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1 1. INTRODUCTION

The Neyman construction [1] of confidence inter�
vals for estimated parameters is a basic element of
experimental data processing. Often one also pos�
sesses a priori information about the estimated param�
eters, and it is important to include that information
into the confidence intervals in a consistent way.

A limited domain of the parameters is an example
of such a priori information. The problem with the
conventional confidence intervals is seen if the exper�
imental estimate of the parameter falls out of the
domain. For instance, in the Troitsk�nu�mass experi�
ment on the direct measurement of the mass of neu�

trino in tritium beta�decay [2] the parameter  is
non�negative while the formal fit yields a negative

value of 

The construction of confidence intervals for Pois�
son distribution with Poisson�distributed background
is another situation where one should take into
account the a priori information about the back�
ground. The situation is usual for studying rare events
(in experiments on neutrinoless double beta�decay
[3], and neutrino oscillations, for instance T2K,
MINOS [4], etc.). 

Several candidate solutions were proposed. These
can be divided into two groups according to how the
freedom inherent in the Neyman construction of con�
fidence intervals is used.

The first group of candidate solutions incorporates
the a priori information at the stage of constructing the
acceptance regions. This group includes the Feldman�
Cousins construction [6] and the power constrained

1 The article was translated by the authors.
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limits advocated by Cowan et al. (the CCGV method
[7]). However, the intervals constructed e.g. via the
Feldman�Cousins recipe do not allow one to mean�
ingfully compare the results of different experiments
(because an experiment with worse sensitivity could
yield a smaller interval), thus failing to achieve the very
goal of data processing: to produce numbers that
directly express the essential information; numbers
that speak for themselves.

The second group of candidate solutions incorpo�
rates the a priori information into the estimator, and
only after that proceeds to constructing confidence
intervals in a regular fashion. The first such recipe was
given in [8] for a special case of the maximal likelihood
estimator. The somewhat artificial arguments of [8],
however, are not quite transparent and no explicit form
for the estimator is provided, so that it is not clear
whether the recipe could be applied to other methods of
estimation (e.g. the least squares or the newer and
advantageous method of quasi�optimal weights [17]
which was used in obtaining the recent neutrino mass
bound [2]). This limitation of the (correct) construction
of confidence intervals [8] may explain why it remained
unnoticed by the data processing community.

A comprehensive solution that is independent of
the estimation method and provides an explicit for�
mula for the estimator, was found in [9] where a trans�
parent graphical and analytical interpretation of the
construction was given. For the unphysical values of
the estimator, the resulting construction resembles the
empirical recipe of the so�called sensitivity limit (for
instance, the sensitivity limit was used among other
ways to present the results of the Mainz neutrino mass
experiment [10]). For the physical values of the esti�
mator, however, the new construction introduces a
narrowing of the confidence belt near the boundary of
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the physical region. We will call the new construction
the method of sensitivity limit. To avoid confusion, how�
ever, it should be emphasized that the sensitivity limit
proper is not a confidence interval but a characteristic
of a given experiment and the corresponding uncer�
tainties; it can be calculated before measurements.
The method of sensitivity limit, on the other hand, pro�
vides a system of confidence intervals (a confidence
belt) constructed via the Neyman procedure [1].

A major advantage of the method of sensitivity
limit is that it allows a direct comparison of different
experiments without recalculations or re�processing
of data. For instance, the new results of the Troitsk�
nu�mass experiment [2] are compared with the above
mentioned Mainz measurement as well as with the
results of the first analysis of the Troitsk�nu�mass data
[11]. In this regard the method succeeds where the
Feldman–Cousins recipe [6] fails: in non�physical
range the Feldman and Cousins recipe provides a con�
fidence interval that depends on the experimental
value of the estimator; moreover the interval shrinks
unnaturally as the estimator values move away from
the physical bound into the unphysical region. In fact,
the Feldman–Cousins recipe does not provide results
that can be compared directly.

Note that within the second approach (incorpora�
tion of a priori information into the estimator prior to
constructing confidence intervals) one can also con�
struct correct and optimal one�side (upper or lower)
limits for the estimated parameters [12].

The case of discrete distributions is another natural
extension of the method of [9, 12]; this is the main
purpose of the present paper.

First, in Section 2 we recall the Neyman construc�
tion and define it in the terms convenient for the fur�
ther derivation of the method of sensitivity limit. The
case of discrete distributions is discussed separately
since there one should replace the equalities for the
confidence probability of the confidence belt by ine�
qualities due to the discreteness itself. We discuss the
construction of symmetric and non�symmetric as well
as the construction of Sterne, Crow and Gardner [5].

Sections 3–5 review the constructions of Cowan
et al., Feldman and Cousins and Mandelkern and
Shultz correspondingly.

In Section 6, following [9], we construct the
method of sensitivity limit for the case of continuous dis�
tributions, with a priori information about the estimated
parameter given by the inequality θ ≥ θ. Section 7 con�
siders the discrete case of a Poisson process with
unknown μ but with known Poisson background b.
Finally, Section 8 provides the best upper limits for
continuous and discrete distributions. Section 9 illus�
trates that one can compare confidence intervals con�
structed via the method of sensitivity limit in different
tritium β�decay experiments. The conclusions are
summarized in Section 10.

This paper considers only the Neyman procedure
of the construction of confidence intervals. The inter�
vals provide clear interpretation within the frequentist
approach. Although the alternative Bayesian approach
can, with some stretching of imagination, be inter�
preted in terms of statistical ensembles [13], the actual
construction of Bayesian intervals by experimenters
uses the unknown a priori distribution density func�
tion for the parameter. This violates the applicability of
the Bayes theorem and makes it difficult to interpret
the results. We also do not consider here the so�called
CLs method [14] of constructing the confidence inter�
vals, since it has no clear interpretation within either
frequentist or Bayesian approach even if it is widely
used, for instance, in presenting the results of the
Higgs boson searches [15].

2. NEYMAN INTERVALS

2.1. Continuous Distributions

We start from the description of the standard Ney�
man construction of confidence intervals [1], in which
we fix the notation that is used hereinafter.

Let θ be a conventional estimator for the unknown
parameter X, i.e. an estimator constructed without
regard for the a priori bound (e.g. obtained via the par�
adigmatic method of moments [16, 17]).

The random variable  is a function of a set of

experimental data Х:  = (X). Its probability density

dθ( ) is parameterized by θ and is assumed to be
known and non�singular as required in the standard
Neyman construction of confidence intervals [1]. The

density dθ( ) incorporates all the information about
the experiment (including the estimation method) in
regard of the measurement of θ.

Let α, α' be small and non�negative. Define Lα(θ)
and Uα'(θ) according to

(1)

The probability for the estimator to fall below Lα(θ)
is α, above Uα'(θ), α'. The Lα(θ) thus defined corre�
sponds to the Zα defined in Section 9.1.1 of [16].

Assuming Lα(θ) and Uα'(θ) to be invertible func�
tions of θ Eq. (1) can be rewritten as follows:

(2)

where uα =  lα =  Eq. (2) says that the proba�

bilities for the random variables lα( )/uα'( ) to fall
below/above the unknown true value θ are α /α'.

One can rewrite (1) in form of

(3)

θ̂

θ̂ θ̂

θ̂

θ̂

P ∞ θ̂ Lα θ( )< <–( ) α,=

P Uα ' θ( ) θ̂ +∞< <( ) α '.=

P lα θ̂( ) θ<( ) α, P θ uα ' θ̂( )<( ) α ',= =

Uα

1–
, Lα

1–
.

θ̂ θ̂

P Lα θ( ) θ̂ Uα ' θ( )< <( ) 1 α– α ' β.≡–=
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Then an equivalent expression

(4)

says that the probability for the random interval

[uα'( , lα( )] to cover the unknown β is θ (the confi�
dence level; e.g. β = 90% etc.).

Choosing α = α' = (1 – β)/2 results in a standard
symmetric confidence belt.

The construction allows further freedom. Fix the
confidence level β e.g. β = 90%; β is assumed to be
fixed in what follows). Then choose a pair of functions
L, U to satisfy

(5)

If they are also monotonic then there exist inver�
sions u = U–1, l = L–1, and an equivalent expression

(6)

says that the random interval [u( ), l( )] covers the
unknown θ with probability β.

Note that the curve θ = u( ) cannot exceed θ =

u1 – β( ), i.e. u( ) ≤ u1 – β( ). The curve θ = l( ) is
similarly bounded from below. Any such pair of curves
forms what we will call allowed confidence belt for the
confidence level β.

Figure 2 introduces, in addition to the symmetric
confidence belt for the confidence level β, another,
narrower symmetric confidence belt for a lower confi�

dence level  = 1 – 2(1 – β) = 1 – 4α < β (dashed
sloping lines). The various intersection points and
horizontal lines are labelled for ease of reference: sim�

P uα ' θ̂( ) θ lα θ̂( )< <( ) β=

θ̂ θ̂

P L θ( ) θ̂ U θ( )< <( ) β.=

P u θ̂( ) θ l θ̂( )< <( ) β=

θ̂ θ̂

θ̂

θ̂ θ̂ θ̂ θ̂

β̃

ilarly labelled points in subsequent figures are the same
as in this one.

The vertical position of the intersection point A
(and of the line KF) is denoted as θA:

θA = la(0). (7)

The numbers θC < θE < θF are the horizontal posi�
tions of the points C, E, F:

(8)

2.2. Discrete Distributions

Let us consider an experiment that measures a
number of events n. Let the number of detected events
has, for instance, Poisson distribution:

(9)

Here μ is the parameter of the Poisson distribution,
the mean number of events. (The following reasoning
does not depend on the particular type of the distri�
bution.)

The discreteness of the distribution induces some
modifications in constructing the confidence intervals
as compared with continuous distributions.

As usual, to construct confidence intervals one
chooses a confidence level α (95%, for instance). For

θC U 1 β–( ) 0( ) θE, U1 β– θA( ),θF Uα θA( ).= = =

Pμ n( )
μ

n

n!
����e μ–

.=

θ

0
θ

uα' (θ)

lα(θ)

Uα' (θ)

Lα(θ)

θ
 =

 θ
 

Fig. 1. Shown are the functions θ = lα( ) and θ = uα'( )

(or  = Lα( ) and  = Uα'( ), depending on the view�

point). In general, the diagonal θ =  need not lie between
the two curves, and it will not be shown in other figures.
The two solid curves will be reused in subsequent figures

with θ = , in which case they form the standard symmet�
ric confidence belt for the confidence level β = 1 – 2α.
Smaller β means a more narrow belt.
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Fig. 2. The pairs of solid and dashed sloping lines delimit
symmetric confidence belts for the confidence limits β =

1 – 2α and  = 1 – 2(1 – β) = 1 – 4α; cf. Fig. 1. The func�
tions that correspond to the lines are shown in the figure.
A is the intersection with the vertical axis of the line θ =

lα( ). Point A determines the horizontal line KF along
with the further intersection points. C and Q are the inter�

sections of the lines θ = u1 – β( ) and θ = uα( ) with the
horizontal axis.
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each value of μ one can find values n to satisfy the con�
dition:

(10)

The discreteness of the distribution requires weak�
ening the exact equality in (10) (as in Eq. (5) and (6)
for continuous distributions) by replacing it with an
inequality “μ”; this is the specificity of the discrete
distributions already discussed in [6]. Thus, one can
find the intervals that will cover the unknown true
value μ0 in fraction not less than α of experiments:

(11)

First, let us consider a one�side interval:

(12)

To derive the confidence interval for the parameter
μ one can perform a transformation of the expression
in the brackets:

(13)

The inequality (13) implies that in fraction ≥α of
experiments (measurements of n) one will obtain such
values n that the unknown true value of the parameter
satisfy the condition μ ≥ μ*(n).

At first glance it seems that for a discrete distribu�
tion of n the function μ*(n) is defined somehow
ambiguously (each value n corresponds to a set of val�
ues of μ* and the values satisfies the condition (13)).
As we show below the requirement of conservatism of
the intervals [6] (the satisfaction of (13) for each fixed μ)
determines the only value of μ* for each n. The value
μ* is the (lower) boundary of the confidence interval.

To determine μ*(n) we introduce the following
notation: let n be the value of the parameter for which
the exact equality P(n ≤ nα(μn) – 1) = α is realized (at
that P(n ≤ nα(μn + ε) – 1) < α and P(n ≤ nα(μn + ε)) > α,
where ε is an arbitrarily small positive quantity).

As we show below if one chooses a value μ*(n) =
μn + ε as μ*(n) then the conservatism condition is not
satisfied.

With such choice of μ*(n), if the true value μ fall
into the interval (μn, μn + ε) the condition (13) will be
violated. Indeed in this case μ will be greater than or
equal to a variate μ*(n) = μn + ε only if the measure�
ment yields the values n = nα(μ) – 1, n = nα(μ) – 2,
etc. The probability to obtain these values is P(n ≤
nα(μ > μn + ε) – 1) < α (due to the definition of μn
above). Thus, the interval [μn + ε, +∞) by definition is
not the confidence one.

If one chooses μn as the function μ*(n) then the
condition μ ≥ μn will be satisfied in a fraction ≥α of
measurements and it is in agreement with the defini�
tion of the confidence interval for the parameter μ.

Thus, the one�sided confidence interval in the case
of a discrete distribution is given by the condition
μ ≥ μn, where μn is defined by the exact equality
P(n ≤ nα(μn) – 1) = α.

Pμ n n1 μ( ) n2 μ( ),[ ]∈( ) α.≥

P μ0 μ1 μ2,[ ]∈( ) α.≥

P n nα μ( )≤( ) α.≥

P μ μ* n( )≥( ) α.≥

Similarly, one can consider the one�sided interval
defined by the condition P(n ≥ nα(μ)) ≥ α. The corre�
sponding upper boundary of the confidence interval
for the parameter μ is defined by the condition μ ≤ 

Here  is given by P(n ≥ nα( ) + 1) = α.

The discreteness of the parameter’s distribution
introduces additional freedom into the construction of
the two�sided confidence belts. For instance, one can
specify the two�sided confidence interval as a combi�
nation of the upper and the lower boundaries of the
one�sided intervals:

(14)

The values μ1 and μ2 are chosen as μn and  cor�
respondingly. The latter values for each n depend on
the confidence level α.

The choice leads to nearly symmetrical confidence
belt. The difference from the case of continuous distri�
butions is that the probabilities contained in the areas
n < n1(μ) and n2(μ) < n can be unequal.

To derive the confidence belt one can also imply
some physical reasoning. For instance, if the upper
boundary of the interval for the parameter is more
important, one can require the condition P(n < n1(μ)) <
(1 – α)/2 to be satisfied. Then the area upwards of the
upper boundary contains the amount of probability <
(1 – α)/2. The lower boundary of the confidence belt
is chosen as the left limit in the condition P(n1(μ) ≤ n ≤
n2(μ)) ≥ α. In this case the condition P(n > n2(μ)) <
(1 – α)/2 may not be satisfied and the lower boundary
may not coincide with the one derived form (12). At
the same time the confidence belt will be less overcover�
ing, its amount of probability can be closer to the
desired value α (as it was correctly mentioned in [6] the
overcovering is an unwanted quality of the confidence
intervals). Similarly one can derive the interval in the
case when the lower boundary is more important.

Another way to construct the confidence intervals
was suggested by Sterne, Crow and Gardner [5]. Their
idea is to construct the acceptance region by adding
points into it in the order of ascending probability (as
opposed to constructing the symmetrical confidence
belt). The method was first applied to the binomial
(discrete) distribution, though one can extrapolate it
to the case of continuous distributions. The construc�
tion generally leads to the asymmetric confidence belt,
but the belt has the least possible amount of probabil�
ity. Crow showed that the method provides the confi�
dence belt with the least possible area.

Hence, for each experimental value of n one can
assign a confidence interval for the unknown parame�
ter μ in the form of

μn' .

μn' μn'

P n1 μ( ) n n2 μ( )≤ ≤( ) α P μ1 n( ) μ≤(⇒≥

≤ μ2 n( ) ) α.≥

μn'

μ μnα μnα',[ ]∈
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in several different ways. As it is usual in data analysis,
it is for an experimenter to decide which method of
deriving the confidence belt to choose.

3. CCGV CONSTRUCTION

Let’s turn to the known recipes of taking into
account the a priori information while constructing
confidence intervals. First we consider the attempts to
take the a priori information into account during the
construction of the acceptance region (the first group
of candidate solutions).

Cowan et al. suggested a method called Power�
Constrained limits (PCL) [7]. The idea of the method
is as follows. First, one chooses a statistical criteria
with statistics qμ = qμ(x) (it is convenient to use statis�
tics that increases with the growth of the discrepancy
between the data x and the value of the parameter μ).
Than one derives the power function of the criteria,
which is the essence of the whole construction:

Than the two hypotheses (μ' = 0 (no signal) and
μ > 0 (non�zero signal)) are considered together with
the corresponding power function M0(μ). One chooses
a threshold value of the power function Mmin and the
range of values of μ is divided into two. If M0(μ) for a
value of μ lies below the threshold than the sensitivity
to the parameter is considered to be too low and the
values of μ can not be tested. Thus μ is not included
into the confidence belt for the set of data if (1) the
value of μ is rejected by the criteria qμ for the given
confidence level α, (2) if the sensitivity to the value of
μ is sufficient, i.e. M0(μ) ≤ Mmin.

All the values μ that do not satisfy either condition (1)
or (2) form the sought for confidence interval.

The probability of the confidence interval to cover
the given μ equals 100% for the values of μ for which
the power function is below the threshold, and the
probability equals α for the values of μ for which the
power function is greater then or equal to the thresh�
old. The choice of the threshold Mmin is up to the
experimenter.

Thereby, the PCL construction by Cowan et al.:
(1) leads to the unavoidable overcovering (the

excess probability contained in the acceptance
region);

(2) gives no reasonable interpretation of the value
Mmin, that defines the resulting confidence belt;

(3) does not solve the problem of the shrinking of
the confidence intervals in the non�physical region.

4. FELDMAN AND COUSINS RECIPE

The construction of the confidence intervals sug�
gested by Feldman and Cousins [6], as well as the
method of Stern, Crow and Gardner, is based on the

Mμ ' μ( ) P qμ x( ) qμ crit, μ'>( ).=

special order of adding the points to the acceptance
region. The order is defined by the likelihood ratio.

For example, if an experiment measures the num�
ber of events n governed by Poisson distribution with
the parameter (μ + b). Here μ is the unknown param�
eter that is to be estimated, b is the known background.
Let P(n|μ1) be the probability to obtain n events in the
experiment with μ = μ1. The abovementioned ratio of
likelihoods is defined as follows:

(15)

where the value μbest = max(0, n – b) is non�negative
and maximizes P(n |μ) for the given n.

After that for each μ the points n are added into the
acceptance region in the order of decreasing of the
corresponding values of R(n) until the total amount of
probability in the acceptance region reaches the
desired confidence level.

However, as it is noted in [6] the recipe fails to solve
the problem of less then the background number of
events: the confidence limit decreases with the
decrease of the measured number of events. Thus one
can obtain arbitrarily strong constraint on the signal
regardless of the value of the background.

A similar problem occurs if one applies the recipe
[6] to the bounded parameters of continuous distribu�
tions. The farther the estimator falls beyond the a pri�
ori boundary the smaller confidence interval it yields.
The Feldman�Cousins recipe yields a paradoxical
result: the most unreliable results (the estimators
which fall far beyond the boundary) provide the stron�
gest constraints on the estimated parameter.

The stated problems of the construction [6] lead to
the situation in which it is impossible to compare not
only the results of different experiments, but the
results of the same experiment (e.g. two different runs)
as well, if the results are presented in the form of con�
fidence intervals constructed via Feldman and Cous�
ins recipe.

The incomparability of the confidence intervals is
intrinsic feature of the candidate solutions from the
first group (see, for instance, the attempt to further
modify the intervals and the order of the construction
of the acceptance region in [18]).

The candidate solutions from the second group are
devoid of this drawback.

5. MANDELKERN 
AND SHULTZ CONSTRUCTION

The recipes in Sections 3 and 4 imply the use of a
priori information via changing the order of construc�
tion of the acceptance region.

However these recipes lead to unphysical (short)
confidence intervals near the physical boundary of the

R n( )
P n μ1( )

P n μbest( )
��������������������,=
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parameter. It is the result of using an estimator that
does not account for the physical boundary.

Changing of the order can not change the essence
of the estimation procedure: it can be done only via
the choice of the estimator (its distribution contains
all the information about the parameters, the experi�
ment etc.).

Mandelkern and Shultz [8] suggested to use a mod�
ified estimator in case of bounded parameters. In the
special case considered in [8] the suitable estimator is
found via the method of maximum likelihood.

The procedure is as follows. The likelihood func�
tion is modified by a new factor—Heaviside function
that explicitly depicts the boundary condition for the
parameter. After that one obtains the estimator that
always lies in the physical region for the considered
study. However, the introducing of the factor seems to
be somehow artificial (like a postulate). The validity of
such a procedure becomes apparent only post factum,
after the direct comparison of the estimate from [8]
with the general solution [9].

The further construction of the confidence inter�
vals is carried out without any additional assumptions
(following the standard Neyman prescriptions). Note
that the procedure is not based on Bayesian approach
since the elimination of the unphysical values of the
parameter is not a variant of the introducing of the
uniform Bayesian a priori distribution function.

The solution [8] is as a matter of fact correct
(though, once again, it can be most easily verified by
direct comparison with the general solution). The
Mandelkern and Shultz construction:

(1) formally solves the problem of less then the back�
ground number of events (for the Poisson process with
background) and the problem of shrinking of the confi�
dence intervals for the negative values of the estimator
of the nonnegative parameter of Gaussian distribution
as opposed to the Feldman and Cousins recipe;

(2) provides the correct amount of probability con�
tained in the acceptance region unlike the flip�flop
recipes, which violate the conditions (3) and (10).

On the other hand, the recipe of the construction of
the estimator is based of the method of maximal like�
lihood. Thus, the construction fails to take into
account a wide range of issues in which some other
method of estimation is initially used.

Probably that is why the formally correct Mandelk�
ern and Shultz approach has not been widely exploited
in practice.

6. METHOD OF SENSITIVITY LIMIT 
FOR A PARAMETER 

OF CONTINUOUS DISTRIBUTION

The comprehensive solution of the issue of con�
structing confidence intervals for a parameter of a
continuous distribution with a priori information

about the limited domain of the parameter was pre�
sented in [9]. The justification of the procedure is pre�
sented below.

The defining element of the construction of confi�
dence intervals is the estimator. What then should the

estimator be instead of  = (X), if one knows before�
hand that θ ≥ 0? The purpose of any estimator is to
provide a value as close as possible to the unknown θ.
So, define a new estimator:

(16)

Evidently,  yields estimates that are guaranteed to

be closer to the unknown value of θ than , and it
incorporates both the statistical information con�

tained in the unmodified estimator  as well as the a
priori knowledge that θ ≥ 0. It then remains to con�

struct confidence intervals for the new estimator .

One may wish to ponder the definition (16) prior to
reading on.

The probability distribution for  has the form:

(17)

where H(t) is the standard Heaviside step function,
δ(t) is the usual Dirac δ�function and

(18)

So, one has to deal with the aggravation of a singu�
lar contribution in Eq. (17). This can be done in a reg�
ular way, or via a trick. Refer to [9] for the description
of the standard approach (regularization).

Now, the trick. The key observation is as follows.
The definition (16) means that the random values of

the unmodified  are eventually carried over to the
zero point and piled up there. This means that all such
values will be indistinguishable: they will all yield the

zero value for —and the same confidence interval.

This implies that all non�positive values of  are to
eventually yield one and the same confidence interval

[0, const], where the constant is independent of .

Once this is understood, the construction of confi�

dence belts can be completed entirely in terms of ,

with the only trace of  being an additional condition:
the resulting confidence belts must be such that all val�

ues of  below the a priori bound must yield the same
confidence interval.

The condition has a clear experimental meaning: it
can be rephrased as a requirement of robustness of
confidence intervals with respect to unknown experi�
mental (ef | de) fects. This gives the entire construction

θ̂ θ̂

θ̃ max θ̂ 0,( ).=

θ̃

θ̂

θ̂

θ̃

θ̃

d̃θ θ̃( ) H θ̃( )dθ θ̃( ) cθδ θ̃( ),+=

cθ θ̂d dθ θ̂( ).

∞–

0

∫=

θ̂

θ̃

θ̂

θ̂

θ̂

θ̃

θ̂
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an additional physical weight. However, it is worth
keeping in mind that the argument that led to it start�
ing from the beginning of this section is transparent
and specific, and does per se not need any metaphysi�
cal support: the construction in terms of the unmodi�

fied estimator  with the above additional condition is
equivalent to a straightforward construction of confi�
dence belts for the modified estimator (16) that incor�
porates the a priori information in a most straightfor�
ward and transparent fashion.

Horizontal Deformations

Horizontal deformations are a visualisation of the
correct modifications of confidence belts (systems of
confidence intervals) that produce no undesired arte�
facts, e.g. an excess or lack of probability in a given
confidence belt. Using the horizontal deformations
one can obtain the Feldman and Cousins confidence
belt as well as the confidence intervals of the method of
sensitivity limit. The horizontal deformations as an
instrument are to be contrasted with the so�called
Flip�Flop (vertical) deformations of the confidence
belts. Vertical deformations result in incorrect proba�
bility contents of the confidence belts (the conditions
(3) and (10) are violated); the corresponding intervals
are not confidence intervals, by definition.

The trick of horizontal deformations is based on
the following properties of allowed confidence belts
for a fixed β. If, for a fixed θ, U(θ) in the definition (5)
is pushed down to its lower limit U1 – β(θ) then the cor�
responding L(θ) → –∞ (L can be similarly pushed to
its upper limit.) If L and U can thus be deformed while
always preserving continuity and monotonicity, then
there will be correctly defined inversions u = U–1,
l = L–1 at every step of the deformation—i.e. an
allowed confidence belt for the level β.

Given the way we draw plots in this review, such
deformations occur in horizontal directions. Figure 3
illustrates this: the fat curves must lie outside the inter�
nal belt and may only approach its boundaries (in the
horizontal directions shown by the arrows) on one side
at the cost of running away from it to infinity on the
other side.

Whenever one of the fat curves crosses a boundary
of the symmetric confidence belt (the solid sloping
lines) then the other fat curve crosses the other bound�
ary, as shown with the horizontal dashed line.

The described freedom was exploited in Ref. [6]
where the pair L, U, was chosen based on a learned
belief in the magic of likelihood. The choice of [6] is
illustrated in Fig. 4.

Lastly, one can take a limit deforming L so that its
part adheres to a part of L1 – β(θ) (see Fig. 5). This may
cause L (and U) to loose continuity at the boundary of
such part. However, if the corresponding inversions
u = U–1, l = L–1 continuously approach, in the limit,

θ̂

θ

0 θ

l1 – β (θ)
u1 – β (θ)

Fig. 3. The pairs of solid and dashed sloping curves delimit
symmetric confidence belts for the confidence limits β =

1 – 2α and  = 1 – 2(1 – β) = 1 – 4α (cf. Fig. 1). The two
fat curves show a possible choice of l, u for the confidence
level β = 1 – 2α. The arrows show horizontal deformations
discussed in the main text.

β̃

0

θ

θ

Fig. 4. The confidence belt (delimited by fat lines) as
defined in Ref. [6] (cf. their Fig. 10). The other lines are
the same as in Fig. 3. The right fat curve approaching the
dashed boundary corresponds to the left fat curve running
away to infinity while approaching the horizontal axis, cf.
Fig. 3.
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lα(θ)θ u1 – β (θ)

V

Fig. 5. Fat lines delimit an allowed confidence belt for 
for the confidence level β. The other lines and points are as
in Fig. 2. The fat lines are described by two functions l and
u. Black arrows indicate the horizontal deformation used
to obtain the confidence belt that satisfies the additional
condition.

θ̂



354

PHYSICS OF PARTICLES AND NUCLEI  Vol. 46  No. 3  2015

LOKHOV, TKACHOV

well�defined continuous monotonic (non�decreasing)

functions of , then the system of confidence intervals
will continuously approach a well�defined result, and
the limiting confidence belt will be as good as any
allowed confidence belt for the purposes of parameter
estimation.

One can carry out the construction of the confi�
dence intervals via the described trick of horizontal
deformations. In the notations of Fig. 2 and with a
fixed confidence level β, consider a confidence belt
corresponding to two functions l, u chosen as shown in
Fig. 5 (cf. also Figs. 3 and 4).

As was discussed above, one is allowed to perform
the horizontal deformation indicated by the black
arrows in Fig. 5 until the curved segment WF adheres
to the broken line CEF. The curved segment AV will in
the end effectively be straightened out into AK (the
white arrow). The limiting confidence belt is well�
defined and is shown in Fig. 6.

Confidence Intervals in the Method 
of Sensitivity Limit

The resulting confidence intervals, derived within
the method of sensitivity limit for the parameters of
continuous distributions, are shown in Fig. 6. They
can be described analytically as follows (the notations
correspond to Fig. 6):

—For  ≥ , the confidence interval [uα( ),

lα( )] coincides with the symmetrical confidence

interval for  and the confidence level β = 1 – 2α, for
the case of unbounded parameter.

θ̂

θ̂ θ̂F θ̂

θ̂

θ̂

—For  ≤  ≤ , the confidence interval is

[θA, lα( )], i.e. the upper boundary is the same as for

 ≥ , while the lower boundary is constant and
equal to θA.

—For  ≤  ≤ , the confidence interval is

[u1 ⎯ β( ), lα( )], i.e. the upper boundary is the same
as above, while the lower boundary coincides with the
boundary of a symmetric confidence interval for the

confidence level  = 1 – 2(1 – β) = 1 – 4α.

—For 0 ≤  ≤ , the confidence interval is
[0, lα( )] with the same upper boundary and the lower
boundary equal to 0.

—Finally, for all  ≤ 0, the confidence interval is
the same, i.e. [0, lα(0)].

Recall that the construction involves two symmet�

ric confidence belts for the unmodified estimator :

(1) the symmetric belt for the level β = 1 – 2α,

expressed in our notation as [uα( ), lα( ),

(2) the symmetric belt for the level  = 1 – 2(1 – β) =

1 – 4α, expressed as [u1 – β( ), l1 – β( )], and there is
no need in additional cumbersome calculations.

The upper boundary of the confidence interval
[0, lα(0)] that corresponds to the unphysical values of

 resembles the so�called sensitivity limit. Evidently,
the value of the sensitivity limit does not depend on the
particular value of θA = lα(0) but is defined by the

uncertainty of . Thus the sensitivity limit represents
the magnitude of the experimental error and provides
an objective representation of the results of the exper�
iment if the experimental estimate falls within the
unphysical region.

7. METHOD OF SENSITIVITY LIMIT 
FOR PARAMETERS 

OF DISCRETE DISTRIBUTIONS

Let us consider again the case when an experiment
measures a number of events n, that has the Poisson
distribution with the parameter μ. Now let us take into
account the presence of background events. The num�
ber of the background events is a measured quantity,
therefore, in the general case the probability distribu�
tion Pβ(b) is known. β here stands for the unknown
true value of the mean number of background events.

The study [6] considered the case when the mean
number of the background events is known exactly and
is equal to b. Then, the number of events detected dur�

θ̂E θ̂ θ̂F
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u1 – β (θ)
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Fig. 6. The two fat broken lines KAJ and RCEFH delimit

the resulting level�β confidence belt for  that satisfies the
additional condition and therefore correctly maps to a

confidence belt for  defined by Eq. (16). The region
CEFQ cut out from the unmodified confidence belt is a
pure gain obtained from the a priori knowledge.
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ing the experiment is governed by the Poisson distribu�
tion with the mean equal to (μ + b):

(19)

Let us now use the additional information about
the background and construct the confidence intervals
for the parameter μ similar to the reasoning in [9] and
Section 6. The main idea is the following: the a priori
information about the parameters can be again
included into the chosen estimator for the corre�
sponding parameter. After that the constructing of
confidence intervals is carried out automatically (one
can compare this approach with the attempts [6] of
direct modifications of the confidence intervals that
contain certain arbitrariness). In the particular case
when the mean value of the background is known
exactly, one can use the idea from [9] and choose the
quantity

(20)

as an estimator.

Apparently, one can choose the measured value n as
an estimator for (μ + b), but as opposed to (20), this
estimator allows μ to fall below zero. Measuring n and
using the estimator (20) after the subtraction of the
constant background b one obtains a nonnegative esti�
mate of the parameter μ.

The probability distribution of the estimator (20)
allows us to construct the confidence intervals for (μ + b)
and, consequently, for the parameter μ. The discrete�
ness of the distribution (19) of n also allows of the fol�

Pμ n( )
μ b+( )

n

n!
����������������e μ b+( )–

.=

μ b+( ) max n b,( )=

lowing reasoning. For each given μ the probability to
measure the number of event n ≤ b is:

(21)

where [b], as usual, stands for the integer part of b.
Then, using the estimator and measuring n one
obtains the value of the estimator equal to b with the
probability .

Hence, the probability distribution for the variable
max(n, b) consists of the distribution (19) for the val�
ues n > b and the probability (21) to obtain the value b
during the measurements (Fig. 7).

Using the probability distribution and following the
procedure from Section 2b, one can construct the
confidence intervals for the quantity (μ + b) and, thus,
for the parameter μ.

It can be more convenient for the practical use to
present the confidence intervals in terms of variables μ
and n (Fig. 8). In this form one can immediately
obtain the confidence interval for the parameter μ for
each measured value n0.

Note that all the values n ≤ b become indistinguish�
able after the transition to the estimator (20). There�
fore, the same confidence interval corresponds to all
these values of μ. The upper bound of such an interval
corresponds to so�called sensitivity limit. It contains

P n b≤( )
μ b+( )

n

n!
����������������e μ b+( )–

,

n 0=

b[ ]

∑=

0 1 2 3 4 5 6
n

P(n)

Fig. 7. Modification of the probability distribution due to
the transition form the conventional estimator (μ + b) = n
(dashed plot in the range n ≤ b) to the modified estimator
(μ + b) = max(n, b) (solid plot) when the mean value of the
background is equal to b = 3. In the range n > b the proba�
bilities for both conventional and modified estimators
coincide.

Fig. 8. Confidence intervals for the unknown signal μ with
the Poisson background (the mean value b = 3): light gray
(1) 90% C.L. symmetric confidence belt with no account
of the information about the background; dark gray
(2) one�sided 90% C.L. confidence interval with no
account of the information about the background; black
(3) 90% C.L. confidence belt, based on the estimator of the
parameter μ with account of the a priori information.
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the information on the magnitude of background in
the given experiment.

Confidence Intervals for a Parameter 
of Discrete Distribution in the Method 

of Sensitivity Limit

The confidence belt for the parameter of Poisson
distribution with known background constructed via
the method of sensitivity limit is shown in Fig. 8 (con�
fidence level is β = 90%). The belt can be described
analytically as follows:

—for all n > b, the upper boundary of the belt coin�
cides with the boundary of a symmetric confidence
interval for the confidence level β = 90%;

—for n ≤ b, the upper boundary is constant and
equal to μb.

The lower boundary is divided into four parts (sim�
ilarly to the continuous case):

—for small n, the lower boundary is 0;

—the next part of the lower boundary coincides
with the boundary of the one�side interval for the con�
fidence level β = 90%;

—the transitional part between the boundaries of
the one�sided and the symmetrical interval: the lower
boundary is equal to μb;

—for large n, the lower boundary coincides with
that of the symmetric confidence interval for the con�
fidence level β = 90%.

Confidence intervals within the method of the sen�
sitivity limit for the Poisson process with background
can be calculated with a dedicated software [20], since
there are no simple analytical formulae here (see the
implicit formula (13); the software uses a search algo�
rithm to determine μ*).

Figure 9 presents the confidence belt constructed
via Feldman and Cousins recipe (grey) and the one
constructed with the use of the a priori information in
the estimator (blue). It is apparent that the confidence
belt with the correct use of the a priori information
(blue plot in Fig. 9)

(1) provides the correct estimate of the parameter
in the region n ≤ b;

(2) has an area analogous to the area CEF in Fig. 6;
therefore it provides the best possible estimate of the
lower bound of the confidence interval;

(3) guarantees by construction that the amount of
probability in the acceptance region is close to 90%
(it is impossible to obtain exact 90% amount of proba�
bility in the case of discrete distributions).

One can also use table (in Appendix) to compare
the construction with the correct usage of the a priori
information with the construction [6]. Table is similar
to Tables II–IX in [6] and it provides the confidence
intervals for the 90% C.L. and various values of back�
ground and measured number of events (b = (0..10),
n0 = (0…20)).

The software for the calculation of the confidence
intervals for various confidence levels and parameters
μ, b1 and n0, and for the drawing of the corresponding
confidence belts is available for downloading at the
URL [20].

Due to the additional freedom in construction of
confidence intervals for parameters of discrete distri�
butions (the transition from the exact equality (11) to
the enequality ≥ in Eq. (10)), one can minimize the
amount of probability contained in the acceptance
region and draw it near to the required confidence
level (in our examples—90%). For instance, the
region to the right of the upper boundary in Fig. 10 sat�
isfy the condition (n1(μ) ≥ n) ≥ 0.95. This upper
boundary represents the one�sided 95% confidence
interval. As it was mentioned in Section 2b, the lower
boundary can be constructed formally according to
the condition (n2(μ) ≤ n) ≥ 0.95 (blue plot in
Fig. 10). That immediately leads to the condition

(n1(μ) ≥ n ≥ n2(μ)) ≥ 0.90 to be satisfied.

On the other hand, if the upper boundary of the
confidence belt is fixed one can construct the lower
boundary n2(μ) directly from the condition (n1(μ) ≥
n ≥ n2(μ)) ≥ 0.90 (red plot in Fig. 10.) The amount of
probability in the acceptance region within the red belt
is less or equal to the amount of probability within the
blue confidence belt. Thus, one can obtain the confi�
dence belts that are closer to the required confidence

Pμ̃

Pμ̃

Pμ̃

Pμ̃

Fig. 9. Confidence belts for the unknown signal μ with the
Poisson background (the mean value b = 3): black (1) 90%
C.L. confidence belt with account of the a priori informa�
tion, similar to Fig. 8, grey (2) 90% C.L. confidence belt,
constructed via Feldman and Cousins recipe [6].
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level by rejecting the symmetry of the resulting confi�
dence belts.

For completeness sake, one can also compare
(Fig. 11) the confidence belt, constructed with the
correct account of the a priori information (blue plot),
with the interval, constructed via Sterne, Crow and
Gardner procedure (grey plot). The Sterne, Crow and
Gardner construction was carried out for the estimator
(20). The grey plot yields an empty confidence interval
in the range n < b = 3 because the estimator (20) has
no values in that region. This set of confidence inter�
vals has by construction the smallest length for the
given confidence level.

As a result of introducing the a priori information
into the estimator one obtains the set of confidence
intervals with the following remarkable properties:

—the problem of less then the background mea�
sured number of events pointed out in [6] is solved
(in the region where the number of events is less then
the background the confidence belt immediately
yields the upper bound for the estimated parameter μ,
this estimate does not depend on the value of n, as in
the region n ≤ 3 in Fig. 8);

—the lower boundary of the confidence belt has
the area analogous to the area CEF in Fig. 6;

—due to the ambiguity of the definition of the con�
fidence intervals for the discrete distributions (condi�
tion (10)) there are various choices of construction of

the confidence belts (with fixed upper or lower bound�
aries, Sterne, Crow and Gardner construction and
their combinations). The choice depends on the par�
ticular situation, for instance, on the necessity to get
more reliable upper or lower limits for the parameters.

Therefore, the correct account of the a priori infor�
mation about the background via the choice of a suit�
able estimator provides the confidence intervals that
meet the requirements of physical reliability and
devoid of the flaws of the constructions [6], [18] and
[7]. Similarly to the case of the continuous distribu�
tions, the considered approach allows one to compare
the confidence intervals obtained in different experi�
ments.

8. THE BEST UPPER LIMIT 
WITHIN THE METHOD 
OF SENSITIVITY LIMIT

8.1. Continuous Distributions

Let us consider now the case of a non�symmetric
confidence interval. The case can be important for
various experimental applications.

In Section 6 a conventional estimator  for the
parameter θ is redefined in the way to take into
account the a priori inequality θ ≥ 0. Then for the

redefined estimator  = max( , 0) (Eq. (16)), a con�
ventional confidence belt was constructed in a more or

θ̂

θ̃ θ̂

Fig. 10. Confidence belts for the unknown signal μ with
the Poisson background (the mean value b = 3): black
(1) 90% C.L. confidence belt with account of the a priori
information, gray (2) 90% C.L. confidence belt with
account of the a priori information, constructed for the
special case when the upper boundary of the confidence
belt for the parameter μ is of the most importance.

Fig. 11. Confidence belts for the unknown signal μ with
the Poisson background (the mean value b = 3): black
(1) 90% C.L. confidence belt with account of the a priori
information, grey (2) 90% C.L. confidence belt for the
estimator (20), constructed via Sterne, Crow and Gardner
procedure (the shortest set of confidence intervals).
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less straightforward fashion. The treatment of the
δ�functional contribution to the probability distribu�

tion of  was simplified via an observation that
reduced the problem to constructing a confidence belt

for the unmodified estimator  in such a way that the
resulting belt satisfies an additional condition (see
Section 6). The construction was accomplished using
the trick of so�called horizontal deformations, with
the result represented by Fig. 6.

Section 6 modified the standard symmetric confi�
dence belt, which corresponds to the option α = α' =
(1 – β)/2 in terms of Fig. 1. A natural variation on the
same theme is to accomplish a similar modification for
the asymmetric case α' = 0, β = 1 – α, that corre�
sponds to an upper bound for the confidence level β:

(22)

This option is useful when one is trying to measure
a positive signal whereas the statistical accuracy may
not be high enough to establish a non�zero signal with
a high confidence. Then one would like to establish as
tight an upper bound as possible. This problem defini�
tion and the corresponding solution were considered
in [12].

In [12] the confidence belt (22) is modified to
accommodate the a priori inequality θ ≥ 0.

The required geometrical infrastructure is provided
by Fig. 12 that differs from Fig. 2 by adding a few more
intersection points (the intersection points MBDN on
the horizontal line LG).

θ̃

θ̂

P θ l1 β– θ̂( )<( ) β.=

Only the points M, B, C, D, N will play a role in
what follows; the other points are shown to establish a
connection with Fig. 2.

The number θB is the vertical position of the inter�
section point B (and of M, D, and N):

(23)

The numbers θC < θD are the horizontal positions of
the points C and D:

(24)

The unmodified bound (22) corresponds to confi�
dence intervals (level β) that start on the upper dashed
line BI and stretch down to infinity.

To obtain a modified version of the bound (22), one

starts from an allowed confidence belt [u( ), l( )],
shown with the fat lines in Fig. 13.

Then one performs the horizontal deformations of
u and l as shown by the black arrows (detailed explana�
tions of the trick are given in Section 6). Then the
lower segment of u below point N is pressed to the
straight segment CD, whereas the upper segment of l
above point M is pressed to BI. The resulting effective
deformations on the other side are shown by white
arrows. The confidence belt thus obtained is shown in
Fig. 14.

Non�Symmetric Confidence Belts in the Method 
of Sensitivity Limit

The confidence belt for the best upper limit, mod�
ified via the method of sensitivity limit is shown in
Fig. 14. The analytical description is as follows (we are
talking about the confidence level β; the positions of

points B, C and D along the   axis in Fig. 14
are denoted as B, C and D, respectively):

θB l1 β– 0( ).=

θC U1 β– 0( ) θD, U1 β– θB( ).= =

θ̂ θ̂

θ̂B θ̂C,, θ̂D
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Fig. 12. The pairs of solid and dashed sloping lines delimit
symmetric confidence belts for the confidence limits β =

1 – 2α and  = 1 – 2(1 – β) = 1 – 4α. The functions that
correspond to the lines are shown in the figure. A and B are

intersections with the vertical axis of the lines θ = lα( )

and θ = l1 – β( ). Points A and B determine the horizontal
lines KF and LG along with further intersection points.
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Fig. 13. The two fat curves delimit an allowed confidence
belt for the confidence level β. The fat lines are hinged at
the points M and N. Black arrows show allowed horizontal
deformations. White arrows show the resulting straighteing
of the corresponding segments.
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—For  ≥ , the confidence interval is

[θB, l1 ⎯ β( )], i.e. the upper bound is the same as in
the unmodified case, Eq. (22), but restricted from
below at θB. The region under CDG is exactly the gain
from the a priori information.

—For 0 ≤  ≤ , the confidence interval is

[u1 ⎯ β( ), l1 – β( )], i.e. exactly the unmodified sym�
metric confidence interval for the confidence level

= 1 – 2(1 – β) = 1 – 4α.

—For 0 ≤  ≤ , the confidence interval is

[0, l1 ⎯ β( )], i.e. the unmodified bound (22) restricted
from below by the physical boundary θ ≥ 0.

—Lastly, for all  ≤ 0 the confidence interval is
fixed as [0, θB].

The noteworthy properties of this confidence belt
are as follows:

—The estimate is robust for non�physical values of

the estimator, i.e. for  < 0.

—The interval’s upper bound for physical values of

 is the same as in the unmodified case (22) and is the
lowest possible one at the confidence level β.

—The interval’s lower bound breaks off zero at the
earliest point possible for the given confidence level

( ), and the lower bound is maximal possible for this

confidence level in the interval  ≤  ≤ .

—Neither complicated algorithms nor tables are
required on top of the standard routines to compute

the confidence interval for the confidence level  =
1 – 2(1 – β) = 1 – 4α.
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θ̂C

θ̂C θ̂ θ̂D

β̃

—One more important feature of the upper limit is
that it is devoid of the overcoverage (exceeding of the
confidence level) that is inherent in some artificial rec�
ipes [7].

8.2. Discrete Distributions

The construction of the upper limit with a priori
information is carried out similarly to that in the case
of a continuous distribution.

First, one chooses the estimator in the form of (20).
Then, much as in Fig. 12 and 13, one considers the
confidence intervals: 90% C.L. two�sided with no
account of the a priori information and the upper and
lower boundaries of 90% C.L. one�sided confidence
intervals (Fig. 15). Although the procedure of hori�
zontal deformation is not defined for the discrete dis�
tributions, with the use of the estimator (20) one
obtains the acceptance region (bounded by black lines
in Fig. 15) similar by the structure to the confidence
belt in Fig. 14.

The Method of Sensitivity Limit for the Parameter 
of Poisson Distribution with Background: 

a Non�Symmetric Confidence Belt

The non�symmetric confidence belt for the best
upper limit (the confidence level is β = 90%) con�

L

0 θ

θ

I

B

C

D

l1 – β (θ)
u1 – β (θ)

G

Fig. 14. The confidence belt obtained from the unmodified
upper bound for the confidence level β by taking into
account the a priori information θ ≥ 0. The region under
CDG is a pure gain from the a priori information.

Fig. 15. The upper boundary of the confidence interval for
the unknown signal μ with the Poisson background (the
mean value b = 3): light gray (1) 90% C.L. symmetrical
confidence interval with no a priori information taken into
account, dark gray (2) 90% C.L. upper and lower one�sided
intervals with no a priori information, black (3) 90% C.L.
one�sided confidence interval for the estimator (20)—the
best upper limit similarly to Fig. 14.
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structed via the method of sensitivity limit is shown in
Fig. 15. It can be described analytically as follows.

The upper boundary consists of two parts:
—for n ≤ b, the upper boundary is constant and

equal to μb;
—for n > b, the upper boundary coincides with the

boundary of the one�sided interval with confidence
level β = 90%.

The lower boundary consists of three parts:
—for small n, it is equal to 0;
—the second part coincides with the lower bound�

ary of the one�sided interval with confidence level β =
90%;

—finally, when the lower boundary reaches the
value μb, it becomes constant.

Similarly to the symmetric intervals for the Poisson
process with background (see Section 7) it is conve�
nient to do the calculations with the dedicated soft�
ware [20].

The best upper limit for the unknown signal μ with
the Poisson background with the mean value b for the
estimator (20) possesses the following properties.

—Provided the measured number of events is n ≤ b,
the construction yields the same confidence interval.
That solves the problem of less than the background
number of measured events pointed out in [6].

—The amount of probability contained in the
acceptance region is close to the required confidence
level. The exceeding of the confidence level (overcov�

erage in terms of [6]) is an undesirable feature of some
other constructions [19].

—The lower boundary of the confidence interval
moves away from the axis n (becomes non�zero) at the
lowest possible value of n. Thus, not only the best (the
most stringent) upper limit is obtained, but one can
also claim the detection of signal at rather small values
of the measured number of events (the non�zero lower
boundary of a confidence interval can be somehow
interpreted as presence (or a signature) of the signal).

—As in the case of continuous distributions the
area beneath the lower boundary is a gain from using
the a priori information about the background.

For the sake of comparison, let us also consider the
two�sided (symmetric) 90% C.L. confidence belt with
the a priori information (blue plot in Fig. 16) and the
90% C.L. best upper limit (grey plot in Fig. 16) for the
estimator (20). One can easily see that the best upper
limit for the parameter μ falls below the upper bound�
ary of the symmetric confidence belt. The lower
boundaries of both belts coincide for all values of n up
to n = 10. It is apparent that the symmetric interval
provides a universal estimate for the parameter—for
any measured number of events. The confidence belt
for the best upper limit also exists (by construction) for
any measured value n. However, the most interesting
application for this confidence belt lies in small values
of measured events n, (in our examples, n < 10). In this
particular region the upper limit is the most stringent
while the detection of the signal (in the abovemen�
tioned sense, i.e. a non�zero value of the lower bound�
ary) is still possible.

We emphasize once again that the correct con�
struction of the upper limit with the use of a priori
information for continuous and discrete distributions
allows one to directly compare the experimental
results presented in form of confidence intervals.

9. MASS ESTIMATES OF THE ELECTRON 
ANTINEUTRINO IN THE MAINZ 

AND TROITSK EXPERIMENTS

The properties of the confidence intervals con�
structed via the method of sensitivity limit can be illus�
trated with the help of the results of the two experi�
ments on neutrino mass measurements in tritium
β�decay in Mainz and Troitsk. Both experiments mea�
sure the squared mass of electron antineutrino. The
parameter is nonnegative, but its estimate can fluctu�
ate into the negative values. Therefore a correct proce�
dure for constructing the upper limit for the neutrino
mass is required.

The Mainz experiment [10] yielded the estimates

for the neutrino mass squared  = –1.2 eV2 and

= –0.6 eV2 (depending on the choice of one of the
parameters of the experimental setup, namely the
excitation probability of neighbour molecules in the

m̃ν

2

m̃ν

2

Fig. 16. Confidence intervals for the unknown signal μ
with Poisson background (the mean value b = 3): black
(1) 90% C.L. two�sided confidence interval with a priori
information, grey (2) 90% C.L. confidence interval for the
estimator (20)—the best upper limit similarly to Fig. 14.
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tritium source). Apparently, the negative values of 
appear due to underestimation of systematic factors or
due to statistical fluctuation. The combined uncer�

tainty is Δ  = 3.04 eV2. With these values one can
obtain the upper limits on the neutrino mass via the
Feldman and Cousins recipe, for instance, at 95%
confidence level. For this one finds in the Table X in
[6] the upper boundaries of confidence intervals for

 = –0.4Δ  and  = –0.2Δ : 1.77 and 1.58,
correspondingly (all the values are given in the units of
the uncertainty). Then, multiplying these two values
by the value of the uncertainty and extracting the
square root, one obtains the following estimates for the
neutrino mass: mν < 2.2 eV and mν < 2.3 eV.

However, it is asserted in [10] that the estimate

= –0.6 eV2 was obtained in a consistent analysis

and is more reliable than the value  = –1.2 eV2.
Therefore, the recipe [6] provides a paradoxical result:
it yields a better constraint (2.2 eV) for more negative

and less reliable estimate .

Hence, the recipe [6] requires additional informa�
tion about the estimate. Moreover, the specific value of
the estimate from the non�physical region has a con�
siderable influence on the value of the upper limit.
Thus, indicating only two values 2.2 eV and 2.3 eV as
constraints on the neutrino mass is not enough for
choosing the best of the estimates. Recall that the very
aim of constructing confidence intervals is to indicate
a number that can be directly used for comparing var�
ious experiments (in our example—various methods
of data analysis of the same data), with no additional
information on the experimental estimates.

Let us now apply the method of sensitivity limit to
the results of the Mainz experiment. For the method
of sensitivity limit the estimates from the non�physical

region  < 0 are indistinguishable, and the upper
boundary of the confidence interval depends only on
the value of uncertainty (see Fig. 6 and Fig. 14). At the

95% confidence level the upper limit is 1.96 Δ . For
the Mainz experiment one obtains

 < 2.4 eV = 

for both estimates of the neutrino mass squared  =

–1.2 eV2 and  = –0.6 eV2. No additional informa�
tion about the fitting method or other parameters is
required. Note that when the estimate for the neutrino
mass squared is positive, the confidence interval can
be also obtained directly from the confidence belt con�
structed via the method of sensitivity limit (see Fig. 14

for  > 0).
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2 m̃ν
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mν 1.96 3.04 eV
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2

m̃ν

2

θ̃

To show how handy is the method of sensitivity
limit in comparing the results of different experiments,
consider the results of the Troitsk�nu�mass experi�
ment [2]. The estimate for the neutrino mass squared

in [2] is  = –0.67 eV2, while the uncertainty is

= 2.53 eV2. Since the estimate again falls into the
non�physical region, the upper boundary of the confi�
dence interval depends only on the value of the uncer�
tainty and is equal to (see Fig. 17):

mν < 2.2 eV = 

From the two values, 2.4 eV (Mainz) and 2.2 eV
(Troitsk), both obtained via the method of sensitivity
limit, one can immediately infer that the experiment
in Troitsk yielded a better constraint on the mass of the
electron neutrino. One need not refer to the issue of
the negative estimates of the neutrino mass squared
and there is no need in additional information on the
fitting procedure and other fitting parameters. The
possibility to directly compare the results of different
experiments is the major advantage of the method of
sensitivity limit. With the Feldman and Cousins recipe
such a comparison is incorrect, furthermore it can
result in a false interpretation of experimental results.

10. CONCLUSIONS

We have demonstrated that the problem of inclu�
sion of a priori information about the estimated
parameters into the construction of confidence inter�
vals admits of a fully correct solution. We call the solu�
tion the method of sensitivity limit, since the solution
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Fig. 17. Application of the confidence belt constructed via
the method of sensitivity limit. The fat black lines corre�
spond to the 95% confidence belt (see also Fig. 6). The

confidence interval for the experimental estimate  =

⎯0.67 eV2 is determined by the ordinates of the intersec�
tions of the confidence belt and the dashed line 0 eV2 ≤

≤ 4.96 eV2.
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partially resembles the well�known recipe known as
sensitivity limit.

The solution has a transparent and therefore con�
vincing basis, and is convenient for practical use (see
the analytical descriptions of the confidence belts in
Sections 6, 7 and 8, and also Figs. 6, 8, 14 and 15).

Let us list the main features of the considered con�
struction.

Continuous Distributions

The confidence intervals constructed on base of the
estimator that takes into account the a priori informa�
tion about the bounded parameter of a continuous dis�
tribution possess the following properties (for the sym�
metric interval as well as for the best upper limit):

—The estimation is robust: it provides correct
intervals for the non�physical values of the estimator,

i.e. for  < 0.
—The upper boundary of the interval remains the

same for the physically allowed values of  both for the
modified and non�modified estimators. The upper
boundary is the lowest possible for the given confi�
dence level β in the case of the best upper limit con�
struction. In the case of a symmetric interval for the

physical values of  the upper boundary of the interval
falls below the upper boundary of the construction [6].

—The lower boundary of the interval move away
from the axis at the earliest possible (for the given con�

fidence level) point  (Figs. 6, 14). Besides the lower
boundary appears to be maximal for the given confi�

dence level within the segments  ≤  ≤  (Fig. 6),

 ≤  ≤  (Fig. 14).
—The calculation of the confidence intervals does

not require any sophisticated algorithms or tables
apart from the standard procedures of constructing the
confidence belts for a given confidence level.

Discrete Distributions

Using the information about the background while
choosing the estimator for a parameter of a discrete
distribution one obtains the confidence intervals with
the following properties:

—The described construction of the confidence
intervals solves the problem of less than the back�
ground number of events, pointed out in [6]. The
resulting system of confidence intervals immediately
yields the upper limit for the estimated parameter in
the region where the number of events is less than the
mean of the background. The upper limit does not
depend on the particular value of n (as in the area n ≤ 3
in Fig. 8).

—The lower boundary contains a segment, analo�
gous to the area CEF in Fig. 6. As a result of the use of

θ̂

θ̂

θ̂

θ̂C

θ̂C θ̂ θ̂E

θ̂C θ̂ θ̂D

the a priori information the lower boundary moves
away from the axis n at the earliest point possible.

—Due to the ambiguity in the definition of the
confidence intervals for the discrete distributions
(Eq. (10)) there are various modifications of the con�
struction of confidence intervals (with fixed lower or
upper boundary, the Sterne, Crow and Gardner con�
struction and their combinations). The specific choice
depends on the particular situation, for instance, on
the necessity to obtain more reliable upper or lower
constraints on the parameters.

The best upper limit for the unknown signal μ with
the Poisson background with the mean value b con�
structed on base of the estimator possesses the follow�
ing features:

—Any measured number of events n ≤ b yields the
same confidence interval. It solves the problem of less
than the background number of events.

—The amount of probability contained in the
acceptance region is close to the required confidence
level, the overcoverage is not considerable (though one
can not avoid it entirely in the case of discrete distribu�
tions). The overcoverage (in terms of [6]) is an undesir�
able feature of the various other constructions [7, 19].

—The lower boundary of the confidence intervals
move away from the axis n (becomes non�zero) at the
lowest possible value of n. Thus, one can not only
obtain the best (the most stringent) upper limit for the
parameter but also has an opportunity to detect the
signal (the non�zero lower boundary can be inter�
preted as a signature of the non�zero signal) for rather
small measured number of events.

—Similarly to the continuous distributions, there
is an area below the lower boundary that represents a
pure gain from the use of the a priori information
about the background.

It should be remembered that an essential goal of
data processing is that the magnitude of the resulting
quantities should represent the required information
as directly as possible. Unlike the approaches of Feld�
man and Cousins and Cowen et al., the method of sen�
sitivity limit achieves that goal: its confidence intervals
obtained in different experiments can be compared
directly.
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