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 I always knew that sooner or later p-adic numbers
will appear in Physics.
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Supermathematics unifies discrete and continual
aspects of mathematics. Boson oscillator hamiltonian

is

(1)

corresponding energy spectrum  and eigenfunc-
tions  are

(2)

Fermion oscillator hamiltonian, eigenvectors and
energies are

(3)

For supersymmetric oscillator we have

(4)

For background-vacuum  energy 
For higher energy states   
Supersymmetry needs not only the same frequency for
boson and fermion oscillators, but also that 

A minimal realization of the algebra of supersym-
metry

(5)
is given by a point particle dynamics in one dimension, [1]

(6)

where the superpotential  is any function of x,
and spinor operators f and  obey the anticommuting
relations

(7)
There is a following representation of operators f,
 and σ by Pauli spin matrices

(8)

From formulae (5) and (6) then we have

(9)
The simplest nontrivial case of the superpotential

 corresponds to the supersimmetric oscillator
with Hamiltonian

(10)

The ground state energies of the bosonic and fer-
mionic parts are

(11)
so the vacuum energy of the supersymmetric oscillator is

(12)

Let us see on this toy—solution of the cosmological
constant problem from the quantum statistical view-
point. The statistical sum of the supersymmetric oscil-
lator is

(13)1 The article is published in the original.
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where

(14)

In the low temperature limit,

(15)

so cosmological constant  From
observable values of β and the cosmological constant
we estimate ω.

The Riemann zeta function (RZF) can be inter-
preted in thermodynamic terms as a statistical sum of
a system with energy spectrum: 

(16)

Let us consider the following finite approximation
of RZF

(17)

Another formula, which can be used on critical
line, is

(18)

Corresponding finite approximation of RZF is

(19)

at a (nontrivial) zero of RZF,   In
the integral form, dependence on N is analytic and we

can consider any complex valued N. It is interesting to
see dependence (evolution) of zeros with N. For the
simplest nontrivial integer 

(20)

we have zeros at 
Let as consider the following formula (Qvelemen-

tar particles)

(21)

which can be proved as

(22)

The formula (21) reminds us the boson and fer-
mion statsums

(23)

and can be transformed in the following relation

(24)
Indeed,

(25)

where  is p-adic norm of  is
the number of p-prime factors of n.

Bytheway we have an extra bonus! We see that the
fermion content of the boson wears the p-adic sense
[2]. The prime  in this case. Also, the vacuum
energy of the oscillators wear p-adic sense.
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