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Abstract—We show an exact formula obtained in [1], which relates hatted and standard -values to all orders
of perturbation theory. The formula is based on the Landau–Khalatnikov–Fradkin (LKF) transformation
between the massless propagators of charged particles interacting with gauge fields, in two different gauges.
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1. INTRODUCTION
Consider the multi-loop structure of propagator-

type functions (p-functions1). About three decades
ago, it was noticed that all contributions proportional
to  mysteriously cancel out in the Adler
function at three-loops [3]. Two decades later, it was
shown that the four-loop contribution is also -free
and that a similar fact holds for the coefficient func-
tion of the Bjorken sum rule [4]. There is by now
mounting evidence, see, e.g., [5–8], that various
massless Euclidean physical quantities demonstrate
striking regularities in terms proportional to even

-function values, , e.g., to  with  being a pos-
itive integer2. Such puzzling facts have recently given
rise to the “no-  theorem”. The latter is based on the
observation [10, 11] that the -dependent transforma-
tion of the -values:

(1)

eliminates even zetas from the expansion of four-loop
p-integrals. A generalization of (1) to 5-, 6- and
7-loops is available in [12–14]. The results (1) and
their extensions in [13, 14] give a possibility to predict
the terms  in higher orders of perturbation theory

(see their evaluation in [12–14]). Note that the
results [12–14] also contain multi-zeta values the
consideration of which is beyond the scope of
the present study.

Remarkably, in [1], an all order generalization of
(1) could be achieved in a rather unexpected way: with
the help of the LKF transformation [15]. The latter
elegantly relates the QED fermion propagator in two
different -gauges (and similarly for the fermion-pho-
ton vertex). Its most important applications (see [1]
and references therein) are related to the study of the
gauge covariance of QED Schwinger–Dyson equa-
tions and their solutions. Other applications [16] are
focused on estimating large orders of perturbation the-
ory. Indeed, and this will play a crucial role in what
follows, the non-perturbative nature of the LKF trans-
formation allows to fix some of the coefficients of the
all-order expansion of the fermion propagator. Start-
ing with a perturbative propagator in some fixed
gauge, say , all the coefficients depending on the dif-
ference between the gauge fixing parameters of the two
propagators, , get fixed by a weak coupling expan-
sion of the LKF-transformed initial one. Such estima-
tions have been carried out for QED in various dimen-
sions [16], for generalizations to brane worlds [17] and
for more general SU(N) gauge theories [18].

Here we review the results [1] of usage of the LKF
transformation in order to study general properties of
the coefficients of the propagator. We show how the
transformation naturally reveals the existence of the
hatted transcendental basis. Moreover, it allows us to
extend the results of Eq. (1) to any order in .

ζ

1 Following [2], by p-functions we understand ( -renormal-
ized) Euclidean 2-point functions (that can also be obtained
from 3-point functions by setting one external momentum to
zero with the help of infra-red rearrangement) expressible in
terms of massless propagator-type Feynman integrals also
known as p-integrals.

2 Notice also that, within a Schwinger–Dyson equation approach
in fixed dimension, renormalized Euclidean massless correlators
were shown to be expressed only in terms of odd zeta-values [9].
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2. LKF TRANSFORMATION
In the following, we shall consider QED in an

Euclidean space of dimension  ( ). The
general forms of the fermion propagator in the
momentum and -space representations,  and

, in some gauge  read:

(2)

where the tensorial structure, e.g., the factors  and 
containing Dirac -matrices, have been extracted.
The two representations,  and , are
related by the Fourier transform which is defined as:

(3)

The famous LKF transformation connects in a very
simple way the fermion propagator in two different
gauges, e.g.,  and . In dimensional regularization, it
reads [1]:

(4)
We may now proceed in calculating . In order

to do so, it is possible to use the following simple for-
mulas for the Fourier transform of massless propaga-
tors (see, e.g., [19]):

(5)

This yields with the parameter  made explicit:

(6)

From Eq. (6), we see that  contributes with a
common factor  accompanied by the singularity .

3. LKF TRANSFORMATION 
IN MOMENTUM SPACE

Let’s assume that, for some gauge fixing parameter
, the fermion propagator  with external

momentum  has the form (2) with  reading:

(7)

where  are coefficients of the loop expansion of
the propagator and  is the renormalization scale,
which lies somehow between the MS-scale  and the

-scale . Then, the LKF transformation shows
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that, for another gauge parameter , the fermion prop-
agator can be expressed as:

(8)

where

(9)

In order to derive (9), we used the fermion propa-
gator  with  given by (7), did the Fou-
rier transform to  and applied the LKF trans-
formation (4). As a final step, we took the inverse Fou-
rier transform and obtained  with  given
by (8).

3.1. Scale Fixing

Following [1], we consider only the case of the so-
called MS-like schemes. In such schemes, we need to
fix specific terms coming from the application of
dimensional regularization. Such a procedure will be
called scale fixing and will play a crucial role in our
analysis.

Let’s first recall that the -scale  is related to
the previously defined scale  with the help of

, where  is the Euler constant. An advan-
tage of the -scale is that it subtracts the Euler con-
stant  from the -expansion. Moreover, it is well
known that, in calculations of two-point massless dia-
grams, the final results do not display any 3. So it is
convenient to choose some scale which also subtracts

 in intermediate steps of the calculation. For this
purpose, in [1] we considered two different scales.

The first one is the popular -scale [20]. Actually,
following [10], in [1] we used a slight modification of
this scale that we refer to as the -scale and in which
an additional factor  is subtracted from the
one-loop result.

Moreover, in [1] we also introduced a new scale
which is based on old calculations of massless dia-
grams performed by Vladimirov who added [21] an
additional factor  to each loop contribution.
The latter corresponds to adding the factor 
to the corresponding scale. We shall refer to this scale

3 Strictly speaking,  can appear in some formulas such as sum
rules in deep-inelastic scattering. They originate from an ana-
lytic continuation [23] of certain special forms of p-integrals. We
will not consider this case in the present study.
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as the minimal Vladimirov-scale, or MV-scale, and
define4:

(10)

The use of the MV-scale leads to simpler results in
comparison with the  one. Hence, the MV-scale is
more appropriate to our analysis and all our results are
given in the MV-scale. Differences coming from the
use of the -scale can be found in [1].

In the MV-scale, we can rewrite the result (9) in the
following general form5:

(11)

where

(12)

In Eq. (11), the factor
/  has been specially

extracted from  in order to insure equal
transcendental level, i.e., the same value of  for  at
every order of the -expansion of  (see
below).

3.2. MV-Scale

The -function  has the following
expansion:

(13)

Substituting Eq. (13) in Eq. (12), yields for the fac-
tor :

(14)

where

(15)

and, as expected from the MV-scale, we do have:

(16)

4 Notice that the form (10) has been used once to define the 
scheme (see Errata to [22]).

5 The results in the case of scalar QED are very similar and can be
found in [1].
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As can be see from Eq. (14),  contains
-function values of a given weight (or transcendental

level)  in factor of . Such a property strongly con-
strains the coefficients of the -series thereby simpli-
fying our analysis. It is reminiscent of the one earlier
found in [24]. When judiciously used, it sometimes
allows to derive results without any calculations (as in
[25]). In other cases, it simplifies the structure of the
results which can then be predicted as an ansatz in a
very simple way (see [26, 27]). For a recent application
of such property, see the recent papers [28] and refer-
ences and discussions therein.

4. SOLUTION 
OF THE RECURRENCE RELATIONS

We now focus on the polynomial  of
Eq. (15) that is conveniently separated in even and odd

 values. Then, we see that the following recursion
relations hold:

(17)

Specific to the MV-scheme, these relations only
depend on  which leads to strong simplifications.
Nevertheless, they are difficult to solve for arbitrary .
It is simpler to proceed by explicitly considering the
first values of :

(18)

showing that  takes the form of a polynomial in  in
factor of . Then, taking the results in (18) together,
yields:

(19)

which reveals that the even polynomial  can be
entirely expressed in terms of the lower order odd
ones,  and . We may automate this procedure for
higher values of  and express  as

(20)

From these results, it is possible to determine the
exact -dependence of , which has the follow-
ing structure:
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(22)

Examining the numerators of , one can see
that they are proportional to the numerators of Ber-
noulli numbers. Indeed, a closer inspection reveals
that, accurate to a sign, the coefficients  coincide
with the zero values of Euler polynomials :

(23)

and therefore to Bernoulli and Genocchi numbers, 
and , respectively, because

(24)

Hence, the compact formula for the coefficients
, expressed through the well known Bernoulli

numbers , reads:

(25)

Together with (21), Eq. (25) provides an exact ana-
lytic expression for , Eq. (20), for arbitrary values of .

5. HATTED ζ-VALUES

At this point, it is convenient to represent the argu-
ment of the exponential in the r.h.s. of (14) as follows:

(26)

With the help of Eq. (20), the first term in the r.h.s.
of Eq. (26) may be expressed as:
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Thus, Eq. (14) can be represented as:

(29)

where

(30)

with

(31)

Together with (31) and (25), Eq. (30) provides an
exact expression for the hatted -values in terms of the
standard ones valid for all .

6. SUMMARY
From the result (11) corresponding to the LKF

transformation of the fermion propagator we have
found peculiar recursion relations (17) between even
and odd values of the polynomial associated to the
uniformly transcendental factor  (12).
These relations are simple in the MV-scheme that we
have introduced in Eq. (10). They relate the even and
odd parts in a rather simple way (see (20)) which
reveals the possibility (29) to express all results for

 in terms of hatted -values. Our careful
study of the recursion relations (17) allowed us to
derive exact formulas, Eqs. (28) and (30), relating hat-
ted and standard -values to all orders of perturbation
theory. The coefficients of the relations are expressed
trough the well-known Bernoulli numbers,  (see
(31) and (25)). Our results provide stringent con-
straints on multi-loop calculations at any order in per-
turbation theory.
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