , respectively.

In the pure state with the density matrix , such that

, the probabilities , , and  satisfy the
condition

(56)

The evolution of the density matrix , which is
described by the von Neumann equation

(57)

with using (54), leads to the linear kinetic equation for
the probabilities , , and , regarded as
components of the three-dimensional vector ,

namely,  Here the matrix  and

vector  are written as follows:

(58)

Thus, the von Neumann quantum equation of evo-
lution is equivalent to the kinetic equation of probabil-
ities of dichotomic classically similar observables.

CONCLUSIONS
We emphasize the main results of this work. A

review of the new probability representation of quan-
tum mechanics is given. In this representation, the
quantum system state is described by the probability
distributions which obey kinetic equations. This rep-
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resentation is completely equivalent to other repre-
sentations with the use of state vectors, belonging to a
Hilbert space, and density operators, acting on the
Hilbert space. This equivalence is associated with the
existence of mappings of density operators onto prob-
ability distributions using the operators (quantizers
and dequantizers, comparing the operators to their
symbols—functions. There are quantizers and
dequantizers which map the density operators onto
quasi-distributions of the type of a Wigner function.
However, as shown in this work, there are maps
matching conventional probability distribution func-
tions to the density operators. The similar construc-
tion can be expanded to the quantum statistics and
quantum field theory developed in [1, 7, 8].1
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