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Abstract—A model for calculation of thermal conductivity of thin films of silicon and germanium is presented
on the basis of solving the Boltzmann equation in the time relaxation approximation. The unique feature of
this model is the application of recent achievements in determination of the time of phonon–phonon inter-
actions obtained from “first principles” and also the use of real dispersion curves and the propagation veloc-
ities of phonons with different polarization. The proposed approach contains no averaging and fitting param-
eters, which already for more than half a century and until now have been common in calculations of thermal
conductivity of macroscopic bodies and nanostructures. A detailed qualitative and quantitative comparison
of results of calculations by the “classical” and “updated” models is carried out. Problems in the methods for
calculating thermal conductivity for simulation of new structures in advanced semiconductor devices and
ways of their further development are set forth.
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INTRODUCTION
For the past decade, a tremendous growth of tech-

nologies based on using structures of micro- and
nanoscales is observed. For example, a typical scale of
hardware components—transistors—already has
reached 10 nm. The tendency toward a reduction in
size of components, in the first place, leads to a drop
of thermal conductivity by several orders of magnitude
owing to the so-called size effect [1], which is the
exceptional property of micro- and nanomaterials. In
the second place, this generates the awesome growth
of heat release: the magnitude of heat f low in elec-
tronic devices already reaches 100 W/cm2 [2]. Since
the workability of microelectronic devices strongly
depends on temperature, a problem of ensuring the
necessary thermal regime arises, which requires
searching for ways of heat removal. The presented
arguments testify to the necessity of studying the ther-
mal properties of objects based on micro- and nano-
structures [3].

A distinctive feature of processes in nanostructures
are, firstly, inapplicability of classical transport laws
(e.g., for heat transfer, the Fourier law) and, secondly,
a strong dependence of properties on geometry and
shape of the sample [4]. Therefore, despite the variety
of well-known methods for determination of macro-
scopic object properties, many unsolved problems
remain in the area of micro- and nanoscales, which
require combining efforts of research groups on the

world scale. There is as yet no unambiguous answer to
the question about the heat transfer calculation and
even more about the simulation of devices based on
micro- and nanostructures. The search for a solution
to this problem remains open.

In this work, the process of heat transfer in the lon-
gitudinal direction in films of silicon and germanium
for the thickness range from 100 μm to 10 nm is stud-
ied. This is connected, firstly, with a wide occurrence
of these components in semiconductor electronics,
and, consequently, with the need for methods having a
sufficiently strong predictive ability. Secondly, this
provides the possibility to compare the calculation
results with the available experimental data. In [5], it is
possible to become familiar with the calculation of
thermal conductivity in the transverse direction.

At present, the widespread method of thermal con-
ductivity calculation is based on solving the Boltzman
equation using a relaxation time approximation.
Therefore, the main task is to find such relations and
coefficients for the time of phonon–phonon interac-
tions which would allow to construct an approximat-
ing function for thermal conductivity compliant with
experimental data. In this case, the coefficients found
as a result of fitting are not universal, since they are
strongly tied to the accepted assumptions, do not indi-
cate the physics of interaction processes, and restrict
the application of the method. Moreover, the problem
of calculating the thermal conductivity of films is a
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multiparametric one, which does not allow to use gen-
eral method for bulk and requires searching for a new
approach to the calculation and prediction of proper-
ties of micro-and nanoscale structures.

The goal of this work is to construct a generalized
model in which, firstly, there is no need for simplifica-
tions and fitting parameters, which are commonly
used in the calculations, and, secondly, which would
allow estimations (predictions, as is said in the foreign
literature) of thermal conductivity values of films
within a wide range of thicknesses and temperatures.
To solve the stated problem, strict expressions for dis-
persion curves and relations for the time of interaction
of phonons with each other are applied on the basis of
modern strict models “from the first principles” [6].

1. CONSTRUCTION OF MODEL
FOR THERMAL CONDUCTIVITY 

CALCULATION OF FILMS
1.1. Basics of Thermal Conductivity Calculation

Heat carriers in semiconductors and dielectrics are
the phonon quasiparticles—quanta of elastic waves
propagating in solid bodies [7]. Each phonon can be
involved in the following interaction processes. In the
first place, there is the interaction of phonons with
each other, among which the main role is played by the
processes with involvement of three phonons. The
phonon–phonon interactions are possible either with
momentum conservation (normal processes) or with
momentum transfer to the crystalline lattice
(Umklapp scattering). In the second place, there are
processes of phonon scattering on isotopes, disloca-
tions, and impurities (lattice irregularities). In the
third place, there is the interaction with boundaries of
the sample. In this case, in contrast to bulk materials,
where the size effect is dominant only at temperatures
below 10–20 K, in micro- and nanostructures, this
process depending on the characteristic sample size
has a considerable influence up to the Debye tempera-
ture and higher.

The description of the phonon gas state is based on
solving the Boltzmann transfer equation for phonons
in the relaxation time approximation

(1)

Here  is the phonon velocity, m/s, equal to the group
velocity of the elastic wave:  where  is the
wave frequency, s−1, and  is the wavevector, m−1;  is
the temperature of the solid body, K;  is the sought
nonequilibrium function of phonon distribution over
energies;  is the equilibrium Bose–Einstein func-
tion;  is the relaxation time of phonon gas, s.

It should be noted that, in materials with the dia-
mond-like crystalline lattice (silicon, germanium,
diamond), the phonon gas consists of acoustic and
optical phonons of longitudinal and transverse polar-
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izations. Owing to small velocities of propagation,
optical phonons are not taken into account, but their
involvement in the interaction process cannot be
neglected. More details about the specific features of
optical waves in the lattice can be found in article [8].
Therefore, this work considers acoustic phonons of
three polarizations: longitudinal LA and two trans-
verse TA.

From solving Eq. (1), the equation for thermal
conductivity calculation can be obtained

(2)

where the summation is performed over the polariza-

tions j,  =  is the phonon specific

heat,  =  is the density of state

(DOS),  =  is the mean free path
of the phonon,  is the group velocity of
the phonon,  is the phase velocity of the
phonon, and  is the dispersion relation. Here
and below, we consider the quasi-isotropic approxi-
mation and properties in the direction [100] of the
crystalline lattice, along which the transverse waves
are degenerate (branches coincide TA1 = TA2 = TA).

From the analysis of Eq. (2), it can be seen that, for
the thermal conductivity calculation of semiconduc-
tors and dielectrics, it is necessary to know two under-
lying quantities.

Firstly, the dependence of the group  and phase
 velocities on the frequency is required. For this

purpose, it is necessary to analyze the crystalline lat-
tice dynamics and to derive the dispersion relations

 This is the first fundamental component in
considering processes of phonon propagation inside
structures of any scale (macro-, micro-, and
nanoscale).

Secondly, the times of phonon interactions are
necessary for different processes inside the crystalline
lattice, namely:  is the time of phonon–phonon
interactions,  is the time of phonon scattering on
the lattice impurities, and  is the time of phonon
interaction with the lattice boundaries. Since each
scattering process is independent, the total time of
scattering  for each polarization j is defined accord-
ing to the Matthiessen’s rule:

(3)

Consequently, for the thermal conductivity calcu-
lation of a solid body, firstly, dispersion relations

 and, secondly, times of phonon scattering
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for different interaction processes in the crystalline
lattice are required.

1.2. Classical Models of Determination of Dispersion 
Relations and Time of Different Phonon 

Interaction Processes
At the present time, the most commonly known

model is the model proposed in 1963 [9] by Holland,
which is based on the following assumptions. In the
first place, the real law of dispersion  is replaced
by the bilinear approximation

(4)

i.e., each branch (LA and TA) is divided into two seg-
ments on which the velocity is constant. In the second
place, expressions for phonon–phonon interactions
are reduced to the consideration of segments on each
there is its own interaction process:

(5)

In this case, the coefficients  , and  in
Eq. (5) are used for fitting the value of thermal con-
ductivity (2) to experimental data. Moreover, when
instead of bilinear approximation (4) other depen-
dences of  are used, the thermal conductivity
value strongly differs from the original (by several
times); see [10]. This is evidence that times of pho-
non–phonon interactions (5) do not reflect the real
scattering process, while they only serve for fitting to
experimental data and cannot be used beyond the ini-
tial model.

The similar situation is with the Slack model [11,
12], which is based on the replacement of real disper-
sion laws by linear ones (with a constant rate), while
taking into account the phonon–phonon interactions
consists of two Umklapp processes according to the
relations

(6)

and normal processes, which in [12] coincide with
expressions from the Holland model [9]. In this case,
coefficients   (and analogous  ),
contain the possibility to adjust the obtained solution
to the experimental data by varying Grüneisen
parameters for the transverse and longitudinal polar-
izations.
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Time of scattering on crystalline lattice impurities.
Currently in the overwhelming number of calcula-
tions, the analysis of the scattering processes on impu-
rities (including isotopes) is based on the relation
obtained by Klemens in 1955 [13]:

(7)

in which  is a constant depending only on the con-
centration of impurity atoms and isotopes in the mate-
rials. It is assumed that the material is isotropic and
the phonon propagation velocity is equal to the aver-
age Debye velocity  where  and

 are the propagation velocities of elastic waves in the
macroscopic sample.

Using Eq. (7) in thermal conductivity calculations
assumes that the real dispersion of phonons is ignored.
Consequently, this leads to erroneous calculations
within the ranges of temperatures and film thicknesses
where the influence of scattering on impurities is
dominant. A stricter analysis of scattering processes
was carried out by Tamura [14], and the expression
appears as follows:

(8)

where  is the crystalline lattice volume per one atom;
 is the parameter corresponding to the content of

impurity atoms in the lattice, 
and  is the concentration of the ith isotope, the mass
of which differs from the average  by the quantity

In [14], it is shown that the calculation by Eq. (7)
gives a result overstated by several times as compared
to Eq. (8) in the range of frequencies close to  In
other words, at temperatures on the order of and
higher than the Debye temperature, where the influ-
ence of high-frequency phonons is great, the value of
thermal conductivity is overstated knowingly. Thus,
the necessity of application of fitting parameters is
created artificially.

Time between consecutive interactions with a
boundary. Taking into account processes of phonon
scattering on the sample boundary is the weakest point
of the existing theories, especially in calculations of
thermal conductivity of micro- and nanostructures.
The time  until now in the overwhelming majority of
works has been determined according to the simple
Casimir–Ziman relation [15, 16]

(9)

where  is the effective length, 
 is the characteristic size of the sample,

  is the cross section of the
sample; and  is the specular reflection parameter.
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Table 1. Coefficients for time of phonon–phonon interac-
tions [17]
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The parameter  takes into account the probability
that a phonon in the interaction with a real (rough)
surface scatters specularly:  corresponds to spec-
ular reflection;  corresponds to diffuse reflec-
tion.

The value of specular reflection parameter 
depends on the relation between the mean square
roughness of the sample surface  and the wavelength
of the incoming phonon . So, the phonons for which

 scatter specularly, while at , they scatter
diffusively. At the moment, a unique formula showing
this interrelation is the Ziman formula according to
which the value of the specular reflection parameter
can be derived from the Gaussian distribution:

(10)
The application of Eq. (10) for phonons is errone-

ous, since, firstly, this expression is valid only for elec-
tromagnetic waves; secondly, an incident wave is ori-
ented along the normal to the surface; and, thirdly, the
decay processes of acoustic waves after reflection on
the boundary are ignored. Consequently, at the pres-
ent time, there is no expression for calculating the
probability of specular reflection for acoustic waves
incident on the surface at different angles. Therefore,
the parameter  in Eq. (9) is accepted as the average
value and is used for fitting the results of the thermal
conductivity calculation to experimental data.

It should also be stressed that Eq. (9) ignores the
relation between the free path length of phonons in the
macroscopic sample  and the characteristic size of
the structure under consideration  (thickness for
films), which represents the Knudsen number

—the most important characteristic deter-
mining the regime of heat propagation in the solid
body. So, at , the regime is diffusive; i.e., the
classical Fourier law of thermal conductivity is valid;
at , the regime is ballistic; the processes of pho-
non interaction with the walls dominate; at values of

, the regime is diffusion-ballistic and occupies
the intermediate region.

The presented specific features of the widely
applied models based on using fitting parameters lead
to the necessity of searching for modern methods of
calculation of the dispersion relations and times of
phonon interaction.
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1.3. Updated Model of Thermal
Conductivity Calculation

The present level of development of computational
technology makes it possible, in the first place, to use
the modern methods of calculation of times of pho-
non–phonon interactions from “first principles” [6],
which contain no fitting parameters and reflect the
“physics” of the process better than models described
in section 1.2. In the second place, the possibility
appears for constructing and taking into account the
real dispersion of phonons instead of models with
constant velocity: single-speed approach of Debye and
bilinear approximation of Holland (4).

Times of phonon–phonon interactions. In this work,
the phonon–phonon times for the normal and
Umklapp processes are used, which were derived by
Ward and Broido [17] on the basis of analysis of pho-
non interaction processes from the “first principles”:

(11)

where  –  and j is the transverse
TA and longitudinal LA polarizations. Values of coef-
ficients are presented in Table 1.

Despite the clear superiority of Eq. (11) (absence of
fitting parameters and a direct connection with simu-
lation of processes of three-phonon interactions), it
has not found widespread occurrence in calculations
until now.

Figure 1 presents a comparison of times of pho-
non–phonon interactions according to models of
Holland (5), Slack (6), and Ward–Broido (11) for sil-
icon at a temperature of 300 K. It can be seen on the
plots that the calculation results for these three models
agree only at low frequencies and diverge with growth
in phonon energy; here it can be noted that the Hol-
land model overestimates the contribution of phonons
of transverse polarization.

Time of scattering on boundaries. Taking into
account the phonon interaction with sample boundar-
ies is the cornerstone in thermal conductivity calcula-
tion of nanostructures. Now there is no strict method
for the analysis of phonon scattering on the boundary.
One of the possible ways for solving this problem may
be calculations based on the Monte Carlo method.
The further prospects in this direction can be found in
[18]. In this work, the calculation of time of scattering
on film boundaries is based on Eq. (9) with the use of
the real dispersion law.

Construction of real dispersion curves. To deter-
mine the dispersion curves, the lattice dynamics
method (LDM) is used at the present time [6], which
allows to derive the dependence  in main crystal-
lographic directions. The method provides a good
agreement with the results of experiment, but requires
significant computational efforts and certain skills in
mastering the LDM. This work applies the method for
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Fig. 1. Times of phonon–phonon interactions: WB is the Ward–Broido model (11), Hol is the Holland model (5), and SG is the
Slack model (6); indices correspond to the process type: N is the normal processes, U is the Umklapp processes. 
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approximating experimental data by polynomial rela-
tions, which allows to substantially simplify the calcu-
lations.

The tables of experimental data on  for silicon
and germanium [19, 20] serve as initial data for
approximation. As reference (definitive) points, the
following values are used:

(12)

Thus, for a longitudinal wave, we derive four con-
ditions and the cubic polynomial, while for a trans-
verse wave, we obtain five conditions and the quartic
polynomial; the analytical dependence for the disper-
sion relation takes the form

(13)

where  and  With substitution of
Eq. (13) to system (12), we derive a system of linear
algebraic equations for finding the polynomial coeffi-
cients . The results of calculation of the  values of
the approximating polynomial for dispersion relations
of silicon and germanium in the direction [100] of the
crystalline lattice are given in Table 2.

Figure 2 presents the dispersion relations for silicon
along the direction [100] of the crystalline lattice,
which are compared with experimental data and the
Holland bilinear model.
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Other variants of approximation dependences for
the phonon dispersion are also known, the analysis of
which is presented in [10]. A distinctive feature of the
method (Eqs. (12), (13)) proposed by the authors of
the work is the employment of reference points not
only at the center and on the boundary of Brillouin
zone but also at an intermediate point, which makes it
possible to take into account the behavior of real dis-
persion curves inside the Brillouin zone and, as a con-
sequence, to obtain the best agreement with experi-
mental data (see Fig. 3).

The presented model of phonon–phonon interac-
tions of Ward–Broido [17] and the method for taking
into account the real phonon dispersion make it pos-
sible to exclude fitting parameters, associated with
many simplifications and uncertainties, included in
the commonly used and widespread models of thermal
conductivity calculation of silicon, germanium, and
other semiconductor materials.

2. CALCULATION RESULTS
2.1. Calculation of Thermal Conductivity

of Macroscopic Samples

To check the accuracy of the updated model, the
thermal conductivity is calculated for a sample of ger-
manium with the natural content of isotopes (Fig. 4)
and silicon (Fig. 5). The calculation results are com-
pared with the known experimental data [21, 22].

Figure 4 provides insight into the dependence of
thermal conductivity on temperature of semiconduc-
tor materials. As can be seen from the comparison of
different approximating dependences for the disper-
sion relations, the error in determination of thermal
YSICS OF ATOMIC NUCLEI  Vol. 83  No. 11  2020
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Table 2. Values of coefficients of approximating polynomial  (13)

k, 1/m
ω, 1/s

Coefficients for 
silicon Si

j = TA 0 6.759 –3.353 –2.288 1.702
j = LA 0 9.756 –0.371 –1.644 0
j = TO 9.758 0 –5.967 7.837 –2.894
j = LO 9.770 0 –1.220 –8.091 0

Coefficients for 
germanium Ge

j = TA 0 3.930 –2.705 −0.323 0.612
j = LA 0 5.459 0.052 −0.982 0
j = TO 5.730 0 –4.200 6.240 −2.580
j = LO 5.743 0 –0.496 −0.716 0

ω( )k

ϖ = + + + + ϖ = ω =4 3 2 13
4 3 2 1 0 max( ) , /10 , /j x с x с x с x с x с x k k

0с 1с 2с 3с 4с

0с 1с 2с 3с 4с
conductivity lies within the limits of 10–15%. The
analysis of the presented approximations makes it pos-
sible to explicitly distinguish a number of regions: the
temperature range much below the Debye tempera-
ture, where the processes of scattering on sample bound-
aries (below 10 K) and on isotopes (from 10 to 50 K) play
the defining role, and the temperature range on the order
of the Debye temperature and higher, where the main
role is played by the processes of phonon–phonon inter-
actions (more than 50 K).

For investigation of thermal conductivity at the
Debye temperature and higher, we consider the silicon
sample with the natural content of impurity atoms
from [22] and compare with experimental data [22].
PHYSICS OF ATOMIC NUCLEI  Vol. 83  No. 11  2020

Fig. 2. Dispersion curves and group velocities of silicon for the
acoustic waves; TO and LO are the transverse and longitudinal o
show the approximation of the authors (13), dashed “Hol” indic
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The calculation results presented in Fig. 5 show the
fundamental specific feature of the Holland model:
reassessment of a role of transverse waves in processes
of phonon–phonon interactions. This circumstance
does not lead to an error in the determination of ther-
mal conductivity, but underestimates the contribution
of longitudinal waves. This is one of negative aspects of
the fitting nature of the Holland model, which gives
no way for the adequate estimation of the contribution
from the individual waves, and also creates a false
impression about the applicability of the model to the
calculation of any semiconductor structures (from
macro to micro and nano).
 direction [100]. TA and LA are the transverse and longitudinal
ptical waves. Dots indicate the experimental data [19], solid lines
ates the Holland approximation (4), and “Pop” is the work [10]. 
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Fig. 3. Error of calculation of dispersion relations for silicon and germanium in comparison with experimental data [19, 20]: solid
lines refer to the model of the authors, dotted lines correspond to the model of the lower order [10, 21], and p corresponds to the
order of the approximating polynomial (13). 
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7.8% 73Ge + 7.8% 76Ge).  denotes that the calculation is performed using the phonon–phonon times of interaction according to

the Ward–Broido model.  denotes the same taking into account the real phonon dispersion in the calculation of scattering
on isotopes by Eq. (8). Further, the results are presented taking into account the scattering on impurities (7) and on sample

boundaries with allowance for the following dispersion laws:  is the approximation of real dispersion relations (12), (13); 
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2.2. Calculation of Thermal Conductivity of Films

For the accuracy check of the updated model and
demonstration of the influence of the size effect, the
thermal conductivity calculation of silicon films is per-
formed within a thickness range from 10 nm to 100 μm
PH
and a temperature range from 20 to 450 K. The results
are compared with the known experimental data [23–
26].

Figure 6 presents a typical dependence of the ther-
mal conductivity of semiconductor materials on the
YSICS OF ATOMIC NUCLEI  Vol. 83  No. 11  2020
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Fig. 5. Thermal conductivity of silicon: comparison of the model of the authors  and the Holland model  (4), (5) with
the experimental data [22] (dots). Indices correspond to polarization: LA means longitudinal, TA means transverse. 

101

102

103

102 103

k, W/(m K)

T, K

kWB

kHol

kWB
TA

kHol
TA

kHol
LA

kWB
LA

exp

WBk Holk
film thickness by an example of silicon along the
direction [100]. From the analysis of the plots, the
conclusion can be drawn that the employment of the
Holland model leads, firstly, to a significant uncer-
tainty in the results, since the possibility appears by
means of the parameter of specular reflection to vary
freely the value of thermal conductivity within wide
limits (from the minimum presented in the figure to
1), which allows the obtained results to be fitted to any
experimental data. The application of the authors’
model makes it possible to localize a region of the pos-
sible value of thermal conductivity and to derive more
accurate estimates. Secondly, the slope ratio of ther-
mal conductivity in the Holland model differs from
the estimates of more accurate models (the model of
the author and the Asheghi model [23]) and experi-
mental data [23], which indicates the clear superiority
of taking into account the real dispersion relations and
times of phonon–phonon interactions from ”first
principles” without introducing fitting parameters.

Similar conclusions can be drawn from the analysis
of the thermal conductivity of silicon as a function of
temperature for different film thicknesses, which is
presented in Fig. 7.

Figure 8 shows a difference between the thermal
conductivity of films  calculated from the Holland
model and the thermal conductivity k derived using
the updated model:  = 
It can be seen that the error in the thermal conductiv-
ity determination strongly depends on the temperature
and thickness of films and may reach 120%. Therefore
the application of models based on simplifications and

Holk

mismatch ( )− ×Hol 100%.k k k
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fitting parameters leads to an uncontrolled behavior of
the result.

For demonstration of the phonon dispersion influ-
ence on the thermal conductivity calculation, Fig. 9
shows the comparison of the thermal conductivity
using the linear law with the one using the polynomial
law (Eq. (10)). When considering the thermal conduc-
tivity of structures in which the size effect takes place,
it can be seen that the application of linear dispersion
laws leads to a significant underestimation of the con-
tribution from the real dispersion law to the phonon
propagation processes. This leads to the necessity of
introducing additional fitting parameters which brings
even greater uncertainty into the estimation of thermal
conductivity of micro- and nanostructures.

It turns out that now there are many models for the
thermal conductivity calculation of semiconductor
structures of the micro- and nanoscale, which contain
a great number of fitting parameters. This circum-
stance introduces a significant uncertainty into the
thermal conductivity calculation and does not allow
the adequate estimation of properties of the structures
in which the size effect takes place. To solve the stated
problem, the authors have involved modern methods
of calculation based on minimizing the number of
adjustable parameters. This allowed, firstly, to mini-
mize the uncertainty in the thermal conductivity cal-
culation due to the detailed description of phonon
propagation processes. Secondly, the factor limiting
the further improvement of the accuracy of thermal
conductivity estimation was established: the absence
of an adequate model of calculation of the time of
scattering on boundaries.
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Fig. 6. Thermal conductivity of silicon films along the direction within a thickness range from 10 nm to 100 μm: WB is the model
of the authors under the condition of diffuse reflection (p = 0); WB + p is the model of the authors for p = 0.4, 0.5, and 0.8 for
the temperature T = 30, 70, and 300 K, respectively; Hol is the Holland model (4), (5) with p = 0. Asheghi is the model of thermal
conductivity calculation [23] based on the rearrangement of the Boltzmann equation taking into account the size effect. Dots cor-
respond to the experimental data [23]. 
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Fig. 7. Thermal conductivity of silicon films within a temperature range from 20 to 450 K: solid lines show the calculation by the
updated model; dotted lines show the calculation by the Holland model (4), (5); dots correspond to experimental data from the
following works: for 100 nm [24], for 30 and 50 nm [25], for 10 nm [26]. 
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CONCLUSIONS

This work presents an updated model of the ther-
mal conductivity calculation of silicon and germa-
nium films within a wide range of temperatures and
thicknesses. The model is based on the strict analysis
PH
of the processes of phonon interaction and propaga-
tion. In the first place, the polynomial approximations
of real dispersion curves are applied instead of linear
approximations, which provides the possibility to
strictly investigate the dynamics of phonons in the
crystalline lattice. In the second place, the times of
YSICS OF ATOMIC NUCLEI  Vol. 83  No. 11  2020
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Fig. 8. Comparison of thermal conductivity by the Holland model and the updated model for silicon films. 
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Fig. 9. Comparison of thermal conductivity using the linear law of dispersion and polynomial law (10) for silicon films. 
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phonon–phonon interactions derived on the basis of
the modern method from the “first principles” are
used, in which fitting parameters are absent.

The fundamental specific feature of the presented
approach is its strong predictive ability, which distin-
guishes the method from models of Holland, Slack,
etc., in which a high accuracy between the calculation
and experiment is achieved by means of introducing
fitting parameters. The detailed qualitative and quan-
titative comparison of the results of calculation by the
PHYSICS OF ATOMIC NUCLEI  Vol. 83  No. 11  2020
“classical” and “updated” models shows a good
agreement of theory and experiment.

A weak point in the modern models is the absence
of the correct technique for taking into account the
phonon interaction with boundaries of the sample.
This problem is especially urgent for structures of the
micro- and nanoscale, in which the diffusion-ballistic
and ballistic mechanisms of heat transfer are imple-
mented. The further development of methods for ther-
mal conductivity calculation for simulating new struc-
tures in advanced semiconductor (and not only)
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devices is possible only by the way of specification of
the time of scattering on the sample boundary.
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