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Three-Forms, Supersymmetry and String Compactifications1

Fotis Farakosa, Stefano Lanzab, Luca Martuccib, and D. Sorokinb, *
aKU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, Leuven, B-3001 Belgium

bDipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova and I.N.F.N. Sezione di Padova, 
Via F. Marzolo 8, Padova, 35131 Italy

*e-mail: Dmitri.Sorokin@pd.infn.it

Abstract—We review a duality procedure that relates standard matter-coupled  supergravity to dual for-
mulations in which auxiliary fields are replaced by field-strengths of gauge three-forms. As examples, we con-
sider the dualization of the rigid Polonyi model and of effective field theories associated with Type IIA string
compactifications with f luxes in supergravity.
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1. INTRODUCTION
In four-dimensions the gauge three-forms do not

carry any propagating degree of freedom. Neverthe-
less, their presence can have non-trivial dynamical
consequences. In particular, they can play an import-
ant role in supergravity and string theory scenarios
(see e.g. [1–9] and references therein).

In generic string compactifications to four-dimen-
sions, gauge three-forms naturally arise from the
KK reduction of higher dimensional gauge forms. The
on-shell value of the corresponding field-strengths is
dual to the value of the internal f luxes threading the
compactification space. The problem of formulating
the low-energy effective theory of string f lux compac-
tifications in terms of gauge three-forms, rather than
in terms of the dual internal f luxes, was recently
addressed in [5], focusing on the bosonic sector. These
kinds of effective theories should admit a supersym-
metric completion, but the effective theories obtained
in [5] did not fit into any of the previously known
supersymmetric models including gauge three-forms
[10–14].

In this contribution we review the results of [15] in
which a new broad family of rigid and local 
supersymmetric models including gauge three-forms
was proposed. The derivation of these models is based
on a novel non-linear duality between conventional
chiral and three-form multiplets, which has the effect
of promoting to dynamical variables part of the cou-
pling constants defining the superpotential for the
conventional chiral multiplets. This duality procedure
provides a four-dimensional supersymmetric realiza-
tion of what expected from string f lux compactifica-
tions and the generalization thereof. Indeed, as

reviewed below, these general results allow for a super-
symmetric effective description of IIA compactifica-
tions with R-R fluxes in terms of gauge three-forms.

2. RIGID POLONYI MODEL

Let us first demonstrate how the dualization pro-
cedure works in an example describing the dynamics
of a single chiral multiplet (in the conventions of [16])

(1)

which undergoes spontaneous supersymmetry break-
ing.

The  superspace Lagrangian of the Polonyi
model in the rigid limit is

(2)

where b is a complex constant. For the component
fields we find

(3)

Once the auxiliary field f takes its on-shell value
 the Lagrangian (3) becomes

(4)

We see that the last term in (4), associated with the
on-shell value of f, contributes to the vacuum energy.
Supersymmetry here is spontaneously broken and 
becomes a Goldstone fermion.

Our goal is to find a way to generate the constant b
dynamically without adding a superpotential. This can
be achieved by trading the auxiliary field of Φ for the
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field-strength F4 ≡ dC3 of a complex gauge three-form
 Let us call S the special chiral multiplet

(5)

whose highest component  has the following con-
strained form

(6)

The free Lagrangian for S, which up to boundary
terms is described in superspace by  has
the following component form

(7)

where the total derivative terms have been added to
ensure the correct variation of the gauge three-form.
Indeed, varying with respect to  and imposing the
gauge invariant boundary conditions  we get

(8)

which leads again to (4), with the important difference
that now b appears as a dynamical integration constant
parameter.

Having found the dual model, a further question
one can address is whether it is possible to pass
from (2) to (7) in a manifestly supersymmetric way. To
this end, let us note that the special chiral superfield 
canbe parametrized as follows [14]

(9)

where Σ is a complex linear multiplet subject to the
superspace constraint  The gauge three-form
resides in the component field

(10)

Due to the gauge invariance of S under 
(where L is a real linear superfield parameter), the chi-
ral multiplet S contains only the gauge-invariant field
strength of  as in (5). Note also that the complex lin-
ear superfield can be expressed in terms of a generic
Weyl spinor superfield  as  which can be
used to derive the equations of motion of Σ.

We are now ready to show how to get the new for-
mulation from the old one by a manifestly supersym-
metric duality procedure. Let us promote the complex
constant b appearing in (3) to a chiral multiplet X and
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add to (2) a term which contains the complex linear
multiplet Σ

(11)

By varying (11) with respect to Σ we get  and
hence recover (2). To find the dual formulation we
vary (11) with respect to X and Φ, which produces

(12)

Substituting (12) back into (11) we get the dual
Lagrangian

(13)

with

(14)

where X and Φ take the values (12).
One can check that the component form of (13) is

given by (7), while (14) is the superfield extension of
the boundary term appearing in (7). Note that this is
directly produced by the dualization procedure.

3. TYPE IIA EFFECTIVE FIELD THEORY
The dualization procedure of the previous example

can be extended to more general globally and locally
supersymmetric theories. For instance, let us consider
a rigid theory with a set of chiral superfields  and a
superpotential of the form

(15)

where  and  are real constants and 
 are arbitrary holomorphic functions which

may also depend on additional chiral superfields. In
[15], it was shown that such a theory admits a dual for-
mulation in which the auxiliary fields  of the chiral
multiplets (along with the ones of the supergravity
multiplets) and eventually the constants  and  get
replaced by combinations of field-strengths

 associated with pairs of gauge

three-forms  The resulting multiplets were
dubbed double three-form multiplets.

Now, being non propagating, the three-forms can
be integrated out by means of their equations of
motion. As a result, the parameters  appearing
in (15) are generated dynamically as expectation values
of the four-form field strengths, as in the simple exam-
ple of the previous section. In turn, this implies that
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the form of the potential of the scalar fields, governed
by the superpotential (15) in the original formulation,
is now determined by the underlying four-forms.

By starting from a super-Weyl invariant superspace
formulation of supergravity, the same procedure can
be applied to locally supersymmetric theories as well
[15]. The only difference is that the chiral fields dual-
ized to double three-form multiplets now include the
conformal compensator. In the following, we will
review the main points of this dualization procedure.
For the sake of concreteness, we will focus on the par-
ticular example provided by the effective theories of
type IIA flux compactifications, whose standard for-
mulation will be reviewed in subsection 1. The deriva-
tion of the dual formulation will then be presented in
subsection 2 and can be easily adapted to more general
models [15].

3.1. Effective   Theories from Type IIA
The four-dimensional theory that we are going to

examine is the  supergravity arising from the
compactifications of type IIA string theory on a Cal-
abi–Yau three-fold Y with O6-planes, studied, for
example, in [17].

The gauge sector of the ten-dimensional type IIA
effective theory consists of the p-forms  (with

). Their -form field strengths 
can be compactly arranged into the polyform

(16)

where  and  is the polyform of the internal
fluxes (that is, those with “legs” along the Calabi–Yau
space only). The higher-rank forms are related to the
lower-rank ones by the ten-dimensional Hodge dual-
ity 

The internal f lux quanta  and  are
defined as follows

(17)

where  and  are harmonic bases of the CY orien-
tifold-odd  and orientifold-even 
(with ), respectively.

Expanding the field strengths in the external (that
is, four-dimensional space-time) and the internal
parts, we may write the f luxes as expansions over the
internal bases in the schematic form (see [5, 18])
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Here e0, ei, mi and m0 are the f lux quanta defined

in (17) and  are field-strengths in the
external  space-time which are related by the 
Hodge duality to the values of the internal f luxes.

Let us now consider the scalar sector. We shall only
focus on the closed string moduli. One set of these
moduli originates from the expansion of the CY
Kähler form J and the NS-NS two-form  in the
basis of orientifold-odd integral harmonic 2-forms 

(19)

The moduli  and  along with their supersym-
metric partners, combine into   chiral
multiplet  whose lowest components are

(20)
Another set of moduli is given by the complex

structure, the dilaton and the internal R-R three-form
moduli which combine into additional chiral multi-
plets  with  In the following, we

will denote  and 

In the large volume and constant warping approxi-
mation, the Kähler potential can be split into two con-
tributions as

(21)

where the Kähler potentials  and  sat-
isfy the no-scale conditions

(22)

where   … and  is the

inverse of the Kähler metric  and similarly for 
We assume that the Kähler potential  solely
depends on the real parts of the superfields  as follows

(23)

where  are the triple intersection numbers

The last ingredient which defines the theory is the
flux-induced superpotential, which depends only on
the chiral multiplets  (see also [5, 18])

(24)

As we will see, (24) is a particular case of the locally
supersymmetric counterpart of (15), where the f lux
quanta (17) appear.
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3.2. The Dual Formulation
The expansion (18) of the ten-dimensional field-

strengths produces external space-time field-strengths
and the four-dimensional effective field theory is nat-
urally endowed with non-propagating gauge three-
forms. Therefore, as in the example of Section 2, we
aim at making the  constants  in (24)
dynamical by replacing them with their dual four-
dimensional four-form field-strengths given in (18).

The starting point is the super-Weyl invariant
supergravity theory coupled to  chiral multiplets

 among which we single out the chiral
compensator Z and the chiral matter superfields as fol-
lows

(25)
In addition, there are also the “spectator” chiral

multiplets  which play an important role in deter-
mining the final structure of the Lagrangian for the
four-forms in the dual formulation.

Introducing the “kinetic potential”

 and the homogeneous

superpotential  with the following homoge-
neity properties under the Weyl rescaling

(26)

we construct the super-Weyl invariant superfield
Lagrangian for chiral matter coupled to old minimal
supergravity which takes the form [19]

(27)

Here  is the Berezin super-determinant and
 is the chiral superspace measure which trans-

form under the Weyl rescaling as follows

(28)
We will focus on the specific class of the Kähler

potentials (21), (22), (23) and the homogeneous
superpotential  corresponding to the standard
superpotential (24). This can be written in the form
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defining a special Kähler geometry locally parame-
trized bythe homogeneous coordinates 

As explained in [15], one can perform a dualization
to a new theory in which the chiral multiplets  are
replaced by special chiral fields  However, in this
more general case, the linear relation (9) is substituted by

(31)

with  and  Here  are

complex linear multiplets (i.e. )
which contain the double sets of real gauge three-
forms  among their componets

 (32)

The special chiral multiplets  parametrize the
gauge invariant degrees of freedom of the double
three-form multiplets 

In [15], to which we address the reader for details
about the dualization procedure, it was shown that
(27) can be dualized to the Lagrangian

 (33)

In practice, the dualization has replaced  with
 and removed the superpotential from (27), coher-

ently with the presence of four-forms. Furthermore
boundary terms are produced, which are needed to
ensure the correct variation of the action.

In order to arrive at a more standard Einstein-
frame formulation, one should fix the super-Weyl
invariance, for instance by setting  If we focus
on the purely bosonic sector and ignore fermions, this
immediately gives  and  From the com-
ponent expansion of (31) one can then extract the fol-
lowing relations
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where   and M is the complex
scalar auxiliary field of the gravity multiplet. These
equations explicitly show that M and the -compo-
nents of  are expressed in terms of the four-form
field strengths, which is the core of our dualization
procedure.

Finally, after performing a standard Weyl rescaling
in order to go to the Einstein frame and integrating out
the auxiliary fields  of the ‘spectators’  one
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derives from (33) the following Lagrangian for the
bosonic fields

(35)

where  were defined in (20), we have reintroduced
the explicit dependece on  and

(36)

where the four-forms  and  are defined as fol-
lows

(37)

Notice that these are identical to four-forms
obtained in [5, 18] by direct dimensional reduction.
The explicit form of the boundary term  in (36)
can be found in [15]. It ensures that the variational
principle for the gauge three-forms is well defined.

From the three-form Lagrangian (36) it is clear
that this dual description produces a dynamically gen-
erated potential. In fact, the integration of the equa-
tions of motion which follow from (35) produces the
following expressions involving  integration
constants  and  such that
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taking into account also the boundary terms, we get
the following scalar potential

(39)

It coincides with the type IIA R-R flux potential
obtained in [17, 20]. However, in the above descrip-
tion, the constants  which enter the defi-
nition of  are determined by the expecta-
tion values of the four-forms  and 

We have thus obtained the manifestly supersym-
metric dual formulation of effective theories describ-
ing a certain class of type IIA string compactifications.

4. CONCLUSIONS
In this contribution we have reviewed the non-lin-

ear duality procedure of [15] which relates the usual
chiral multiplets to the three-form multiplets. The
core of the dualization procedure is the exchange of
the coupling constants appearing in the chiral field
superpotential to appropriate combinations of expec-
tation values of real four-form field-strengths. Owing
to the superspace formulation, the final output is a
manifestly  supersymmetric Lagrangian which
includes three-form multiplets.

Among other possible applications, this formula-
tion provides a starting point for generalizing (in a
manifestly supersymmetric framework) the Brown-
Teitelboim mechanism [21, 22] along the lines of [2]
and extending the results of [1, 8, 23–25] on coupling
the three-form supergravity-matter systems to super-
membranes.
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