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Abstract—We construct representations of the quantum algebras U

2.q(&l(n) and U, 4(s/(n)) which depend on

nn—1) / 2 + 1 deformation parameters g, g; (1 < i < j < n) which is the maximal possible number in the case
of GL(n). The representations act on the space of formal power series of n(n — 1) / 2 non-commuting variables
which generate quantum flag manifolds of GL,(n), SL,4(n). For n = 4 we consider in detail the multiparam-

eter quantum Minkowski space-time.
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1. INTRODUCTION

About 30 years passed since the advent of quantum
groups at center-stage of modern mathematical phys-
ics. Yet the field is growing stronger every day, cf. a
recent review in [1]. In this paper we present briefly
representations of multiparameter quantum algebras

U,q(gl(n)) and U, ,(sl(n)) on quantum flag manifolds
of quantum GL(n). We consider in detail the case

n = 4 when the quantum flag manifold contains mul-
tiparameter quantum Minkowski space-time.

2. PRELIMINARIES
2. 1. Multiparametric Deformation of GL(n)

Here we use the quantum group deformation of
GL(n) introduced by Sudbery [2]. That deformation
depends on the maximal possible number of parame-

ters: N = n(n — 1)/ 2 +1. We denote these N parame-

tersbygand g;, 1 < i < j < n,and also for shortness by
the pair ¢, q. The standard one-parameter deformation
is obtained by setting ¢; = ¢, Vi, j.

Explicitly, the matrix quantum group & = GL,(n)

is generated by the generators a; (1 < i, j < n) with the
following commutation relations [2]:

a;a, = paya;, for j</, (1a)

aay = raga;, for i<k, (1b)

pa,ay; = raga,, for i<k, j<l/, (1c)
rqaa; — (qp)_la,-jak[ = Aayay;, for i<k, j</, (1d)
p=%Mf,r=Vw,K=q—Vq (Ie)

! The article is published in the original.

The comultiplication, counit and antipode are
standard [2].

Following the approach of [3] we shall use repre-
sentations of the dual quantum algebra on suitable

quantum flag manifolds of s{. For this we first use the
triangular decomposition of A [4]:

Lo jeli oy
7 _ZYD Z/[: i = Sl.j Dj s

ZJ[_D &l Jl(a DJ DD;I:
Dm - z e(p)al,r)(l)"' 'm,p(m)» (2)
peS’W
1
&J = z G(P)aipmjl g
peS,
I={<--<i}, J={,<--<j},

S, is the permutation group of » elements. Note that
Yy=0fori<l, Y, =1y, Z,=0fori>/{, Z;, =14,
D, =1y, }::ZED,-. Then §,, ={Y;,j>(}, may be
regarded as a quantum analogue of the flag manifold
GL(n)/ DZ,% .
quantum analogue of the flag manifold B\GL(n).

={Z;,i < j}, may be regarded as a

We give the commutation relation between the gen-
erators Y;; since we shall build our representations on
4 The

‘A
1<i< j<k<l<n Wealso use the notation:

indices used below obey

qi ' q;‘ , '
2, py=-L, d=la, qy=q,/c. O
q q

Pjj

818



MULTIPARAMETER QUANTUM GROUP

‘We have:
ijth quqjk Ylekj’ Ykl Ji ql/q/k Y‘iYki! (4&)
ik ik
_ pyD - -
V¥ =LYYo +u w—u)Y,, (4b)
ik
Yy =%y y vy, =%y (o)
UQJI zlq/k
Uy Y = PPy Y, 4w - u YWY, (4d)
9 jkY9k Pir

2.2. Multiparameter Dual algebra

In [5] we have found the dual to s algebra
a ¢ = U, ,(gl(n)). We fix the standard decomposition
gl(n) = si(n) ® &, where ¥ is the central subalgebra of
gl(n).

The Drinfeld—Jimbo form of the dual commuta-

tion algebra AU ¢ interms of the s/(n) generators H,;, X, f
and the % generator K is given as follows:

H, XH| = +¢,X7, (5a)
X, X 1=2" (" —¢7™) =[H,], (5b)
[K,Y]=0, VY € si(n), (5¢)

where A = g — q_l, ¢; is the standard Cartan matrix of
gl(n,C)).

Thus as a commutation algebra we have the splitting
au a = U, (sl(n, CHeUu, q(%), and dependence only on
the parameter q.

This splitting is preserved also by the co-unit and
the antipode:

eq(¥) =0, Y =X, H,K, (62)

V(X)) = ¢ (X)), ya(¥)=-Y, ¥ =

and by the coproducts of H,, K

H;, K, (6b)

S =Y ®lg +1q ®Y, Y =H, K. @)
However, for the coproducts of the Chevalley gen-

+
erators X; we have:

Sa(X) =X @P+ PP @X!,  (8a)
Sy (X)) =X ®97+ 9 @ X7, (8b)
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i-1 A 2 [‘71'
H[ qSI J L J
5= QS i+1 ql i+1

H+l n—1 1-7,
[ J H QI+I ! (9)
ql i+1 t= 1+2 dit

92, =¢"P, H, anI:H
J=i

Thus, the coproduct structure is not split and
depends on all parameters. Yet for a special choice of

n —1of the parameters (e.g., g;,,,) Ong canbe splitasa
direct product of two Hopf subalgebras:
WU =U,,(sl(n) and U, (¥), where U depends only on

(n* —3n+ 4)/2 parameters [5].

2.3. Representations of the Dual Algebra

We shall work with representation spaces of U
parametrized by n — 1 numbers r, which will be integers
initially. The elements of these spaces will be formal
power series:

OY.D) = ) a(Xo)™ ..(¥,, )"
0t mEZZ: Wz 1 (10)
X (D) ...(D,)" = e¥ (D) ...(D,)"",

where ¥, D denote the variables Y;,,, i > {, D,, i < n.

First we shall give the left representation action 7 of
A on ¢. Besides the action of the ‘Chevalley’ genera-

tors K; = q". X f we shall give for the readers conve-
nience also the action of % ;, 9. ; though it follows from

that of K;. We have:

TC(K,)Yg — q(SiH,/*5i+|,j*5i1+5ij)/2}/”, (lla)
n(Xl+)YIJ QQI ll-{lelj 8llYl-%—l j) + qQI ll-{l2 1/2
q q (1=, 1)
i j i 1/2 ~1/2 1/2
X (M] 81/ J+Lj l/ + th 1-{1 / Qz,jél (llb)
qi
-1/2 qj-,
XQ,]/SHI,/'{ = Y[,j—l Y,j 1Yz,}s
qdj-1;495
"X, =4 000 8 Yy (o)
@y, = 0,0y, (11d)
7,C(QII/Z)YII — (51+11—81+|j—511+5U)Q1/2QU 1/2Y[j> (116)
2018



820 DOBREV
where rK)(D) = q (D)), (172)
qsi , S <i-—-1 . 1/2 Jj-1 k/2
. + ~
B nX)D)" =404 | [105" |€8:¥,..,(D)", (170)
q s=1i !
Q, ={ % (12) XD =0, (17¢)
L s=i+1
QI',iJrl 1/2 —k/2 k
@ o P)(D)) = H (D))", (17d)
s s>i+2
QIS j
The above is supplemented with the following n(gz‘/ 2)( Dj)k = q_ks” (HQZ;/ 2J(Dj)k. (17¢)
action on the unit element of A : s=1

(KL (13)

In order to derive the action of () on arbitrary ele-
ments of the basis (10), we use the twisted derivation rule
consistent with the coproduct and the representation

=1y, mX; )y =0.

structure, namely, we take: T(y)oy = n(8'cu( YO V),

where 85, = G o 8y, is the opposite coproduct (o is the
permutation operator). Thus, we have:

WKy = T(K)OT(K))y,

WX, oy
= (X Hor(@; My + 1@ yor(X )y,

(14a)

(14b)

X))oy = mX)om@ )y + @ ypr(X, . (14c)
From now on we suppose that none of the defor-
mation parameters g, g; is a nontrivial root of unity.

The action of U on arbitrary elements @, ¢ is found
by combining the formulae (15), (17) via (14).

3. MULTIPARAMETER QUANTUM
MINKOWSKI SPACE-TIME

We consider now the case of GL(4) which has a flag
manifold %§* = GL(4)/ B = SL(4)/B, where B, B are
the Borel subgroups of GL(4),SL(4), respectively,
consisting of all upper diagonal matrices. Under a nat-
ural conjugation (cf. also below) this is also a flag
manifold of the conformal group SU(2,2).

In this case there are six coordinates Y; of CQ‘;’q. In
[6] we have found the following correspondence with
variables that are standard in conformal invariant the-
ories:

Applying (14) to (11) we have: Y;, 0v=x —ix,, Y, ©V=x+ix, (18)
8'+] l_8i+l j_si/ 6lj
RKY(X)' =g Oty (5 Y ox =Xt x, Yy G xx=x-x, (19
rXH = -0, 508 e, Y Yoz Yol (20)
(1—5/,/+1) .
Q—l/z (k- z>/z q; 1941, , ) where x, (L = 0,1,2,3) are the standard coordinates of
i+l J a; 8y} 4d Minkowski space-time, while z,7 are the so-called
! B (15b) spin variables carrying the Lorenz representations.
q; ~
+q0; ,]+/12 i ( ’ Uj ¢ j—16i+1, j As discussed Section 2.1 we start from the multipa-
g rameter deformation GL, ,(n) of GL(n) which depends
q;- - '
X {ﬁ Yl,j—l(Y[j)k = )/j,j—l(Ylj)k}a on(n’ —n+ 2)/2 parameters ¢,q;, 1 < i < j < n. Thus,
s the flag manifold ¢ 2q = GL,((n) / Eq’q(n) depends on
(X, _)(Y,j)k (150) the same number of parameters. For n = 4 the explicit
c : .
-2 12k 2 -k, — relations are [6]:
~4700 "0} a8, Y (),
9239 = q =
n@l/z)%) = 00y, (15d) xy =Bty gy = Ay,
24 124924
1/2 k(8 41,1=8741,=8:+8) ~Kk[2 H—k/[2
n@) () = g Ot ) (15e) xy =y gx =Dy Q1)
12973 G4
_ (k-1)/2 (1-k)/2
G = (qi,Hl) [k] k(Q/ 1+l) [k] (16) 7y = 413934 v o X% = q12q24 Dadoa " kvv
k], = (CI -4 )/7‘ 912924 923434 99,4
PHYSICS OF PARTICLES AND NUCLEI  Vol. 499 No. 5 2018
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7z = _ 91394 Z, X, = 13934 X7,
d14923 qi4
. = 61223‘134 XZT+A7, ZV = 923934 VT
q g A4
QI3Q34 VZ + }\‘xﬂ (22)
q 6114
2
x,z=-D ox, x =293 ),
q12924 ‘112‘]23
vz = Lzv, vz q 994, - Ax,.
d12923 %2‘124

Thus, in (21) we have a seven-parameter quantum
Minkowski space-time.

We note that when all deformation parameter are
phases, i.e., |¢| =1, |g;| = 1, and in addition holds the
following relations:

2
g3 = 12924 , G = 912924 ,

q34 13434

(23)

then the commutation relations (21) and (11) are pre-
served by an anti-linear anti-involution  acting as:

o(x) =X, V)=V, oz)=%. (24)

Further, we recall from [5] that the dual quantum
algebra U, ,(gl(n)) has the quantum algebra U, ,(s/(n))
as a commutation subalgebra, but not as a co-subalge-
bra. In order to achieve the complete splitting of

U, (sl(n)) we have to impose some relations between
the parameters, thus the genuine multiparameter

deformation U, (sl(n)) depends on (n2 —3n+ 4)/2
parameters. Thus, in the case of n = 4 for the genuine
U,.(s/(4)) we have four parameters. Explicitly, we

achieve this by imposing that the parameters ¢;;,, are
expressed through the rest as:

3 4 3

qp = 4 ) d34 =
q13914

(25)

413914924 414924

Thus, the four-parameter quantum Minkowski
space-time and the embedding quantum flag mani-

fold ‘g‘;’q are given by (21) and (11) with (25) enforced.

If we would like to enforce also the conjugation
(24) then there are more relations between the defor-
mation parameters, namely, we get:

2

=q3 = q_, 93 = 4 = 4. (26)

G4

d2 = 93
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Thus, in this case we have a two-parameter defor-
mation and using the above relations (21) and (11)
simplify as follows:

xv=plvx, ¥ =pxv, (27)

w=w, Lxx =Lxx, + M7,

p q
R =237, X, = PpX T, ZX_ = %x_z+ AV,
q
IV = pvz, IV =£2VZ+7\.X+,

| “, (28)

xz=p ', xz=L . —,

V4

3/ 2
where p = ¢ /q14.

Another question is the quantum Minkowski
length. In the one-parameter case it is given by [6]:

F,=xx, (29)

It commutes with the g-Minkowski coordinates

- q_lVV.

and has the correct classical limit £ _, = & = x; — %
In the multiparameter case we try a similar Ansatz:

L a = %%, = Blg, Q7. (30)

In the general seven-parameter case this quantum
Minkowski length commutes with the quantum Min-
kowski coordinates if the following conditions hold:

2
B(q,q) = Q14 . Gy = 9 %4 . g = 91294

912924 q12934 34
Thus, it becomes five-parameter case.

(31

In the split four-parameter case commutativity of
quantum Minkowski length (30) occurs when in addi-
tion to (25) hold also:

2 4
Bg) =2, g,=2, g, =2 (32)
qd49>4 4 14

Thus, it becomes a two-parameter case (up to a
phase).

In the case all deformation parameter are phases,
gl =1, |g;| = 1, commutativity of quantum Min-
kowski length (30) occurs when in addition to (23)
hold also:

1
Blg.a) = 7 s = 4 Goa- (33)
q

Thus, it becomes a four-parameter case (up to a
phase).
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Finally, in the split and phase case commutativity
of quantum Minkowski length (30) occurs when in
addition to (26) hold also:

B(g.q) = "1;*, an=q" (34)
q

Thus, it becomes a one-parameter case (up to a
phase).

~ qk+m q %‘*’
7.[:(Ajl )(pijkﬂmn = _[i]q [_j [ij
q4d12 )\412923

DOBREV

4. ACTION ON THE QUANTUM
MINKOWSKI FLAG MANIFOLD

the
of the quantum Minkowski

The action of U on elements
{—m—n

k
(pljk(mn = ZV x XV Z

flag manifold (5 q is found by combining formulae (15)
and (11). For the lack of space we show only the action

of X,,s=1273:

n(X;)(bUkémn = _[j]q (

( qi14 J (‘114‘123 L kb (35)
412924 43924
i J myn
k-1 (/2 o473
q ]( q13 )2 2(012‘]24] ( 24 jz 2@ _—
i+1,j—1,k{mn
93 412923 13934 q23934 ! (36)
e iy o2 myn
"V a4z V(a4 By )2
—[k]q( j( 13 j ( 12 24] ( 24 j Bttt
dd>3 )\4912923 q13934 423934
R T TR TP k
—\A —m—n—1-2k
X3Pyt :_(_j(qqu;j ( d14 j ( 24 j (%3‘134} (%3‘134} {m ( ) q
q34 )\ 413924 413‘134/ 423934 q14 Adr4 , d12923
(+m—1+k A
Okt it mant 4 e [n], (ﬂj ( s j Cijkctm,n—1 (37)
413934 423934

%26]23) A

A —(—n-1
X Q; v pkli-tmn T4 [m]q{ p
13

l
+ k[g]q[m]qq—”—lﬂ—k (qMQZSj (

q13924

Note that unlike other deformations ours is non-
trivial as the last term of (37) contains the factor A
which becomes zero for g = 1.

The action of the other generators will be given
elsewhere [7].
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