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Non-Perturbative Superpotentials and Discrete Torsion1
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Abstract—We discuss the non-perturbative superpotential in  heterotic string theory on a non-simply
connected Calabi–Yau manifold X, as well as on its simply connected covering space  The superpotential
is induced by the string wrapping holomorphic, isolated, genus zero curves. We show, in a specific example,
that the superpotential is non-zero both on  and on X avoiding the no-go residue theorem of Beasley and
Witten. On the non-simply connected manifold X, we explicitly compute the leading contribution to the
superpotential from all holomorphic, isolated, genus zero curves with minimal area. The reason for the non-
vanishing of the superpotental on X is that the second homology class contains a finite part called discrete
torsion. As a result, the curves with the same area are distributed among different torsion classes and their
contributions do not cancel each other.
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1. It is well acknowledged that heterotic string (M-)
theory on a Calabi–Yau manifold can lead to realistic
low-energy physics [1–7]. Even quite advanced ques-
tions like proton stability and realistic Yukawa struc-
ture can be taken into account [7, 8]. Although these
string vacua realise the correct spectrum and interac-
tions of low-energy particle physics, there remains a
fundamental problem that the associated manifold
and vector bundles have moduli that generically have
no potential energy. Therefore, the vacuum values of
these fields can be dynamically unstable and, even if
time-independent, cannot be uniquely specified, thus
rendering explicit predictions of the values of super-
symmetry breaking and physical parameters impossi-
ble. It follows that the stabilisation of both geometric
and vector bundle moduli is one of the most important
problem in heterotic string theory.

In this paper we consider heterotic string (M-) the-
ory compactified on a Calabi–Yau manifold X to four
dimensions. To specify a four-dimensional vacuum we
need to specify a Calabi–Yau manifold X with the Cal-
abi-Yau metric 2 a vector bundle V on X with the
connection  and the B-field. To preserve

 supersymmetry in four dimensions the internal
gauge field has to satisfy the Hermitian Yang–Mills
equations

(1)

and the two-form  has to be closed (modulo the
-corrections which are not important for our pur-

poses),  It is well known that the vacuum equa-
tions for the metric, the B-field and the gauge field
give rise to integration constants called moduli which
appear in the low-energy field theory as massless sca-
lar fields. More precisely, the metric and the B-field
give rise to Kahler moduli and to complex structure
moduli, whereas the gauge field gives rise to vector
bundle moduli. All these scalar fields perturbativey do
not have potential energy and can have any value.

It was realised back in the 80’s that the moduli
fields can receive a potential energy from non-pertur-
bative effects. It was shown in [9, 10] that a non-per-
turbative contribution to the superpotential for the
moduli fields can come from worldsheet instantons
which are Euclidean strings wrapped on holomorphic
curves in X. However, not all holomorphic curves
contribute to the superpotential: in addition to being
holomorphic they must be isolated and have genus
zero. The purpose of this paper is to present an exam-
ple of explicit calculations of the leading (in the large
volume limit) non-perturbative superpotential and
show that the result is non-zero. In fact, this is the first
example in the literature when the superpotential can
rigorously be proven to be non-zero.

2. The general expression for the superpotential
induced by a string wrapping a curve C was derived in
[11]. It has the following form

(2)

×8 8E E
� .X

�X

1 The article is published in the original.
2 As usual, we split the six-dimensional vector index along  into

its holomorphic and anti-holomorphic parts.

,mng

X

,( ),m nA A
= 11

= = =0, 0,mn
mn mn mnF F g F

B
α'

= 0.dB

−∂⎡ ⎤= − +
⎢ ⎥πα ∂ ∂⎣ ⎦

∫
V ( 1)

2

Pfaff( )( )( ) exp .
2 ' [det( )] det( )

C

NCC

A CW C i B
2

835



836 BUCHBINDER
The expression in the exponent is the classical
Euclidean action evaluated on C. In the first term,

 is the area of the curve given by

(3)

where ω is the Kahler form on X. Let  be a basis of
-forms on X,  Then we can expand

  Let us define the
complexified Kahler moduli

(4)

Then the exponential prefactor becomes

(5)

By construction  Pfaff in (2) is
the Pfaffian of the Dirac operator which comes from
integrating over the right moving fermions in the
worldsheet theory. It depends on the connection A on
the vector bundle V restricted to the curve C and,
hence, on the moduli of the vector bundle V as well as
on the complex structure of X. Since the spin bundle
on a genus zero curve is  we additionally tensor
V with  and denote  In
principle, it can be explicitly expressed as a function of
the gauge connection A using the WZW model [12].
However, since no explicit solutions to the Hermitian
Yang-Mills equations on X are known, it is unclear
how to use this in practice. Since right moving world-
sheet fermions are Weyl,  is anomalous.
However, this anomaly is cancelled by the variation of
the B-field [13]. As the result, the Pfaffian of the Dirac
operator is not a function on the moduli space of V
but, rather, a section of some line bundle. In the
denominator in (2),  comes from integrating
over bosonic f luctuations and is the determinant of the

-operator on the normal bundle to the curve C.
Finally,  is the determinant of the -opera-
tor on the trivial line bundle which is a constant.

In general, a given homology class of X contains
more than one holomorphic, isolated, genus zero
curve. The number of these curves is referred to as to
Gromov–Witten invariant. All such curves in the
same homology class have the same area, the same
classical action and the same exponential prefactor in
(2). However, the 1-loop determinants, in general, are
different. Hence, the contribution to the superpoten-
tial from all curves  in the homology class  of the
curve C is given by (for simplicity, we remove the con-
stant factor )

(6)
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where n[C] is the number of the holomorphic, isolated,
genus zero curves in the homology class  To find
the complete non-perturbative superpotential W, we
then have to sum over all homology classes. That is,

(7)

3. In [14] Beasley and Witten showed that, under
some rather general assumptions, the sum (6) must
vanish for each homology class  Let us review their
assumptions. Let  be a complete intersection Cal-
abi–Yau threefold in the product of projective spaces3

 That is,  is given by a set of poly-
nomial equations  where

 Additionally, assume that the Kahler
form  descends from the ambient space, that is,

 and that the vector bundle  on  is
obtained as a restriction of a vector bundle  on 

 Then, it was shown by Beasley and Witten
that if these assumptions are satisfied, the sum (6)
vanishes for any homology class. This result was
proven in [14] and interpreted as a residue theorem.
The assumptions of Beasley and Witten are rather gen-
eral, which means that in a large class of heterotic
string models a non-perturbative superpotential can-
not be generated. This raises a question of whether
moduli in heterotic compactifications can ever be
completely stabilised. The aim of this paper is to pres-
ent explicit examples where the non-perturbative
superpotential is indeed non-zero.

As we have said, in the analysis of Beasley and Wit-
ten in [14] there is the assumption that  It
then follows that, in their theorem, the area of all
curves in (6), (7) is measured using the Kahler form

 on  restricted to  However, there are cases
when this restriction is not the same as the physical
Kahler form on  Indeed, it is possible that  is
not the same as  because there can be classes in

 which do not come as a restriction of classes from
the ambient space. Hence, the residue theorem,
strictly speaking, is valid only if  If

 the residue theorem cannot be
directly applied. In heterotic string theory, the area is
measured using the actual Kahler form  on  As a
result, the curves which have the same area with
respect to  might have different area with respect
to  and, hence, might lie in different homology
classes. Below, we will give an example where the can-

3 The results of Beasley and Witten are also expected to be valid
for complete intersections in toric spaces.
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cellation in the residue theorem cannot happen simply
because each curve is unique in its homology class.

4. Our discussion so far has been missing an import-
ant ingredient called discrete torsion. In general, for an
arbitrary complex manifold, X, the second homology
group with integer coefficients is of the form

(8)

where  is the free part and  is a finite group
called discrete torsion. For example, a discrete torsion
factor of  can arise when X is a quotient of
another Calabi–Yau manifold by a freely acting dis-
crete isometry group K as we will discuss below. The
existence of the torsion classes affects the B-field.
Since B-field is a closed 2-form, a four-dimensional
heterotic vacuum is specified by a choice of its field
strength H which must vanish in  However,
it does not mean that it vanishes in  If H

defines a non-trivial torsion element in  its
potential B is not globally defined and the exponential
prefactor in (2) has to be modified. As was shown in
[15, 16] it has to be replaced with

(9)

Here  are the generators of   are their
values on the curve C and  are characters of  The
choice of characters depends on the choice of H, that is
on a (discrete) choice of a four-dimensional vacuum.

Let us now refine eq. (2) in the presence of discrete
torsion. Let  be the homology class of the curve C
in  As we have just discussed, the
curves in  do not necessarily lie in the same homol-
ogy class in  because they might belong to dif-
ferent torsion classes. Curves belonging to different
torsion classes pick up different characters. Hence,
equation (2) is modified to become

(10)

To find the complete non-perturbative superpo-
tential, we have to sum over all homology classes

5. We will now consider a specific Calabi–Yau
manifold  called the Schoen manifold. It is a com-
plete intersection in  given by the fol-
lowing equations

(11)
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Here    are the homoge-
neous coordinates on   and  respectively. Let
us state some relevant mathematical properties of the
Schoen manifold. First,  that is  is simply
connected. Second,  which
means that there are 16  classes on  that do not
come from the ambient space. Third, 
which means that there is no torsion. The Schoen
manifold (11) admits an action of a discrete 
symmetry whose generators  and  act as follows

(12)

This allows us to define another Calabi–Yau man-
ifold  with properties [17]:

  The later
means that X has  torsion. The classes which
descend from  to X are the invariant classes in  rep-
resented by invariant differential forms. One can show
[16] that they are given by a restriction of the Kahler
forms on   and   The Kahler form
on  is given by

(13)

where  is the contribution from the additional 16
classes, and the Kahler form on  is given in terms of
the invariant classes

(14)

where by slightly abusing notation we denote the basis
of -forms on X also by  and the Kahler parame-
ters by 

The Gromov–Witten invariant of X can be com-
puted using the type II prepotential [17]. Let

 be co-invariant homology classes dual to
 Let us denote

(15)

where the exponents are just the integral of the com-
plexified Kahler form on X evaluated on the basis
classes  In addition, we have two torsion
generators  and, hence, any curve C is labeled by
the integers
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Thus, any curve in the homology class
 is labeled by the set of integers
 ∈  The type II prepo-

tential is then given by the following expression

(17)

Knowing  and expanding the poly-logarithm
we can read off the Gromov–Witten invariants 
The prepotential  was computed in [17] and here
we will just quote the result to the lowest order in 
which corresponds to the leading order in the large
volume limit:

(18)

From this result it follows that the leading superpo-

tential behaves as  and that there are 9 curves which
contribute to it. All these curves have the same (com-
plexified) area  but lie in 9 different homology
classes once torsion is taken into account.

Due to the  symmetry the above 9 curves in
 originate from 81 curves in  These 81 curves can

be constructed very explicitly. Since all of them origi-
nate from  parameterised by  to find
them we simply solve  for arbitrary 
which gives

(19)

This system has 81 solutions, each defining a curve
in  of the form  where s is a point in 
All these curves are holomorphic, isolated, genus zero
curves. Furthermore, they all have the same area with
respect to the Kahler form restricted from the ambient
space  In fact, they form the full set of curves

whose (complexified) area is  However, using the
mathematical properties of the Schoen manifold one
can prove that they all lie in different homology classes
and, hence, have different area with respect to the
actual Kahler form  on 

Since each of these curves is unique in its homol-
ogy class it follows that the non-perturbative superpo-
tential in heterotic string theory compactified on  is
non-zero as long as  at least for one
of these curves.

6. Now we will consider a specific model for a vec-
tor bundle. We will start with a vector bundle  on 
which we then restrict to  to define  We will
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also choose  and  to be equivariant under the
 action to define a bundle  on X.

We will choose the vector bundle to have structure
group  which corresponds to low-energy field
theory with gauge group  and construct it as follows

(20)

where

(21)

Knowing  and  we then define   and W, V
as discussed above. One can show [16] that the moduli
space of thus constructed bundle V is  The
first factor corresponds to the moduli space of W and
will not play any role in our analysis below, so we will
ignore it. A point  can be parameterised explic-
itly in terms of the invariant polynomials on the ambi-
ent space:

(22)

Here  are homogeneous polynomials on
 of degree (5, 1)
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with  being a convenient basis of such polynomials
and  being the bundle moduli. The 21 moduli
just introduced are not independent, in fact, they sat-
isfy 8 linear relations which can be found in [16]. This
gives 13 homogeneous coordinates parameterising 

Let us now compute the Pfaffians in this model for
our 81 curves in  and 9 curves in X.4 Since no explicit
solutions to the Hermitian Yang–Mills equations are
know we will use the algebraic approach developed in
[12, 13, 16]. Since  is a holomorphic sec-

tion on  it is a homogeneous polynomial in 
which is uniquely determined (up to a coefficient) by
its zeros. Hence, we have to derive the polynomial
equation in the moduli space which governs the exis-
tence of zero mode of . The details of the deriva-
tion can be found in [16] and here we will just state the
results.

4 For simplicity, we will work for a fixed complex structure which
makes the Pfaffians to be the only non-trivial one-loop determi-
nants.
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In the theory defined by  the leading super-
potential comes from 81 curves of the form 
where  are the 81 points solving the system (19). Due
to the  these curves break into 9 orbits with 9
curves in each orbit. After we mod out by  the
entire orbit becomes a single curve in X. The symmetry
also implies that all curves in the same orbit have the
same Pfaffian, that is we have to compute the Pfaffians
only for 9 curves representing the orbits. It also follows
from the symmetry that

(24)

which means that all calculations in the theory on X
can be done on the covering manifold. Aalysing the
zeros of the Pfaffians one can show that [16]
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where  Let us now introduce the proportion-
ality coefficient into (25). For each of our 9 curves, we
denote it by  where  That is, we have

(28)

We now conclude that in the theory on X the non-
perturbative superpotential is non-zero because each
curve is in its own homology class and the Pfaffians
are not identically zero.

Though we are not able to compute the coefficients
 we can constrain them. It follows from the residue

theorem that if measure the area of all curves using the
Kahler form restricted from the ambient space the
total result must vanish. It then follows that

(29)

Let us stress that eq. (29) does not imply that the
superpotentail in the heterotic string theory on  van-
ishes because in (29) we are summing the Pfaffians of
curves lying in different homology classes and having
different area with respect to the proper Kahler form

 Hence, in the superpotential these Pfaffians will
be weighted with different exponential prefactors and
cannot cancel each other. Eq. (29) constrains the coef-
ficients  It is possible to satisfy eq. (29) if and only
if the polynomials  in (27) are linearly dependent
which is a non-trivial consistency check of our calcu-
lations. It is possible to check that these polynomials
are indeed linearly dependent and it possible to adjust
the parameters  so that the sum in (29) vanishes.
The precise constraints on the coefficient  can be
found in [16].

In the theory defined by  the leading super-
potential is given by

(30)

where we used the relation (24) and the characters
depend on the choice of the characteristic class of the
H-field. In the absence of torsion the superpotential
would be zero by the residue theorem as explained
above. Choosing the vacuum such that at least one of
the characters is non-trivial the sum (30) is no longer
zero because

(31)

This gives an explicit proof that the leading super-
potential is non-zero. Let us emphasise that the key
reason in the proof is discrete torsion.

πζ = 2 3.ie

,�X iA = …1, ,9.i

−∂ =
� � � �( 1) , ,Pfaf ( ) .

CiX V X i X if A R

,�X iA

=
=∑ � �

9

, ,
1

0.X i X i
i

A 5

�X

ω
�

.X

,� .X iA

,�X i5

,�X iA

,�X iA

,( )X V

=
= χ χ∑ � �

1
1 1

9

1 2, ,
1

,iT m m
X X i X i

i

W e A 5

= =
= ⇒ χ χ ≠∑ ∑� � � �

1 1

9 9

1 2, , , ,
1 1

0 0.m m
X i X i X i X i

i i

A A5 5
5  2018



840 BUCHBINDER
ACKNOWLEDGMENTS
This work was supported by the ARC Future Fel-

lowship FT120100466. The author would like to thank
B. A. Ovrut for collaborations.

REFERENCES
1. V. Bouchard and R. Donagi, “An  heterotic Stan-

dard Model,” Phys. Lett. B 633, 783–791 (2006).
2. V. Braun, Y. H. He, B. A. Ovrut, and T. Pantev,

“A Standard Model from the  heterotic
superstring,” JHEP 0506, 039 (2005).

3. V. Braun, Y. H. He, B. A. Ovrut, and T. Pantev, “The
exact MSSM spectrum from string theory,” JHEP
0605, 043 (2006).

4. L. B. Anderson, J. Gray, Y.-H. He, and A. Lukas,
“Exploring positive monad bundles and a new heterotic
Standard Model,” JHEP 1002, 054 (2010).

5. V. Braun, P. Candelas, R. Davies, and R. Donagi, “The
MSSM spectrum from -deformations of the het-
erotic standard embedding,” JHEP 1205, 127 (2012).

6. L. B. Anderson, J. Gray, A. Lukas, and E. Palti, “Het-
erotic line bundle standard models,” JHEP 1206, 113
(2012).

7. E. I. Buchbinder, A. Constantin, and A. Lukas, “A het-
erotic Standard Model with  symmetry and a sta-
ble proton,” JHEP 1406, 100 (2014).

8. E. I. Buchbinder, A. Constantin, and A. Lukas, “Non-
generic couplings in supersymmetric standard models,”
Phys. Lett. B 748, 251 (2015).

9. M. Dine, N. Seiberg, X. G. Wen, and E. Witten, “Non-
perturbative effects on the string world sheet,” Nucl.
Phys. B 278, 769 (1986).

10. M. Dine, N. Seiberg, X. G. Wen, and E. Witten, “Non-
perturbative effects on the string world sheet. 2,” Nucl.
Phys. B 289, 319 (1987).

11. E. Witten, “Worldsheet corrections via D instantons,”
JHEP 0002, 030 (2000).

12. E. I. Buchbinder, R. Donagi, and B. A. Ovrut, “Super-
potentials for vector bundle moduli,” Nucl. Phys. B
653, 400 (2003).

13. E. I. Buchbinder, R. Donagi, and B. A. Ovrut, “Vector
bundle moduli superpotentials in heterotic superstrings
and M theory,” JHEP 0207, 066 (2002).

14. C. Beasley and E. Witten, “Residues and world sheet
instantons,” JHEP 0310, 065 (2003).

15. P. S. Aspinwall and D. R. Morrison, “Chiral rings do
not suffice:  theories with nonzero funda-
mental group,” Phys. Lett. B 334, 79 (1994).

16. E. I. Buchbinder and B. A. Ovrut, “Non-vanishing
superpotentials in heterotic string theory and discrete
torsion,” JHEP 1701, 038 (2017).

17. V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger,
“Worldsheet instantons and torsion curves, part A:
Direct computation,” JHEP 0710, 022 (2007).

(5)SU

×(8) (8)E E

,(0 2)

−B L

= ,(2 2)N
PHYSICS OF PARTICLES AND NUCLEI  Vol. 49  No. 5  2018


	ACKNOWLEDGMENTS
	REFERENCES

