
ISSN 1063-7796, Physics of Particles and Nuclei, 2020, Vol. 51, No. 1, pp. 107–121. © Pleiades Publishing, Ltd., 2020.
Hypervirial and Ehrenfest Theorems in Spherical Coordinates: 
Systematic Approach

A. Khelashvilia, b and T. Nadareishvilia, c, *
aInst. of High Energy Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, 0109 Georgia

bSt. Andrea the First-called Georgian University of Patriarchate of Georgia, Tbilisi, 0162 Georgia
cFaculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, Tbilisi, 0179 Georgia

*e-mail: teimuraz.nadareishvili@tsu.ge
Received May 13, 2019; revised June 19, 2019; accepted June 19, 2019

Abstract—Elaboration of some fundamental relations in 3-dimensional quantum mechanics is considered
taking into account the restricted character of areas in radial distance. In such cases the boundary behavior
of the radial wave function and singularity of operators at the origin of coordinates contribute to these rela-
tions. We derive the relation between the average value of the operator’s time derivative and the time derivative
of the mean value of this operator, which is usually considered to be the same by definition. The deviation
from the known result is deduced and manifested by extra term, which depends on the boundary behavior
mentioned above. The general form for this extra term takes place in the hypervirial-like theorems. As a par-
ticular case, the virial theorem for Coulomb and oscillator potentials is considered and correction to the
Kramers’ sum rule is derived. Moreover, the corrected Ehrenfest theorem is deduced and its consistency with
real physical picture is demonstrated.
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1. INTRODUCTION

During decades there have been many studies in
which the authors try to reconsider some fundamental
relations of quantum mechanics on strong mathemat-
ical properties of the operators and their matrix ele-
ments appeared. For example, the Ehrenfest theorem
or/and, in general, mean values of time derivatives of
the operators have been encountered [1–8].

In the textbooks on quantum mechanics most for-
mulations concerned mainly one-dimensional prob-
lems, and in these cases, as a rule, wave functions
decrease at infinity (Hilbert space). Mostly the prob-
lems in full infinite space are considered. However, as
is well known, when the system is located in finite vol-
ume the inclusion of boundary conditions becomes
necessary as well as they impose the restrictions on the
allowed classes of wave functions. It is so, because
operators are defined not only by their action (i.e.,
what they do to the function, which they operate on),
but also by their domain (that is, the set of functions
on which they operate). The situations are encoun-
tered frequently, when domain is essential.

This problem often arises in many-dimensional
cases, when the polar (spherical) coordinates are nec-
essarily introduced, because the radial functions are

defined in semi-space. In such cases problems with
restricted area emerge automatically.

Therefore, the question arises: whether or not some
of the well-known theorems are altered, when the
boundary behavior problem comes into play. The lit-
erature on this subject is quite voluminous. Only part
of it is listed in References below. Remarkable contri-
butions were made in abovementioned papers, which
appeared, by our knowledge, mainly after the pioneer-
ing work [1]. Here and in other works strong mathe-
matical definition of operators and their various com-
binations are established according to their domains.
It is also specified how the boundary contributions
appear in hypervirial-like relations. As regards of
Ehrenfest-like theorems the strong mathematical
grounds are derived in [7].

Though this problem was well investigated in one-
dimensional case, three dimensions has its specific
peculiarities, therefore our attention will be focused to
three dimensions. Naturally, some results obtained in
one-dimensional cases are general and applicable in
three dimensions as well, nevertheless general consid-
eration in three dimensions has its specific interest.

The aim of this article is to study some quantum
mechanical theorems with this point of view. We see
that in most cases great caution must be exercised
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especially in the cases, when the potential in the
Schrodinger equation is singular or the operators are
singular themselves. Our considerations below con-
cern spherically symmetric operators.

This paper is organized as follows: First of all the
time derivative of mean value of the operator is studied
and the extra term in the usual relation is separated,
owing to restricted character of the area in radial
space. The obtained surface term depends on the
behavior of radial wave function and considered oper-
ators in the origin of coordinates. After that new rela-
tion between time derivatives is established. This fact
has an influence on the relation between mean values
and the integrals of motion in various special cases. We
demonstrate that the singular character of considered
operators has crucial influence on various relations.

The remained part of this manuscript is devoted to
some applications of obtained results. Namely, the
generalization of hypervirial theorem is considered
taking into account this extra term. As a result new
form of hypervirial theorem is derived. This modified
theorem is verified in case of Coulomb potential and it
is shown that the well-known Kramers’ theorem
should be corrected. We show that the modified ver-
sion of this theorem works successfully. Lastly the
explicit calculations of this extra term for various forms
of operators are carried out. The application to the
Ehrenfest theorem is considered as well and possible
modifications are discussed. It is shown that the
obtained extra term plays a role of the so-called
“boundary quantum force” and its physical meaning
is clarified.

Even though basic ideas, concerning to the Ehren-
fest theorem have been discussed and published previ-
ously, we did not find a systematic consideration of
3-dimensional problems. We are inclined to think that
such cases probably contain many aspects for applica-
tions, particularly, for singular operators, which will
become clear below.

2. TIME DERIVATIVE 
OF THE OPERATOR’S MEAN VALUE

It is well known that in quantum mechanics deriv-
ative of time-dependent operator  satisfies the
Heisenberg equation

(2.1)

Averaging this expression by the state functions one
derives

(2.2)

As a rule one believes that these two operations,
time derivative and average procedures, can be inter-
changed. Let us cite a quotation from the book of Lan-
dau and Lifshitz [9]. “The idea of the derivative with
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respect of time must be differently defined in quantum
mechanics. It is natural to define the derivative  of a
quantity  as a quantity whose mean value is equal to
the derivative, with respect to time, of the mean value

. Thus we have the definition ’’. (Underlining
is ours). Therefore, according to this book it is the defi-
nition. In several textbooks (see for example [10]),
relations (2.1), (2.2) are derived from the equations of
quantum mechanics, while this problem reduces to
definition at long last.

Let us see, if it is valid in general, when the problem
is considered in 3-dimensional space. With this aim
we calculate

(2.3)

We use here the time dependent Schrodinger equation
and its complex conjugate one

(2.4)

Then we have

(2.5)

where for any moment of time we must have [4, 5]
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and
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It must be stressed especially that if the following con-
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is satisfied [4, 5], we can introduce a commutator
 and rewrite (2.5) in the following way

(2.9)

The first two terms  –  are

new. They were discovered in [2–6] for one-dimen-
sional case and were calculated there in the simplest
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�f
f

f = �

�f f

∂ψψ ψ = ψ
∂

∂ψ∂+ ψ ψ + ψ
∂ ∂

ˆ ˆ

ˆ ˆ .

d A A
dt t

A A
t t

∂ψ ∂ψ= ψ − = ψ
∂ ∂

� �
*ˆ ˆ, ( )*.i H i H

t t

= ψ ψ

∂− ψ ψ + ψ ψ
∂

�

�

ˆ
ˆˆ

ˆˆ ˆ ,

d A i H A
dt

i AAH
t

( ) ( )  ∂ψ ∈ ∩ ∩  ∂ 

ˆˆ ˆDom Dom Dom ,AA H
t

( )  ∂ψ ∈ ∩  ∂ 

ˆˆˆ Dom Dom .AH A
t

( )ψ ∈ˆ ˆDomA H

  
ˆˆ,H A

= ψ ψ − ψ ψ

∂ + ψ ψ + ψ ψ  ∂

� �

�

ˆ
ˆ ˆˆ ˆ

ˆˆˆ, .

d A i iH A HA
dt

i AH A
t

Π ≡ ψ ψ
�

ˆˆi H A ψ ψ
�

ˆˆi HA
F PARTICLES AND NUCLEI  Vol. 51  No. 1  2020



HYPERVIRIAL AND EHRENFEST THEOREMS IN SPHERICAL COORDINATES 109
One important comment is in order: In writing of
Eq. (2.9) the conditions (2.6)–(2.8) are imposed. The
constraint (2.8) is the most crucial. When it happens,
the additional term vanishes. But, in addition, if the
boundary conditions are also imposed, it may be that
this restriction fails. For details see [8]. In principle, it
is very difficult determine beforehand if this restric-
tion is violated or no. Only detailed calculation can
sheds light. We will see below by explicit calculation
that the additional term  in (2.9) does not always dis-
appear.

Remarkably enough that in [8] the modification of
the Heisenberg equation is suggested—foreseeing this
result, the authors propose inclusion of the extra terms
into the operator equation in advance as follows

(2.10)

It is very interesting, but is not always necessary, by
our opinion.

Below in contrast with the above-mentioned
papers, we consider the 3-dimensional case, when we
have arbitrary central potential and  operator
depends only on radial distance . Corre-
sponding radial Hamiltonian is

(2.11)

In the process of calculation of additional terms in
Eq. (2.9) “redistribution” of radial wave function with
Hamiltonian is employed in order to construct the
radial Hamiltonian again. For example, the first term
in (2.3) looks like

(2.12)

where  is a radial function,

 The function  needs to be
placed at the top of integrand expression. For this
replacement only the kinetic part of Hamiltonian
operates. Therefore, let us study only the following
expression
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Remaining terms of the Hamiltonian do not con-
tribute to the procedure carried out.
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Now let us integrate by parts twice in order to trans-
fer differentiation to the right and construct the radial
Hamiltonian again. Then we obtain

(2.14)

Here we take into account that for the bound states the
radial function tends to zero at spatial infinity, but the
contribution from the origin, in general, remains. Pro-
ceeding this way, we obtains at the end

(2.15)

Considering the same procedure in all the terms, we
derive for the required derivative

(2.16)

where we obtained for the extra term

(2.17)

It is exactly this term that corresponds to the addi-
tional contribution mentioned in Eq. (2.9). This term
is not zero in general, because it depends on the
behavior of wave function and the operator in the ori-
gin of coordinates. Evidently, this term has a purely
quantum origin. It has no classical analogue (in the
limit of , this term also tends to zero). Equation
(2.16) together with (2.17) is new. Though analogous
relations are shown in [4, 5, 8], the derivation in these
papers is rather formal. Here, we derived them in
explicit form.

3. ANALYSIS 
OF THE ADDITIONAL TERM

As it is clear from the above, the value of 
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tion at the origin. It is known that under general
requirements the radial function must behave like
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details see [11–14], also the Appendix below). Some
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authors consider the condition (3.1) as too restrictive
and recommends other boundary conditions, which
also guarantee the self-adjointness of the reduced
radial Hamiltonian. However, in series of articles
[11‒13] we have shown that the Schrodinger reduced
equation is valid only together with Dirichlet bound-
ary condition. For the sake of definiteness we insert
the Appendix at the end of this manuscript.

The behavior of reduced wave function, when 
turns to the origin of coordinates evidently depends on
potential under consideration. From this point of view
the following classification is known [15]:

(1) Regular potentials: They behave as

(3.2)

For which solution at the origin behaves like

(3.3)

Clearly, the second term is very singular and contra-
dicts to (3.1). Therefore we must retain only the first
term ( ) or

(3.4)

• (2) Singular potentials, for which

(3.5)

For them the “falling to the center” happens and is not
interesting for us now.

• (3) “Soft” singular potentials, for which

(3.6)

Here the (+) sign corresponds to repulsion, while the
(–) sign—to attraction. For such potential the wave
function has the following behavior [11–14]:

(3.7)
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also the boundary condition (3.1), therefore it must be
retained in general and hence the self adjoint exten-
sion need to be performed [13]. As for the region

 only the first (standard or regular) solution
remains.

Now, let us return to consideration of additional
contribution in Eq. (2.16). First, consider regular
potentials. It is obvious from Eq. (2.17) that upon cal-
culation of the limit the singularity of the operator  in
the origin will be also important. We take it as
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Â

( ) β β >1ˆ ~ ; 0.A r
r

PHYSICS O
Here, it is implied not only explicit dependence on
, but also its scale dimension (derivative et al.). Tak-

ing all these into account, we obtain

(3.10)
Then, we have
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In order for this expression not to be diverging we must
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In this case the additional term vanishes. If the
inequality is reflected, then the divergent result will
follow and we will be unable to write Eq. (2.2).
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looks at the first glance, but depends on singularity of
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ignore the additional contribution ( ) and use
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dent that this strange result is a consequence of singu-
lar character of the considered operator. But it is sur-
prising, that the time derivative of the average value does
not coincide with the average of derivative of the same
operator, if the derivative of the operator is defined by
Eq. (2.1). Indeed, from (2.2) and (2.16) it follows

(3.18)

This equation has a principally new meaning. It
shows that for singular operators in considered case,
(Eq. (3.16)), the above mentioned definition from the
classical book [9] is not correct in general. Results of this
Section are reflections of imposed conditions (2.6)–
(2.8), showing that, the additional terms may at time
be present and at other times absent, depending on
whether (2.8) is fulfilled or not. (One possible way to
keep the balance between derivatives  is an
inclusion of the extended term beforehand as in (2.10).

Even, when the operator does not depend on time
explicitly, the above consideration shows that

(3.19)

Therefore, if the operator has “bad” singularity ((3.13)
or (3.16)), its average value is not an integral of the
motion, even if it commutes with the Hamiltonian. In
the context of this result we think that the meaning of
integrals of motion in quantum mechanics must be
revised.

In conclusion, we have demonstrated that when
one considers the time evolution in spherical coordi-
nates, a definite caution is necessary, in particular, the
singular character of the considered operator should
be taken into account, as well as the singularity of the
wave function itself.

4. STATIONARY STATES 
AND INTEGRALS OF MOTION

Let us now apply the derived results and consider
the case when the Hamiltonian doesn’t explicitly
depend on time. For stationary states wave function
has the following dependence

(4.1)

When the operator  also doesn’t explicitly dependent
on time, we should have an operator equality
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Or explicitly

(4.4)

Here, we used the fact, that  is an eigenfunction of 
with eigenvalue . Therefore,

(4.5)

Let us consider two cases:
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tonian, then in spite of its singular character, the rela-
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So we obtain “strange’’ result: for stationary states, in
case of non-commutativity  Eq. (4.11) is
valid or  is conserved, but at the same time accord-

ing to Eq. (4.9),  . In this particular case this

‘strange” result is caused by singularity of operator, .
Therefore, we conclude from this result that the defi-
nition , given initially, depends on the singular-
ity of the considered operator. Remark, that this
point(operator’s singularity) was not discussed in the lit-
erature up to now.

5. MODIFIED HYPERVIRIAL THEOREMS
5.1. A General Consideration

Comparing Eqs. (4.3) and (4.9), one derives

(5.1)

It follows that the well-known hypervirial theorems
should be corrected. The traditional hypervirial theo-
rem is formulated as [16–18]:
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papers [22, 23], in which these relations are modified
for arbitrary N-dimensional Schrodinger equation to
have a form

(5.6)

where  and 

Note that the relation (5.6) was earlier derived in
[24] by different method for 3-dimensional case.

In [25] significantly more general relations were
derived. Namely, we considered the general second
order differential equation

(5.7)

This equation reduces to the known equations (radial
Schrodinger, one- and two-body Klein–Gordon etc.).
Then, after multiplication of Eq. (5.7) on an arbitrary
three-times differentiable function  and partial
integration we derived very general hypervirial theo-
rem (see, [25])
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from which by choosing , one can obtain several
interesting relations. Some of them are exhibited in
mentioned paper.

5.2. Application 
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First of all, let analyze cases which were discussed ear-
lier in literature. Consider the following operator [19]

(5.9)

where  is a radial momentum (hermitian) operator
[9, 10]

(5.10)

( )

{ }
( ) ( ) ( )

−

− −

−

+ δ =

× + −

 + − + − − 

�

2 2
, 2 2

1 1

2 2 3

22 1

2 2

1 1 2 1 1 ,
2

l S L

S S S

S

mL C

dVr S r V SE r
dr

S L S r

−= + 3
2

NL l −

→
=

0
lim ( ) .l

l lr
r R r C

( )+ + =2"( ) ' ( ) ( ) 0.R r R r L r R r
r

( )f r

[ ]{
}

=

 − + − + 

+ = − − −

2 2 2 2

2 2

0

" ' ' '

1 1" 2 ' ' '''
2 2r

f R r RR r R f rR rR R

f r R f L fL f

( )f r

Π
A

( )= ˆ ,rA p f r

ˆrp

( )∂= +
∂

� 1ˆ ,rp
i r r
F PARTICLES AND NUCLEI  Vol. 51  No. 1  2020



HYPERVIRIAL AND EHRENFEST THEOREMS IN SPHERICAL COORDINATES 113
and f(r) is a three-times differentiable. Calculate the
commutator

(5.11)

Entering here  and  rewrite as

(5.12)

(5.13)

Finally

(5.14)

where

(5.15)

Then from (5.3), (5.14) and (5.15) it follows

(5.16)

Here  is given by (2.17).
This place is principally important. In [26, 27] analo-

gous relations was studied for the following operator

(5.17)

It differs from the above operator (5.9) by permutation

(5.18)

and there was remarked that—“the hypervirial theo-
rem demands the expectation values of both 
and  to be zero”.

But it is not so. In particular, the expectation value
of  is not zero. Indeed, if we use the relation
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average, we obtain
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From these relations it follows ones again that the
singularity of  operator (  in this case) participates

into calculations. For stationary states 

therefore (5.19) reads

(5.21)

It follows from (5.20) and (5.21) that

(5.22)

and from (5.16) and (5.22) that

(5.23)

Now by using (2.17), (5.9), (5.10) let us calculate the
following expression

(5.24)

Taking into account (5.24), (5.23) and (5.15) we
obtain the most general hypervirial theorem for the
Schrodinger equation

(5.25)

This equation coincides with above mentioned
general Eq. (5.8), when for the operator  we take
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The analogous relation was derived in [28], but it is
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(a) For the standard solution of “soft” singular
potential (3.6) we have

(5.27)

Therefore our theorem (5.25) reads

(5.28)

Now, if

(5.29)

it follows
(5.30)

Moreover, if

(5.31)

then

(5.32)

It follows from restrictions (5.29), (5.31) that, for
example, for regular potentials, there appear some
“critical” singular (5.9) like operators, for which  is
done by above mentioned relations. For example,

(5.33)

If in (5.28) we take a particular case, considered
in [18]

(5.34)
we obtain a new relation

(5.35)

(b) For the regular potential (3.2)  and
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(5.36)

( ) ( )+

→

Π =

 × + + −
  

�
2 2

st
tot,sing

2 1 2

0

4

lim " 2 1 ' .P P

r

a
m

ff r P f r
r

( ) ( )

( )

( ) ( )+

→

+  − − + −  

− +

 = + + −
  

�

�

�

2
2 3

2

2 2
2 1 2st

0

'1
2 '

''' '
4

lim " 2 1 ' .
4

P p

r

fl l ff H V
m r r

f f r V
m

a ff r P f r
m r

−

→
=2 1

0
lim 0,P

r
fr

Π =tot,sing 0.

−

→
=2 1

0
lim constP

r
fr

Π = �
2 2

2st
tot,sin gular

2 .a P
m

Π


 = =
 = =

 = =


2

4

ˆ ˆ0,
1ˆ ˆFor 1, etc.

1ˆ ˆ2,

r

r

r

l A p

l A p
r

l A p
r

+= 1,sf r

( ){ }
( ) ( )

+

−
−

 + + − 

 + + − = − δ 

�

1
2

2 2 2 2
st 2 ,

4 2 1

2 1 2 .

s s s

S
P s

m dVr s r V E r
dr

s l s r a s s P

= + 1
2

P l

( ){ }
( ) ( )

+

−
+ −

 + + − 

 + + − = + δ 

�

1
2

2 22 2 2
1, 2

2 2 1

1 2 1 2 1 .
2

s s s

s
l s l

m dVr s r V E r
dr

s l s r l C
PHYSICS O
This form coincides with Eq. (5.6) if in Eq. (5.36)
we replace  which means that calculation by
commutator gives the same result as a calculation by
means of integration by part. In conclusion we can say
that the modified hypervirial theorems for the Cou-
lomb and oscillator potentials have the following
forms, correspondingly

(5.37)

(5.38)

We see that the difference of these relations from
those of (5.4), (5.5) consists in the right-hand sides of
the given forms. Exactly these sides balance obtained
sum rules, discussed below.

Let us make two comments:

(1) For  from (5.37), (5.38) follows the usual
virial theorem. So in this case the usual virial theorem
is correct.

(2) For  or  it follows from (5.20)
that  This case will be considered below in con-
nection with Ehrenfest theorem.

For the verification of derived results the known
solvable potential models are considered more fre-
quently in the current literature. Therefore below we
check validity of above sum rules (5.37) and (5.38) for
the Coulomb and oscillator potentials. Moreover we
include here other interesting operators.

6. THE CASES OF COULOMB 
AND OSCILLATOR POTENTIALS

6.1. Coulomb Potential

Consider for more details the Coulomb potential

 Its wave function is [9]
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is a normalization constant, which is related to  as
follows

(6.3)

and

(6.4)

where  is a Bohr’s first orbit radius. Substituting all
this into Eq. (5.37), we derive a modified Kramers’
relation

(6.5)

Let us study this relation. It is clear that when
 then it follows

(6.6)

For verification of its validity, consider some of
first values of :

This case corresponds to  i.e.  Then
Eq. (6.5) gives

(6.7)

It means that if we take zero on the right-hand side
(or use the Kramers’ relation (5.3)) we’ll get the obvi-
ous contradiction—  It must be pointed out
that the above considered case lies outside the validity
of Kramers’ relation. So our theorem generalizes the
Kramers’ relation.

Now let us check if the formula (6.6) is fulfilled.
The matrix elements of some degrees of radius for the
Coulomb functions are known. For instance [9]
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For the case under consideration we have—
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But  and therefore

(6.10)

After substitution all of these into (6.7), we obtain
the identity

(6.11)

from which a correct relation for the Bohr’s radius
follows.

Hence, the modified Kramers’ relation is successful.
(ii) .
In this case  and corresponding operator is

(6.12)

Then Eq. (6.6) gives

(6.13)

Using here known relations [9]

(6.14)

It is easy to verify that the relation (6.6) is also sat-
isfied precisely. So are for  and etc.

6.2. The Oscillator Potential

Consider now the oscillator potential

(6.15)

The wave functions for it are [9]
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Comparison with (3.3) gives

(6.18)

and

(6.19)
Substituting all of this into Eq. (5.38) the modified

Kramers’ relations take the form

(6.20)

It is clear that for  it follows

(6.21)

Consider some of first values of .
(i) .

This case corresponds to , one
obtains from (6.21)

(6.22)

It shows that if we made use the usual Kramers’
relation (5.5), we get the obvious contradiction,

. It can be noted that in this case from (5.36) we
have a general conclusion

(6.23)

Moreover, from (3.3) follows

(6.24)

where

(6.25)

is a full wave function. Therefore we have derived the
well-known relation [29]

(6.26)

Thus inclusion of  term provides the correct results.
Without it (Kramers’ case) this was not possible.

Now let us verify correctness of the mean radius
relation (6.21) for . It is easy to show, that

(6.27)

And if we insert this relation into (6.21), it follows

(6.28)

which becomes an identity as well as  So this

case gives correct result.
Now let us investigate more general problem,

 In this case we can use the following inte-
grals from the Appendix of [9]

(6.29)

Making use of this form in general is rather tremen-
dous. Therefore without the loss of generality we con-
sider only  case. Now for any  we derive
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And after inserting of (6.31) into (6.21) we check
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Consider again two cases:

(a) .
Now Eq. (6.29) gives

(6.34)

By using  and  it is easy exercise

to convince that (6.33) is valid

(b) .

Now Eq. (6.29) gives in case

(6.35)

Inserting this into (6.33) and using  and

 we prove the identity, or (6.33) is correct.

So is for  and etc.

7. MODIFICATION 
OF THE EHRENFEST THEOREM

As is well-known, the Ehrenfest’s equations signify
that the average values of position and linear momen-
tum operators evolve classically. The heuristic justifi-
cation can be found in any quantum mechanical text-
books. However, a rigorous version of this theorem
under satisfactory assumptions with standard func-
tional analytic arguments was pointed out in [7] (see,
also [30]).

We do not have a claim on such stronger discus-
sion, but simply analyze what happens with the
Ehrenfest theorem in ordinary quantum mechanics in
light of the influence of presented boundary behavior
in spherical coordinates.

Consider again the operator of radial momentum

(7.1)

Substitute it into Eq. (3.19), we have

(7.2)

where

(7.3)

= 0rn

= =
αα

2 2
01 01

2 3
1 1; .

2
C C

r r

= ω�01
5
2

E ωα =
�

m

= 1,2,..rn

= =1; 1rn l

= =
α α

2 2
11 11
2 3 2

1 9 1 13; .
50 50

C C
r r

= ω�11
9
2

E

ωα =
�

m

= 2l

( )∂= = +
∂

� 1ˆ ˆ .rA p
i r r

= + Π  
�

st
ˆ ˆ ˆ, ,r

r
d p i H p

dt

( ) ( ){
( ) ( ) ( ) }

( )

− +

→

− + − + − +

−

→

∂  Π = + − + ∂
∂  × − +  ∂

= +

�

�

2 2
2 1/2st

st 0

3/2 1/2 1/2

22
2 1st

0

1 1lim
2 2

1

1 lim .
2 2

P

r

P P P

P

r

a r r P
m r r

dr r A r
dr r r

a P r
m

PHYSICS OF PARTICLES AND NUCLEI  Vol. 51  No. 
It is clear from this relation that  for 
while for  it diverges. But for  it survives

(7.4)

Therefore, for singular potential the usual Ehrenfest
theorem

(7.5)

is applicable only in the first case, . In other
cases the additional term (7.4) appears or theorem has
no place at all. Remember that in traditional textbooks
this fact is not mentioned.

Let us now calculate the commutator in (7.5).
We find

(7.6)

But

(7.7)

where  is a “radial force”. Therefore we get

(7.8)

And after taking into account an additional contri-
bution (7.2) we obtain the modified Ehrenfest theo-
rem for time evolution of radial momentum (New-
ton’s “second law”):

(7.9)

This relation is a new one also, which is a “master
equation” and its physical meaning is elucidated for
the Coulomb potential once again. It is remarkable to
note that in [2, 3] the Ehrenfest theorem in one-
dimensional Schrodinger equation was considered in
finite interval  and in semi-axis . They
derived a formula

(7.10)

The authors pointed out that  can be considered as
a boundary quantum force. Note that for a particle in an
infinite square well potential the boundary term (7.10) is
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solution and its derivative through x tends to zero when

. However, in this case the mean value of the
external classical force does not vanish [2].

By comparing (7.10) with (7.9), and light of the fact
that in spherical coordinates radial variable changes in
semi-axis , one can identify  with the bound-
ary quantum force . It is evident that if we turn to the
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one-dimensional case:  and take
, then according of above discussion we derive
 and from (7.9) the true one-dimensional

Ehrenfest theorem follows 

For regular potentials, when  only in
case  follows  As for  it follows

(7.11)

We conclude here that for regular potentials the usual
Ehrenfest theorem is valid only in case , but in
case—  there appears an extra term (7.11).

Now let us show that Eq. (7.9) gives correct results
for Coulomb potential.

First consider the case— . In this case
 In [31, 32] right-hand side of theorem con-

sists only real forces : the sum of

radial and centrifugal forces. In the hydrogen atom
problem these two forces compensate each other.

Indeed,  and using known matrix elements

for Coulomb functions

(7.12)

It is an easy exercise to convince that these two
forces compensate each other exactly. So the New-
ton’s second law is satisfied.

On the other hand, the case  is more interest-
ing and crucial. In this case we have no centrifugal
term, and the additional term is given by (7.11),

(7.13)

At the same time (see, Eq. (7.12))

(7.14)

As it was mentioned above, in stationary case the left-
hand side of (7.13) must be zero. So we should have

(7.15)

and according to Eq. (6.10), it follows a correct expres-

sion for Bohr’s first orbit radius, 
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It is evident that without the extra term we should
have

(7.16)

which is clear contradiction (!)
We conclude that in Eq. (7.9) the term  is nec-

essary for deriving correct results, which is absent in
[31, 32]. So we have shown that for the  state our
result differs from that, which is known in current litera-
ture—the source of difference lies in relations (7.13)–
(7.16). As it is obvious from the definitions (7.4) and
(7.11) both  and  so in both cases the
quantum boundary force is repulsive, “so it causes the
“center of mass” of quantum packet to move far from
the boundary” [33].

Lastly, consider the Ehrenfest theorem for the
coordinate operator, . Inserting this operator
into the definition (2.17), we find

(7.17)

The last equality follows because  and so, the
extra term vanishes. It vanishes also for regular poten-
tials, because for them  Therefore the
theorem has a form

(7.18)

both for regular as well as singular potentials. As

(7.19)

the final form is

(7.20)

The obtained results are easily understandable,
because the momentum operator is singular at the ori-
gin in spite of the coordinate operator.

8. CONCLUSIONS
In this manuscript we considered influence of the

restricted region in 3-dimensional space in the ordi-
nary quantum mechanics, where the radial wave func-
tion is defined on a semi-space. Therefore the bound-
ary behavior of radial function contributes to several
fundamental relations. The additional contributions
appear also from singular behavior of operators under
consideration. To our knowledge, the last fact has not
been discussed earlier.
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We have shown that the 3-dimensional consider-
ation involves many significant peculiarities to such
problems.

We derived the explicit algorithm of calculation of
this extra term and investigated conditions, when it
contributes to various fundamental relations.

Application to several known problems shows that
the inclusion of the extra term is necessary in order to
avoid some misunderstandings.

We believe that the above-developed formalism
should have many other applications as well, espe-
cially, in the derivation of uncertainty relations.

APPENDIX

COMMENTS ABOUT THE DIRICHLET 
BOUNDARY CONDITION

It is known that in spherical coordinates 3-dimen-
sional wave function is represented as

(A.1)

Correspondingly, after rewritten the Laplacian in
terms of polar coordinates two form of radial equa-
tions are derived

(A.2)

and

(A.3)

P.A. Dirac wrote [34]: “Our equations … strictly
speaking are not correct, but the error is restricted by
only one point . It is necessary perform a special
investigation of solutions of wave equations, that are
derived by using the polar coordinates, to be convince
are they valid in the point  (p. 161)”.

Let us discuss briefly the essence of this problem.
In the teaching books and scientific articles two meth-
ods were applied in the transition from (A.2) to (A.3):

(1) The substitution

(A.4)

into Eq. (A.2) or
(2) Replacement of the differential expression

(A.5)

Now we demonstrate that in both cases the mis-
takes are made.
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After the substitution (A.4) we obtain (only the
change in Laplacian is displayed)

(A.6)

It is identity. Now the last term cancels the first deriv-
ative term in the parenthesis and there remains

(A.7)

The last term is zero, if we calculate it naively. But
really it is a delta function [11]. So we obtain for above
expression

(A.8)

Therefore the representation of the Laplacian
operator in the form (A.5) is not valid everywhere.
Results are different in the one point, 

If we take into account this fact, we obtain the cor-
rect form of equation for the reduced wave function
(using polar coordinates also for the delta function)

(A.9)

We see that the additional term, containing the
delta function, vanishes only when

(A.10)

Only in this case we can return to the usual form of
reduced equation. Therefore the usual radial equation
arises only together with the condition (A.10), which
coincides to the Dirichlet boundary condition. No
other boundary conditions are permissible for the
reduced wave function [34, 35].

Therefore, when you use the reduced Schrodinger
equation it is necessary to impose the reduced wave
function  by the Dirichlet boundary condition
(A.10) both for regular as well as singular potentials.

Among the listed papers the 3-dimensional case is
considered only in [8]. There are two examples for the
Coulomb and oscillator potentials, studied by the
reduced Schrodinger equation. In addition the Robin
boundary condition  is used, which
is not correct as follows from above consideration.
Here  is a self-adjoint extension parameter. They
wrote: ’’The caseof wave functions that vanish at the
origin (the standard or the Dirichlet boundary condi-
tion for the hydrogen atom) is recovered when

 and  while the product 
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remains finite”. In  for Coulomb potential

 they write the modified form of virial theorem

(A.11)

Here  stands for the extra contribution,  in our
notation, they derived (regularized version)

(A.12)

In the limit   it follows

(A.13)

As  remains finite and  one obtains
 and according to (A.11), we return to the usual

virial theorem  from (5.4) for

. Here 
The same correspondence happens in case of har-

monic oscillator.
Therefore, our modified virial theorem with Dir-

ichlet boundary condition for  states gives the
same results, as extended radial Hamiltonian with the
Robin boundary condition [8]. In our case the proce-
dure of self-adjoint extension is not need.

We have modified the more general hypervirial
theorem in the framework of Dirichlet boundary con-
dition, therefore Eqs. (2.16), (2.17) are new.
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