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Description of Disclinations and Dislocations
by the Chern–Simons Action for  Connection1
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Abstract—We obtained the exact solution of the Euler–Lagrange equations following from the Chern–
Simons action for  connection with δ-type source. This solution is proved to describe straight linear
disclination in the framework of geometric theory of defects. Torsion tensor components are calculated
assuming the metric to be Euclidean. It shows that disclination can be followed by continuous distribution of
dislocations with cylindrical symmetry.
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1. INTRODUCTION

One of the most promising approach for descrip-
tion of defects in solids and space-time is based on
Riemann–Cartan geometry with nontrivial curvature
and torsion (see. [1, 2]). In this approach a crystal is
considered as a manifold (continuous media)
equipped with a unit vector field. If dislocations are
absent, then the displacement vector field corre-
sponding to diffeomorphisms of the Euclidean space
exists. If the displacement vector field has discontinu-
ities, then we say that the media contains defects
called dislocations. This results in nontrivial geometry.
Namely, dislocations correspond to nontrivial torsion
which has physical meaning of surface density of the
Burgers vector. Defects (discontinuities) of unit vector
field are called disclinations. They produce nontrivial
curvature for  connection and have physical
meaning of surface density of the Frank vector.

The advantage of the geometric theory of defects
comprises description of single defects as well as their
continuous distribution.

In the present paper, we consider three dimen-
sional Chern–Simons action for  connection in
the framework of geometric theory of defects. This
action for defects was first used in [3]. In Section 2, we
introduce notation and write dawn the action for

 connection. The exact solution of equilibrium
equations for one straight linear disclination is
obtained in the next section. The angle rotation field is
also found in this case. In Section 4 torsion compo-
nents are calculated under the assumption that metric
is Euclidean.

2. CHERN–SIMONS ACTION

Let us consider a three dimensional manifold 
with coordinates   Assume that the Rie-
mann–Cartan geometry is defined on  i.e., Rie-
mannian metric  and torsion  are given. We shall

use the Cartan variables: vielbein  and  con-

nection   Each vielbein uniquely
defines the Riemannian metric on 

Raising and lowering of Greek and Latin indices is
performed by using metrics  and  and transforma-
tion of Greek indices into Latin ones and vice versa is
performed with the help of vielbein  and its inverse 

In the case under consideration, there are two
1-forms which are given on 

(1)
They define local 2-forms of curvature and torsion:

(2)

(3)

which satisfy the Bianchi identities:
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Note that the last expression does not depend on
vielbein.
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The Chern–Simons action for the  connec-
tion has the form [4] (see review [5])

(5)

where we used expression (2) for the curvature 2-form.
The existence of third rank totally antisymmetric

tensor allows one to introduce the following parame-
trization of the  connection:

(6)

where  is the totally antisymmetric third rank ten-
sor. We attract attention that under space reflections

 the 1-form  changes sign because so
does the totally antisymmetric tensor. In this parame-
trization, components of curvature and torsion are

(7)

3. LINEAR DISCLINATIONS

We assume that matric on the manifold  is
Euclidean,  Then geometry is
described only by the  connection which may
result in nontrivial curvature and torsion. Consider the
Chern–Simons action for the  connection (5)
with the source term:

(8)

where  is the 2 form corresponding
to the source of disclinations which is not yet speci-
fied. The interaction term is similar to that of minimal
coupling of electric charge to electromagnetic field in
electrodynamics.

Equilibrium equations for action (8) take the form

(9)

where  are components of the source for the 
connection. It implies f lat manifold  in the absence
of sources.

The first two terms in action (8) change by external
differential under local  rotations. Therefore it
is necessary to impose the condition  where

 for the selfconsistency of the
Euler–Lagrange equations.
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Consider one linear disclination  where 
is a parameter along the disclination line. We write the
interaction term in the form

(10)

where  This action is invariant with
respect to coordinate changes on  (up to boundary
terms) and arbitrary reparameterization of the curve

 Suppose that disclination is such that the condi-
tion  is valid everywhere. To vary this action
with respect to the  connection, we insert the
three dimensional δ-function in the integrand:

where integration over t is taken using one δ-function
 and  = 

denotes two dimensional δ-function on the 
plane. Then the variation of the source term is

(11)

Consider equations (9) on topologically trivial
manifold  with Cartesian coordinates 

 and  We assume that disclination is straight
and coincide with the  axis, that is  and

 We look for solutions of equations (9) which are
invariant with respect to translations along  axis and
rotations in the  plane. In this case, the 
connection has only two nontrivial components:

(12)

which depend on a point on the plane 
To find a solution we introduce complex coordinate

Then two real components of  connection (12)
are united into the complex one:

(13)

Corresponding curvature tensor has only one lin-
early independent complex component
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which is linear in connection. This is the consequence
of abelian nature of the rotational group  acting
on the  plane. The complex conjugate component is

(15)

If only two components of the  connection (12)
differ from zero, the quadratic terms in curvature (2) iden-
tically vanish, and we can consider δ-function sources
because equilibrium equations (9) become linear.
Now we fix the source:

(16)

where  is the two dimensional δ-function on the
complex plane. It is clear that this source respect the
rotational symmetry.

Solution of equation (16) describes new type of
geometric singularity. If this equation were considered
as second order equation for metric then its solution
would describe the usual conical singularity on the

 plane. In this case, the solution corresponds to the
wedge dislocation in the geometric theory of defects
[1]. Now the situation is different. We consider this
equation as the first order equation for the  con-
nection and show that it describes defect of the unit
vector field which is called disclination, the metric
being Euclidean.

Equation (16) has a solution

(17)

To check that it is really a solution, one can use the
well known formulae (see e.g., [6]):

(18)

The corresponding real components take the form

(19)

This solution was found in [7].

The curvature is f lat outside the  axis, and the
connection is given by partial derivative of some func-
tion. In the geometric theory of defects, this function
is the rotational angle field  of the unit vector
field on the plane. This field must satisfy the following
system of equations:

(20)

The integrability conditions for this system of
equation outside the disclination axis are satisfied,

and we can easily write down a general solution
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We fix the integration constant  Then the
solution takes the form

(22)

where  is the usual polar angle on the plane
 If one goes around the  axis along a con-

tour C, the polar angle changes by  We have to
impose the quantization condition

(23)

in order that the rotational field  be defined.
Thus, the rotational field takes the form

(24)

It is defined everywhere except a cut along a half
plane, say,   The corresponding 
connection has only two nontrivial components:

(25)

where  is the polar radius. It is defined
everywhere on the plane  except the origin where
its rotor has δ-type singularity (16). We see that the

 connection behavior is much better then the
corresponding rotational angle field as it should be in
the geometric theory of defects.

Thus, the rotational angle field varies from 0 to
 where  is the modulus of the Frank vec-

tor, when one goes along contour C enclosing the 
axis. This is exactly the linear disclination of the unit
vector field, its axis coinciding with the  axis. For

 disclination is absent. This case requires sepa-
rate consideration: for  equation (21) implies

We see that nontrivial  connection (25)
describes defects of the unit vector field called discli-
nations. The curvature tensor is nontrivial in this case:
it vanishes everywhere except the disclination line on
which it has δ-type singularity (16).

4. DISLOCATIONS

The existence of disclination can be followed by
appearance of dislocations: this depends on the tor-
sion tensor. We consider the case when Euclidean
metric and  connection (25) describing straight
disclination are given on the manifold 

:= π .C A

θ = = ϕ,tan tan
2

y
A x

ϕ
, ∈ �

2( ) .x y 3x
π2 .

= , ∈
2
nA n Z

θ ,( )x y

θ = ϕ.n

= 0,y ≥ 0.x (3)SO

ω = − = − ϕ
+

ω = = ϕ,
+

12
2 2

12
2 2

sin ,

cos

x

y

ny n
rx y

nx n
rx y

:= +2 2r x y
,x y

(3)SO

π2 ,n π = Ω2 n
3x

3x
= 0n

= 0,A
θ = 0.

(3)SO

(3)SO

.M
F PARTICLES AND NUCLEI  Vol. 49  No. 5  2018



DESCRIPTION OF DISCLINATIONS AND DISLOCATIONS 893
Torsion tensor components in the complex basis
for  connection (25) are

(26)

and  The remaining components  and 
vanish in this case.

Suppose that diagonal vielbein corresponds to the
Euclidean metric (we write down only components in
the  plane):

(27)
The components in the complex basis are

(28)

Substitution of explicit expressions for the vielbein
and  connection in formulae for torsion tensor
components (26) yields the following result

(29)

In the geometric theory of defects, the torsion ten-
sor defines the surface density of the Burgers vector.
Going back to the real basis, we obtain the expression
for the surface density of the Burgers vector:

(30)

where  It means that the disclination can
be followed by distribution of dislocations. This distri-
bution is continuous in the  plane and has singular-
ity on the disclination line (  axis). The Burgers vec-
tor is lying in the  plane, its density being rotation-
ally symmetric and invariant with respect to
translations along  axis. For  the density of
the Burgers vector tends to zero.

5. CONCLUSIONS
In this paper, we showed that the Chern–Simons

action describes linear disclinations in the geometric
theory of defects. It leads to nontrivial  connec-
tion in the considered case. The corresponding curva-
ture tensor has δ-type singularity along the disclina-
tion axis. As far as the author knows, this singularity
was not known earlier in the literature. This is not a
conical singularity on the  plane because the met-
ric is Euclidean, but the singularity in the  con-
nection. Components of torsion tensor are also non-
trivial. As the consequence, the linear disclination is
followed by continuous distribution of dislocations.
The distribution of dislocations is also invariant with
respect to rotations in the x, y plane and translations
along the disclination axis.

Methods and approaches used in the paper are
considered, for example, in [8–13]. Еhe obtained
solution of string type can be important in gravity and
cosmology (see, e.g., [14–16]).
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