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Abstract—It is shown in the tetrad representation that there are Reissner–Nordström solutions describing
systems with a finite action and total inertial mass equal to the gravitational mass. These systems consist
of entirely electromagnetic and gravitational fields. There are not any massive point-charges inside them.
The system is called “the classical electron” if its charge is equal to −4.80× 10−10 esu. Its electromagnetic
field is localized in a space region of about 10−34 cm. The total stress tensor for the classical electron is
shown to be identically zero. This means that there is no need in an additional surface-tension of unknown
nature preventing the system disintegration, as it takes place in the Lorentz electron model. The hypothesis
that gravitation can play a crucial role in the structure of all elementary particles is discussed.
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1. INTRODUCTION

As it is well known, quantum field theory can de-
scribe physical phenomena with high precision using
the infinite charge and mass renormalization pro-
cedure to get experimentally measured observables
(see for instance [1–3]). The physicists faced with
the problems of the infinite renormalization for the
first time in quantum electrodynamics (QED). One
of reasons which lead to divergent integrals in QED
is the point-like nature of the fundamental particles
(leptons and quarks) being the source of the elec-
tromagnetic field. There are two radically different
ways to avoid the divergences. The former way is to
consider the extended objects instead of the point-like
fundamental particles. The latter is to consider theo-
ries in which contributions of singularities are can-
celed due to an internal symmetry of the lagrangian.

In the model of a classical electron proposed by
Lorentz [4], the electron is considered as a drop of
a charged liquid with a radius a. This model gives
the finite mass and charge of the electron. Since the
drop is exploded by electrostatic forces, the additional
surface-tension of the liquid has to be introduced to
prevent disintegration of the electron. But the nature
of this surface-tension is unknown that is the plague
of the model. If one considers the electron as a
point-like particle the problem of the nature of the
surface-tension disappears. But as is well known the
electromagnetic mass of any point-charge in clas-
sical electrodynamics (CE) is positive and tends to
infinity if a → 0. Indeed, the energy density of the
electromagnetic field, t00 goes to infinity at r → 0
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as r−4. Here r denotes the distance between the
field observation point and the position of the point-
charge. As a result, the integral

∫
t004πr

2dr for the
electromagnetic energy is divergent in CE as dr/r2.

In order to make simple qualitative estimates of
the gravitation contribution to the total mass of the
point-like particle, let us add the relation dm = dE/c2
to Newton’s law of gravitation. Here, dm denotes
the mass of the small subsystem of a system under
consideration interacting with other subsystems due
to gravitation and dE is its energy. Let us consider
a system when matter consists of the electromag-
netic field only. Then the contribution to the total
energy of the gravitational attraction between three-
dimensional space regions filled with the electromag-
netic field is negative in the Newtonian theory of grav-
itation. It is small since its contribution is propor-
tional to the small gravitational constant k. But grav-
itation contributes to the total energy quadratically
with respect to t00 which tends to infinity at r → 0 for
the electric field corresponding to the point-charge.
Note that the electromagnetic contribution is linear
with respect to the component t00 of the energy-
momentum tensor tik. Therefore at some large energy
density, the gravitational and electromagnetic contri-
bution can be of the same order of magnitude. Since
these two contributions cancel each other the total
energy (mass) of the point-charge can, in principle,
be finite even in this toy model.

It will be shown in the framework of general relati-
vity that the gravitational contribution can make the
total mass of the classical electron (with the electric
field strength |E| = |e|/r2) finite. This result is in
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contradiction with the usual opinion that gravita-
tion cannot play any role in the elementary particle
structure since the gravitational interaction is much
weaker than even electromagnetic one. Indeed, the
electrostatic repulsion between two electrons is larger
than their gravitational attraction by a factor of 4.2 ×
1042. This ratio even for heavy leptons and quarks
with masses of a few GeV/c2 is smaller by a factor
of about 106, nevertheless this ratio is huge.

The consideration in the present paper is per-
formed within the framework of the classical physics
only since it is not well understandable now, how
quantum effects can be taken into account for gravi-
tation. The exact Reissner–Nordström (RN) solution
of the Einstein-Maxwell equations is used to describe
the classical electron. It turns out that for some
relation between the parameters e and m of the RN
solution, its total inertial mass and the action become
finite. The equivalence principle is also valid for the
system called the classical electron. Moreover, there
is no need in additional nonelectromagnetic surface-
tension. The classical electron has the experimental
electrical charge of the real electron e but the huge
mass mcl = 1.86 × 10−6 g. It represents the smallest
possible charged black hole with the horizon radius of
the order of 10−34 cm. The idea that the elementary
particles are black holes was discussed for the first
time by A. Einstein and N. Rosen in [5]. The classical
electron is the system of the electromagnetic and
gravitational fields. There is no point-like particle
with a bare mass mb and the electrical charge e
(usually called the electron) inside the system under
discussion. The proofs of the above statements and
details of calculations can be found in [6].

2. REISSNER–NORDSTRÖM SOLUTION

Let us consider the spherical coordinates (x0, x1,
x2, x3) = (ct, r, θ, ϕ) where c is the velocity of light
in empty space and t denotes time, r is a radius,
while θ, ϕ denote polar and azimuthal angles. The
stationary solution of the Maxwell and Einstein
equations, depending only on r, was found indepen-
dently by H. Reissner, H. Weyl, G. Nordström, and
G.B. Jeffery [7–10], nevertheless it is called usually
the Reissner–Nordström solution. For this solution,
the differential of the spacetime interval ds is given by

ds2 = gikdx
idxk

= Λ(dx0)2 − dr2/Λ− r2(dθ2 + sin2 θdϕ2), (1)

where gik denote the covariant components of the
metric tensor. Summing over any pair of identical
covariant and contravariant Latin indexes is assumed
in Eq. (1) and in all below formulas. All Latin indexes
can be equal to 0, 1, 2, 3, while the Greek indexes can

be equal to 1, 2, 3. Summing over any pair of identical
Greek indexes will also be assumed. For exclusions,
the absence of a sum will be specially stressed. The
function Λ in Eq. (1) is

Λ = 1− rg
r

+
r2e
r2

= (r2 − rrg + r2e)/r
2. (2)

Here, rg denotes the Schwarzschild radius [11]

rg =
2km

c2
, (3)

where k = 6.67× 10−8 cm3 g−1 s−2 is the gravita-
tional constant, e and m are respectively the electric
charge and mass of the considered system, while the
radius re is

re =

√
ke2

c2
. (4)

As is obvious from Eq. (2) Λ is not negative when
r20 ≥ 0, where

r20 = r2e − r2g/4 ≡ r2e

(

1− km2

e2

)

. (5)

Since g00 = Λ > 0 for r20 > 0, there is no horizon of
events for which g00 has to be zero. According to
Eq. (5) a horizon is absent if

m <

√
e2

k
. (6)

The component g00 of the metric tensor is singular
at r = 0, while all other covariant components are
regular and nonzero for 0 < r < ∞ and sin θ > 0.

It is easy to check that for the coordinates ξi with
ξ0 = x0 and

ξ1 = r sin θ cosϕ, ξ2 = r sin θ sinϕ,

ξ3 = r cos θ, (7)

the covariant components of the metric tensor are
singular at r = 0, while the determinant of the ma-
trix gik is always unity. The coordinates ξi tend to
Euclidean limits when r → ∞ and gik goes to the
Minkowski limit gik → ηik, where ηik is the diagonal
matrix ηik = diag(1,–1,–1,–1). The only inconve-
nience of these coordinates is the following: the met-
ric tensor is not diagonal for r ∼ re.

It is more convenient for many calculations to
apply the isotropic coordinates for which the metric
tensor is diagonal. In order to introduce them, we
define the new radial variable ρ with the relations

r = ρD(ρ), (8)

D(ρ) = 1 +
rg
2ρ

− r20
4ρ2

≡
[

1 +
rg
4ρ

]2
− r2e

4ρ2
, (9)
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where rg, r2e , and r20 are given by Eqs. (3), (4), and (5),
respectively. Defining

N (ρ) ≡ dr

dρ
= 1 +

r20
4ρ2

, (10)

we get the formula for Λ

Λ =
N 2

D2
. (11)

Let us introduce the pseudo-Euclidean coordi-
nates ρ0 = x0, ρx ≡ ρ1, ρy ≡ ρ2, ρz ≡ ρ3 (called the
uniform coordinates) with the relations

ρx = ρ sin θ cosϕ, ρy = ρ sin θ sinϕ,

ρz = ρ cos θ. (12)

Now, the formula for the spacetime interval looks like

ds2 = gikdρ
idρk

=
N 2

D2
(dρ0)2 −D2(dρ2x + dρ2y + dρ2z). (13)

It defines both the covariant and contravariant com-
ponents of the metric tensor for the uniform coordi-
nates since gik is diagonal and gii = 1/gii (no sum
over i).

According to Eq. (10) N ≥ 1 for r20 ≥ 0, hence
r increases with increasing ρ monotonically. For
asymptotically large ρ → ∞, D → 1 in accordance
with Eq. (9), therefore r/ρ → 1 due to Eq. (8). The
minimal value of r equal to zero corresponds to the
minimal possible positive value of ρ = ρmin. This
value is the maximal root of the equation D(ρ) = 0
and is equal to

ρmin = re/2− rg/4. (14)

This means that the sphere in the three-dimensional
space (ρx, ρy, ρz) with the radius ρ = ρmin corre-
sponds to the point r = 0. There is no contradiction
in this respondency since according to Eq. (13) the
distance between any two points on the sphere is zero
due to the relation D(ρmin) = 0.

3. TETRAD REPRESENTATION

In the tetrad representation proposed in [12], the
fundamental variables of the gravitational field are
four unit four-vectors h(a) (a = 0, 1, 2, 3 is a counting
number of the four-vector) being functions of the co-
ordinates of points in the four-dimensional spacetime.
The four-vector with a = 0 is chosen time-like, while
all others are space-like, namely

h(a)ih
i
(b) = ηab (15)

with the diagonal matrix ηab = diag(1,–1,–1,–1).
Defining ηab equal to ηab the vectors h(a) can be
expressed in terms of h(a) [12, 13]

h(a)i = ηabhi(b), h
(a)
i = ηabh(b)i. (16)

As follows from Eqs. (15) and (16) the orthogonality
conditions look like [12, 13]

h(a)ih
(b)i = δba, (17)

h(a)ih
(a)k = δki , (18)

where δki and δba denote the Kronecker symbols. The
fundamental relations between the covariant (con-
travariant) tetrad components, h(a)i (hj(a)) and the
metric tensor components are [12, 13]

h(a)ih
(a)
l = gil, (19)

hj(a)h
(a)k = gjk. (20)

The partial derivative of h(a)i over the uniform coor-

dinate ρj is denoted by h
(a)
i,j , while h

(a)i
;j is the covari-

ant derivative of h(a)i. The relations between them are
the following [6, 12]:

h
(b)k
;l =

1

2
h(b)mhk(a)(h

(a)
l,m − h

(a)
m,l) +

1

2
h(c)ihk(c)

× [(h
(b)
i,l − h

(b)
l,i ) + h(b)mh(a)l(h

(a)
i,m − h

(a)
m,i)]. (21)

4. LAGRANGIAN FOR THE
REISSNER–NORDSTRÖM SOLUTION

The formula for the total lagrangian density reads

Ltot = Lg + Lem, (22)

where Lg is the lagrangian density of gravitational
field, while Lem denotes the lagrangian density of
electromagnetic field. In the tetrad representation, the
former is given by the relation [12, 14]

Lg =
|h|
2κ

(
hk(a);lh

(a)l
;k − hk(a);kh

(a)l
;l

)
, (23)

where κ = 8πk/c4 and |h| denotes the determinant
of the 4× 4 matrix h(a)i. As is demonstrated by
Eq. (21) the covariant derivative of the tetrad depends
only on the tetrad components and linearly on their
first partial derivatives with respect to the space-time
coordinates. Therefore the lagrangian Lg in Eq. (23)
depends also on the tetrads and their first partial
derivatives.

According to Eq. (13) and relation [12, 14]

g = −|h|2, (24)
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the formula for |h| = √−g for the uniform coordinates
for the RN solution is

|h| = ND2. (25)

For the tetrads with the covariant components

h(0)k = h
(0)
k =

N
D δ0k, h(μ)k = −h

(μ)
k = Dδμk (26)

for any k and μ, relation (19) is fulfilled. Formulas for
the contravariant components are

h(0)i = hi(0) = g00h(0)0δ
i
0 = δi0D/N , (27)

hi(μ) = −h(μ)i = gikh(μ)k = −δiμ/D. (28)

These components obey Eq. (20). Calculating formu-

las for h(a)k;l using Eq. (21) one gets [6] from Eq. (23)

Lg =
ND′

κD

{

2
N ′

N − D′

D

}

, (29)

where N ′ and D′ denote derivatives of N (ρ) and D(ρ)
with respect to ρ.

The general formula for the lagrangian density of
the electromagnetic field reads [13]

Lem = − |h|
16π

gimgknFikFmn

= − |h|
16π

hi(a)h
(a)mhk(b)h

(b)nFikFmn, (30)

where the electromagnetic tensor Fik is expressed
through the four-potential Am

Fik =
∂Ak

∂ρi
− ∂Ai

∂ρk
. (31)

For the uniform coordinates, the nonzero components
of the electromagnetic tensor are [6]

F0λ = −Fλ0 =
e

r2
Nnλ =

eN
ρ2D2

nλ, (32)

where nλ = ρλ/ρ denotes the unit three-vector. If we
substitute Eqs. (32) and (26)–(28) into Eq. (30), the
final formula for Lem is obtained

Lem =
e2N

8πρ4D2
=

N r2e
κρ4D2

. (33)

In the second representation for Lem in Eq. (33), the
formula e2/(8π) = r2e/κ is taken into account that
follows from Eq. (4) and relation between k and κ.

Substituting Lem given by Eq. (33) and Lg from
Eq. (29) into Eq. (22) and using Eqs. (9) and (10)
respectively for D(ρ) and N (ρ) we obtain for the total
lagrangian density the very simple formula

Ltot =
r20
κρ4

. (34)

Since the three-dimensional space (ρx, ρy, ρz) con-

sists of points for which ρ =
√

ρ2x + ρ2y + ρ2z obeys

the inequality ρ ≥ ρmin, the formula for the total la-
grangian reads

Ltot =

∫

ρ≥ρmin

Ltotdρxdρydρz =
4πr20
κρmin

. (35)

Making use of Eqs. (3)–(5) and (14) we get finally

Ltot = c2
√

e2

k
+mc2. (36)

This formula shows that the lagrangian in the tetrad
representation and the action S = Ltott are finite in
spite of the singular behavior of the electromagnetic
and gravitational fields near the point r = 0 (ρ = ρmin)
due to cancellation of singularities.

If we consider the metric tensor components as
the fundamental variables describing the gravitational
field, there is no aforementioned cancellation. Indeed,
it is well known that the scalar curvature R and hence
the lagrangian density of the gravitational field

L̃g = −R√−g

2κ
(37)

is zero if the matter is represented by the electromag-
netic field only [13, 15, 16]. Since the lagrangian den-
sity for the electromagnetic field defined by Eqs. (30)
has nonintegrable singularity at r = 0, the total la-
grangian corresponding to Eqs. (22), (30), and (37) is
meaningless (infinitely large), while Eq. (36) provides
the finite lagrangian in the tetrad representation.

As is shown in [12] the difference of the two la-
grangian densities, Lg and L̃g defined respectively
by Eqs. (23) and (37) is the total divergence of a
four-vector. This four-vector can be expressed in
terms of the tetrad components and their derivatives
with respect to ρi. Therefore these two lagrangian
densities are totally equivalent to each other when
solution is regular in all over the four-dimensional
spacetime. We conclude from the above consideration
that these two lagrangian densities are not equivalent
for the singular solutions: the former after adding the
lagrangian density of the electromagnetic field, Lem
provides the finite total action, the latter is zero and
corresponds to the infinitely large total lagrangian and
action. This means that the divergence of the four-
vector is infinite for the case under discussion.

The lagrangian Lg contains the tetrad compo-
nents and their first derivatives with respect to ρi,
while the lagrangian L̃g contains not only first deriva-
tives but also second derivatives of the metric tensor
components (see for instance [13]) which means that
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it contains second derivatives of the tetrad compo-
nents. The absence of the second derivatives is the
advantage of the lagrangian Lg, that can be con-
structed only in the tetrad representation, compared
to L̃g which formula contains gik and their deriva-
tives. Therefore we assume that it is these sixteen
functions h(a)i (ρk) of the coordinates ρk which are the
fundamental gravitational variables rather than the
components of the metric tensor.

The choice of a tetrad obeying Eqs. (19) and (20)
is not unique. Tetrad e(a)p(ρi) in any point with
coordinates ρi defined by

e(a)p(ρi) = La
c(ρ

i)h(c)p(ρi) (38)

also gives the same metric tensor as h(a)p(ρi) if
La

c(ρ
i) is a matrix of the six-parametric Lorentz

group [12, 14]. This means that the lagrangian
density L̃g in Eq. (37) is invariant under transfor-
mation defined by Eq. (38), while Lg containing the
covariant derivatives of the tetrad components in
Eq. (23) is not invariant. Nevertheless, the difference
of two lagrangian densities ΔLg expressed with the
help of Eq. (23) in terms of h(c)p(ρi) and e(a)p(ρi)
is the divergence of some four-vector. Therefore
these two lagrangian densities are equivalent to each
other for h(c)p(ρi) and e(a)p(ρi) regular in all over
the four-dimensional spacetime since both of the
densities are equivalent to L̃g defined in Eq. (37).
Nevertheless, if at least one tetrad has singular point,
the solutions given by e(a)p(ρi) and h(c)p(ρi) can be
not equivalent to each other and the difference of
the corresponding lagrangian densities ΔLg can be
a singular nonintegrable function.

If we consider the components h
(c)
p (ρi) of the

tetrad as the variables describing the gravitational
field, they must obey the Lagrange equations

∂Ltot

∂h
(c)
p

=
∂

∂ρq

[
∂Ltot

∂h
(c)
p,q

]

. (39)

It was checked in [6] that the tetrad components de-
fined by Eqs. (26)–(28) obey the Lagrange equations.

5. CONSERVATION OF ENERGY AND
THREE-MOMENTUM

In the tetrad formalism, let us define the superpo-
tential U kl

i , proposed by Møller [12, 14]

U kl
i = −U lk

i = h(a)k
∂Ltot

∂h
(a)i
,l

= h
(a)
i

∂Ltot

∂h
(a)
l,k

. (40)

Then the total energy-momentum pseudotensor den-
sity, T k

i is

T k
i = U kl

i ,l ≡
∂U kl

i

∂ρl
. (41)

It is shown in [12, 14] that

U kl
i =

|h|
κ

×
{
hk(a)h

(a)l
;i +

(
δki h

(a)l − δlih
(a)k

)
hs(a);s

}
. (42)

As seen from Eq. (42) Møller’s superpotential is the
tensor density under arbitrary coordinate transfor-
mations since it is expressed in terms of the tetrad

vectors h(a)k , their covariant derivatives h(a)l;i , and the

determinant |h|. The superpotential U kl
i is antisym-

metric with respect to the indexes k and l, therefore
the divergence of the total energy-momentum pseu-
dotensor density is zero

T k
i ,k = U kl

i ,l,k ≡ ∂2U kl
i

∂ρk∂ρl
= 0. (43)

As is well known [12–14] the conservation of the
energy-momentum four-vector is a consequence of
Eq. (43).

If the total energy-momentum pseudotensor is lo-
calized in the compact three-dimensional region V ,
such a system will be called the insular one. Then
the metric tensor gik for the insular system goes to its
Minkowski limit ηik at ρ → ∞ as

gik(ρ) = ηik(ρ) +O1(ρ). (44)

Here, On denotes the quantity which main term at
ρ → ∞ is proportional to ρ−n for n = 1, 2, .... The
standard consideration shows that the energy-momentum
four-vector Pi defined by

Pi =
1

c

∫

V

T 0
i d3ρ (45)

is conserved if all components T k
i are zero outside

the region V , where d3ρ = dρ1dρ2dρ3 ≡ dρxdρydρz
denotes the volume element. Using Eq. (41) the
formula can be rewritten as the surface integral due
to the Gauss theorem

Pi =
1

c

∫

V

∂U 0λ
i

∂ρλ
d3ρ =

1

c

∫

Σ

U 0λ
i kλdσ. (46)

Here, Σ is the closed surface enclosing the region V ,
while the three-dimensional vector kλ is the unit outer
normal to the surface. The element of the surface is
defined by

kλdσ = ελμνdρ
μδρν , (47)
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where ελμν is the totally antisymmetric three-dimen-
sional Levi-Civita symbol, while dρμ and δρν are
infinitesimal three-vectors on the surface Σ.

When the matter fields are localized mainly in the
region V and T k

i goes to zero outside V at ρ → ∞
as a quantity of On with n ≥ 4 the system will be also
called the insular system. For this case, the full three-
dimensional space (V∞) is to be considered and for
the surface Σ, we will choose ΩR with R → ∞. Here
ΩR denotes the surface of the sphere with the radius
R. The surface integral in Eq. (46) becomes the limit
of the integral on ΩR at R → ∞ if the superpotential
U kl
i is regular inside the sphere ΩR.

Substituting formulas (25) for |h|, (27) and (28)

for hk(a), expressions for h(a)l;i , calculated with the help
of Eq. (21), into Eq. (42) we get for the nonzero com-
ponents of the superpotential [6] for the RN solution

U 0λ
0 = −U λ0

0 = −2N nλD′

κD , (48)

while for μ �= λ, one gets

U λμ
μ = −U μλ

μ =
nλ

κ
N ′. (49)

Note that for the RN solution, the full three-dimensio-
nal space for the uniform coordinates ρx, ρy, ρz
consists of all points with ρ =√

ρ2x + ρ2y + ρ2z ≥ ρmin, where ρmin is given by Eq. (14)

and D(ρmin) = 0. This means that the surface
integral in Eq. (46) consists of the integrals over
the spheres with the radii ρ = ρmin and ρ = R with
R → ∞. As seen from Eq. (48) all the superpotential
components U 0λ

0 are infinite on the sphere with the
radius ρmin since D(ρmin) = 0 and U 0λ

0 behave near
ρmin as 1/(ρ − ρmin). This makes the definition of
the energy given by Eq. (46) meaningless for any
parameter m obeying inequality in Eq. (6) since the
energy is infinitely large. Also, there is no solution
with e and m obeying Eq. (6) with a finite total inertial
mass which can be used as a model for electrons.

But the total energy of the system becomes finite
when the limit m → mcl is considered, where

mcl =

√
e2

k
. (50)

Having in mind to discuss elementary particle struc-
ture, we put |e| = 4.80 × 10−10 esu for which re =
1.38 × 10−34 cm that is calculated with Eq. (4). It is
this system which will be referred to as “the classical
electron”. Its mass is equal to 1.86 × 10−6 g that is
much larger than the experimental value of the real
electron mass. The solution with the RN parameter
m = mcl corresponds to the black hole with the min-
imal possible mass for the fixed electrical charge.

If m = mcl, then according to Eqs. (3)–(5),
and (14)

r0 = 0, re = rg/2, ρmin = 0. (51)

Using Eqs. (51) we get now instead of Eqs. (9) and
(10)

D(ρ) = 1 +
rg
2ρ

= 1 +
re
ρ
, (52)

N (ρ) = 1. (53)

Due to Eq. (53) one gets N ′ = 0, therefore for-
mula (49) is simplified:

U λμ
μ = −U μλ

μ ≡ 0. (54)

Formula (48) becomes now [6]

U 0λ
0 = −U λ0

0 =
mclc

2

4π

nλ

ρ2(1 + re/ρ)
. (55)

Let us calculate the total energy of the classical
electron with the help of Eqs. (45), (41), and (55).
Since now ρmin = 0, we have

E =

∞∫

0

T 0
0 (4πρ2dρ)

=

∞∫

0

e2(4πρ2dρ)

4πρ4(1 + re
ρ )

2
=

e2

re
. (56)

As seen from this formula the integrand increases
with decreasing of ρ as ρ−2 when ρ 	 re and is di-
vergent if k = 0 (gravitation is switched off) and re =
0. When k > 0 and re > 0, the integrand at ρ ≤ re
goes to a finite constant. As a result, the integral
is convergent due to the gravitation contribution and
is equal to e2/re = c2

√
e2/k = mclc

2 if we take into
account Eqs. (4) and (50). The mass mcl calculated
with the help of Eq. (56) is the inertial mass min
of the electromagnetic and gravitational fields. The
total gravitational mass mgr can be obtained from
the asymptotic behavior at ρ → ∞ of g00 which is to
be [13]

g00 → 1− 2kmgr/(c
2ρ). (57)

For the parameter m of the RN solution g00 behaves
at ρ → ∞ according to Eqs. (13), (9), and (10) as

g00 = N 2/D2 → 1− 2km/(c2ρ). (58)

A comparison of Eqs. (57) and (58) shows that the
parameter m is always the total gravitational mass:
m = mgr. When m = mcl, we have min = mgr which
means that the total inertial mass of the system of
the electromagnetic and gravitational fields is equal
to its total gravitational mass. According to the
equivalence principle, this means that there is no need
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in any point-like particle (usually called the electron
with any bare mass) inside the system of the electro-
magnetic and gravitational fields under consideration.

If Eqs. (51) are fulfilled and rg = 2re, then g00 =

Λ = (1− re/r)
2 according to Eqs. (1) and (2). The

sphere with the radius r = re is the horizon surface
of the black hole. This means that no information
about the region with r < re can be obtained by the
external observer located in points with r > re. The
integration in Eq. (56) for ρ ≥ 0 corresponds to the
integral for the region r ≥ re. Therefore the integra-
tion runs over only those points where the fields can
be measured by any exterior observer and the inertial
mass is calculated for r ≥ re only. It is this inertial
mass which is compared with the total gravitation
mass whose value is established by the study of the
asymptotic behavior at r → ∞ of g00 in the region
where the fields can also be observed. Formally, the
formula for the energy-momentum tensor density of
the electromagnetic field t 0

0 = e2/(8πr4) can be con-
sidered at r → 0 also but it loses the physical meaning
for r < re since the electromagnetic field cannot be
observed there. Note that min = mcl is not the inertial
mass of the point-like particle laying at r = 0 but it is
the total mass of the fields situated beyond the event
horizon.

The space part of the total energy-momentum
pseudotensor density is zero (T ν

μ ≡ 0), which follows
from Eqs. (41) and (54). This assumes the absence
of any pressure of any part of the classical electron
on other parts. Therefore there is no need in the
additional surface-tension (existing in the Lorentz
model of the electron [4] considering it as a drop of
a charged liquid) which prevents disintegration of the
system. Note that only T ν

μ is zero, meanwhile the
Maxwell stress tensor for the electromagnetic field t ν

μ

is non-zero.

6. GENERAL DISCUSSION

As is shown above the system of entirely grav-
itational and electromagnetic fields described by
Eqs. (1)–(2) and (32) has a finite total inertial mass
if the parameter m of the RN solution is equal to√

e2/k. For this case m is both the total inertial
and gravitational mass of the black hole, that is in
agreement with the equivalence principle. Such a
system is called “the classical electron” when e is the
experimental electron charge. There is no need in any
additional charged point-like particle which is usually
called the electron. In the approach of the present pa-
per, the only existing entities are the electromagnetic
and gravitational fields, while the solutions, localized
in the three-dimensional space regions of the range of
about re = 1.38× 10−34 cm, represent the classical

electrons. According to Eq. (4) this typical length re
is expressed through the fundamental constants e, k,
and c only.

The important thing is the tetrad representation for
the RN solution, which makes the action finite for the
parameters e and m obeying Eq. (6). The action is
infinite for the same e and m if we consider the metric
tensor components as the fundamental variables of
the gravitational field. Therefore the tetrad formalism
and the approach based on the metric tensor compo-
nents can be nonequivalent for solutions with singular
points.

Up to now, the mass m and the charge e were as-
sumed to be those of an elementary particle. If we de-
note the mass and charge of a macroscopic object by
M and Q, we can define the distance rQ =

√
kQ2/c2

to measure all distances by the dimensionless variable
ζ = r/rQ. The function Λ, that defines the metric
tensor by Eqs. (1) and (2), and the only nonzero
component of the four-potential of the electric field
A0 = Q/r for the RN solution can be expressed by
the functions of ζ

Λ = 1− 2|λ|
ζ

+
1

ζ2
, (59)

√
k

c2
A0 =

Q
√

Q2

1

ζ
=

λ

|λ|
1

ζ
, (60)

where the dimensionless parameter λ = M
√
k/Q.

Since the parameter c2/
√
k is the universal constant,

that can be used as a unit for the potential A0,
Eqs. (59) and (60) show that the RN solution has only
one dimensionless parameter λ which determines the
solution uniquely. The classical electron corresponds
to λ = −1.

Systems of electromagnetic and gravitational
fields with parameter sets (M1, Q1) and (M2, Q2)
are described with the same functions Λ and A0 of
ζ if Q1/M1 = Q2/M2 since λ1 = λ2. In the classical
physics, this relation gives a possibility to study the
properties of the elementary particle with the charge
e and mass m investigating the macroscopic objects
with parameters Q and M if e/m = Q/M . The quan-
tum effects violate this scaling and the elementary
particle properties with a small scale parameter re
differ from those of macroscopic bodies characterized
by large parameters rQ (rQ 	 re). This reminds the
situation with the atom and its classical planetary
model in which “electrons” and a “nucleus” are
macroscopic bodies. As is well known the quantum
effects for atoms are not small corrections and make
the lifetime of the atoms infinitely large while the
macroscopic model lives for a very short time interval
owing to the emission of the electromagnetic waves.
The same is probably true for the real electron and its
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classical model: the ratio of their masses mcl/me is
about 1021 where me is the experimental mass of the
real electron.

It is well known (see for instance [3]) that the
quantum effects become important in QED at dis-
tances of about the Compton wavelength of the real
electron λC = �/(mec) where � denotes the Plank
constant. Since λC = 3.86 × 10−11 cm, it is much
greater than the typical length re = 1.38 × 10−34 cm
for the classical electron. For the first sight, this
means that the above consideration of the classical
electron has no physical meaning. Nevertheless,
highly likely this argument is not true. Indeed, even
in CE, where the integral for the electromagnetic
energy is divergent as dr/r2 at r → 0 (see Eq. (56)
for re = 0 when r = ρ), the contribution of gravitation
makes the total mass of the point-charge finite. In
QED, self-energy Feynman graphs are divergent as
dr/r [1–3]. Therefore the fractional contribution of
gravitation needed to make the total mass finite can
be much less important than in CE. Hence it is not
excluded in QED that gravitation can make the elec-
tron mass finite.

By changing the sign of the charge in Eq. (32)
we get a set of the electromagnetic and gravitational
fields corresponding to “a classical positron”. It has
the same mass as the electron in the approach of the
present paper, hence the positron is not an electron
with the negative energy as in the Dirac equation [1–
3]. It is assumed that in the future version of the
quantum field theory, there will be no need in the local
electron-positron field having the negative vacuum
energy.

In the approach based on the supersymmetry, the
negative vacuum energy of the electron-positron field
compensates the positive vacuum energy of the pho-
ton field. The total vacuum energy of all fundamental
fields can be equal to zero if the supersymmetry is
not broken. Supersymmetric partners of the existing
particles with masses less than about 1 TeV/c2 are
not found up to now. This can mean that the super-
symmetry is not a fundamental symmetry of elemen-
tary particles. In the absence of the electron-positron
field, the vacuum energy can probably be made finite
due to the negative contribution of the gravitational
field in addition to the positive contribution of the
vacuum quantum oscillation of the electromagnetic
field. Indeed, let us consider only the modes of the
vacuum quantum oscillations with frequencies ω <
ωc. Let us imagine that the vacuum energy density
for these modes with their energies εvac = �ω/2 is
huge but finite in the absence of the gravitational
interaction. If the gravitational interaction is switched
on, its negative contribution decreases the vacuum
energy. In standard QED, the electromagnetic energy

density goes to infinity when ωc → ∞, the modulus of
the gravitation interaction contribution increases to
infinity quadratically with respect to the electromag-
netic energy density, t00. It is not excluded that the
total vacuum energy density becomes finite. This pic-
ture is analogous to the considered classical electron
case for which the infinite contribution of t00 at ρ → 0
is compensated with the contribution of the gravita-
tional attraction of small three-dimensional space re-
gions, filled with the electromagnetic field, with each
other. The cancellation of these two contributions
leads to the finite value of the total mass.

Real electrons take part in weak interaction and
this electron property should be taken into account.
Therefore we should try to find solutions of equations
for the system of the electromagnetic, gravitational,
and weak-boson fields. Another property of the elec-
tron, that should be taken into account in its realistic
description, is the electron spin s equal to �/2. But
solutions with s = �/2 are not excluded for the non-
linear boson fields. A well known example provides
the Skyrme model [17] in which the solutions with
the spin �/2 (baryons) are constructed, though the
fundamental field is the nonlinear field of the pseu-
doscalar pions. Another way to make the spin is to
consider a solution of rotating electromagnetic and
gravitational fields described with the Kerr-Newman
solution [18, 19].

The localized states of the quantized electromag-
netic, gravitational, and weak-boson fields with the
�/2 spin, the observed values of the electric charge,
the weak charge, and the finite masses equal to those
of the electron, muon, and tau lepton could exist. In
the same way, the localized solutions of the quantized
gluon, electromagnetic, weak boson, and gravita-
tional field equations would be quarks and there would
not be a need in local bispinor fields correspond-
ing to the point-like massive quarks. This problem
cannot probably be solved soon since there is no
renormalizable quantum field theory of gravitation,
though any estimates of the electron mass could be
performed in lattice calculations using the continual
integrals for electromagnetic and gravitational fields
(see review [20]). Nevertheless, we assume that the
idea to construct all observed particles as singular
or localized (in a very small three-dimensional space
region) solutions of fundamental field equations is
constructive.

7. CONCLUSIONS

It is shown, that for the Reissner–Nordström so-
lution, the contribution of gravitation makes the total
energy-momentum pseudotensor density integrable
function if the parameter m of the solution is equal
to

√
e2/k. Nevertheless, the singular points exist for
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this case also. The total inertial mass of the system
of the electromagnetic and gravitational fields is finite
(min =

√
e2/k) and equal to its total gravitational

mass mgr. According to the equivalence principle
(min = mgr), this means the absence of an additional
contribution to the total mass of any charged point-
like particle with a nonzero bare mass. In the ap-
proach of the present paper, the classical electron is
the system of the electromagnetic and gravitational
fields localized in the space region with the typical
length of about re = 1.38 × 10−34 cm, the electric
charge e = −4.8× 10−10 esu, and the total mass m =
1.86 × 10−6 g.

Since the total stress tensor density T ν
μ is identi-

cally zero, there is no need in additional nonelectro-
magnetic forces preventing the disintegration of the
classical electron. Such forces were introduced in the
Lorentz model of the electron (surface-tension forces
of an unknown nature in a charged liquid drop).

The total lagrangian for the Reissner–Nordström
solution is infinitely large if the metric tensor compo-
nents are considered as fundamental variables of the
gravitational field for the parameters e and m obey-
ing the inequality m <

√
e2/k. The total lagrangian

for the Reissner–Nordström solution is shown to be
finite in the tetrad representation for the same param-
eters e and m.

We assume that it is not excluded that in quantum
field theory, the only existing fundamental entities
are gravitational, electromagnetic, weak-boson, and
gluon fields. Leptons and quarks are states of these
fields with corresponding quantum numbers localized
in very small three-dimensional space regions.
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