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Abstract— We consider a model of two-dimensional dilaton gravity where the strong coupling region is cut
off by the dynamical boundary making its causal structure similar to the spherically symmetric sector of the
higher dimensional gravity. It is shown that the classical dynamics is fully determined by a single ordinary dif-
ferential equation which possesses an infinite number of exact solutions. All solutions describe either the solu-
tions describing the full ref lection regime at subcritical energies or the black hole formation regime at larger
energies. Black hole evaporation effect is taken into account by introduction of a new field mimicking the
one-loop conformal anomaly. The semiclassical solutions become nonanalytic and ambiguous. It is proposed
to perform analytic continuation of the subcritical solutions describing the full reflection through the complex
domain to bypass singularities of real solutions describing collapse. It is supposed that this may lead to the
correct saddle point solution saturating the path integral for gravitational scattering amplitude at enough
energy for a black hole to form in the classical theory.
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INTRODUCTION
Two-dimensional models serve as excellent tools to

improve our understanding of different aspects of
quantum field theory. In particular, the appropriate
model can be a perfect arena for studying the quantum
gravity. The clarification of the situation with the
apparent unitarity violation in the scattering processes
with intermediate black holes [1] can be an intriguing
possibility. Rigorous treatment of this problem met
great difficulties, and, therefore, the consensus about
its solution has not been achieved. It is favorable to
have in a possession a simple model describing black
hole evaporation where the problem can be formu-
lated properly.

We draw our attention to the Callan–Giddings–
Harvey–Strominger (CGHS) model [2] with a
Lagrangian

(1)

describing interaction of two-dimensional metrics
, dilaton φ, and N massless scalar fields . In addi-

tion to the fact that two-dimensional gravity is itself
renormalizable [3], the CGHS model is of great
advantage in the respect that its solutions are expressed
in the closed integral form.

The matter fields  obey the conformally invariant
wave equation

(2)

whose solutions decouple from the metrics and repre-
sent non-interacting in- and out-sectors

(3)

in the light-cone frame.
Unfortunately, this model has its own pitfalls.

Penrose diagram of the Minkowski vacuum shown in
Fig. 1 is similar to that appeared in the spherically-
symmetric Einstein gravity but with a new kind of
asymptotic infinities S±. The region of space-time 
in the neighborhood of  is asymptotically f lat: the
effective gravitational constant  what fol-
lows from Lagrangian (1) and vacuum solution

. In contrast to the reduced higher dimen-
sional gravity, there is a strong coupling region near
the conformal boundary , where f luctuations of the
metrics and the dilaton field become large and the
mean-field approximation fails.

It is natural to impose boundary conditions on the
line  outside the strong coupling region. The
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Fig. 1. Penrose diagram for Minkowski space in the CGHS
model. Two wave packets  and  schematically depict
noninteracting in- and out- wave sectors.
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simplest variant is to set reflecting conditions for the
matter fields . The spacetime boundary 
becomes dynamical and the strong coupling region is
removed. The similar approach was conducted in pre-
vious researches of the CGHS model (see, e.g., [4, 5]
(the Russo–Susskind–Thorlacius (RST) model) and
[6, 7]).

For a large number N of scalar fields, the black hole
evaporation is a one-loop effect and it can be effec-
tively incorporated by addition of the Liouville–
Polyakov term,

(4)

where  is the Green’s function of the d’Alem-
bert operator.  allows us to neglect contribu-
tions from the ghost fields, metrics, and dilaton. In the
following, we use a trick from Ref. [8] replacing
Eq. (4) with an additional scalar field nonminimally
interacting with metric in such a way that its on-shell
action is equivalent to Eq. (4). This allows us to work
with the explicitly covariant and local expressions.

Unitarity of the quantum gravity received a sub-
stantial support from the AdS/CFT correspondence
[9]. Nevertheless, it did not shed any light on the
explicit mechanism behind the quantum coherence
preservation. In addition, the information paradox
received a new boost after formulation of the firewall
problem [10] signaling severe violation of the equiva-
lence principle. The numerical studies of Ashtekar
et al. [11] showed that the CGHS model is still capable
of surprising us. Thus, we still need simple two-
dimensional gravity models where one can study the
firewall problem without invoking any kind of holo-
graphic reasoning.
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There are several new-fashioned semiclassical
methods which allow reconsidering the problems
described above. Among them is the technique of
expansion around the instantons [12]. This method
was applied at the beginning of the 1990s to describe
tunneling transitions induced by multiparticle scatter-
ing. The gravitational collapse of a large number of
particles into the black hole and their subsequent
evaporation in larger number of soft Hawking quanta
can be treated as such a process.

The second method deals with complex solutions
of the classical field equations with regularized energy

, . The suppression exponent of the
gravitational scattering was calculated by exploiting
this method in the thin shell models [13]. One cannot
apply this method to the original CGHS model,
because there is no classical reflection regime and the
black holes form at arbitrarily low energies. Thus, the
dynamical boundary is necessary (i) to cut off the
strong coupling region, (ii) to ensure the existence of
the full ref lection regime, and (iii) to couple the in-
and out-sectors of scalar fields .

We aimed to construct a stringent Lagrangian for-
mulation of the CGHS model with boundary, what
was achieved recently in paper [14]. Despite breaking
of exact solvability, dynamics of the model with
boundary is fully governed by a single ordinary differ-
ential equation. We are able to solve Cauchy problem
analytically for an infinite class of initial conditions
representing incident wave packets of the scalar field
fin. We suppose that until now researchers were mostly
studying delta-functional or piecewise-constant wave
packets. Now, a fascinating possibility to study analyt-
ically smooth exact solutions becomes available. In
addition, by investigating the critical behavior on the
threshold of black hole formation, we came to the
conclusion that this model is non-integrable.

Further, we take into account the quantum correc-
tions by adding an auxiliary scalar field. Using the
analytical results [14], it is still possible to derive
smooth exact solutions. However, from physical rea-
soning it is clear that the obtained solutions describe
the black hole evaporation consistently only to the past
of the last ray of Hawking radiation which emanates
from the endpoint where the event horizon meets the
black hole singularity.

Near this last ray, an imminent quantum region
arises, and, therefore, the full effective solution cannot
be found without additional input concerning nonper-
turbative effects near singularity. It is unusual that
large f luctuations near singularity exist despite the fact
that the strong coupling region where  was
removed. As a result, we lose predictability and analyt-
icity of solutions in the mean-field theory, and the
information loss appears to be inevitable.
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We have mentioned the main theses of this paper
and now proceed to a more detailed discussion of the
model with boundary.

SEMICLASSICAL MODEL 
WITH PARAMETER Q

Let us consider the toy model of dilaton gravity
describing evaporating black holes with action

(5)

where χ is the auxiliary scalar field with the bulk equa-
tion

(6)

We assume that  massless scalar fields  are
in vacuum. It allows us to keep in the action (5) explic-
itly only one field . The Liouville–Polyakov
term (4) is encoded in the new scalar field χ. The local
RST term  is required by solvability of bulk field
equations.

The boundary action is the Gibbons–Hawking
term. It contains the extrinsic curvature ,

where  is the outer normal to the boundary.
The proper time τ is the invariant integration measure
along . It was also necessary to add the
mass  at the boundary to match the vacuum solu-
tion  with the corresponding boundary condi-
tion

(7)

where . Next, we introduced the Lagrange
multiplier for the field χ to impose a specific boundary
condition

(8)

The last condition on the field f is of Neumann
type:

(9)

The action of the field χ is equivalent to (4) if one
fixes . Model with arbitrary parameter 
could be interesting on its own allowing us to study dif-
ferent regimes of evaporation. We need to stress that
Eq. (8) is incorrect at quantum level, because it con-
tradicts Wess–Zumino consistency condition.

For the sake of completeness, we write the bulk
equations obtained by varying with respect to dilaton
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(10)

and the metric

(11)

where

(12)

(13)

are the energy-momentum tensors of the fields f and χ.

GENERAL SOLUTION

Let us proceed to the conformal gauge (the light-
cone frame), where . Since

, one obtains

(14)

Let the boundary in the light-cone coordinates
move according to the law . Using the bound-
ary conditions (8) and (9), one can relate in- and out-
components of the solutions (3) and (14). For the field
f, one has

what yields the reflection law,

(15)

For χ, we obtain the analogous relation

(16)

The integration constants  and  are fixed corre-
spondingly for separate timelike segments of the
boundary in order to sustain continuity of the fields f
and χ.

The residual gauge degrees of freedom may be fixed
completely by fixing . Solving Eqs. (10) and (11)
one obtains the general bulk solution,

(17)

where
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(19)

The linear dilaton vacuum  satisfies the
field equations. Using the vacuum solution

 in the gauge , one finds

(20)

because of the nontrivial transformation law for 
in (14). In this case all scalar fields are in vacuum,

.

BOUNDARY EQUATION
The derivation of the differential equation for 

is the final step. Using the dilaton boundary condition
(7), one obtains the Riccati equation

(21)

where . Substituting into
Eq. (21)

(22)

one simplifies it to equation on the new function ,

(23)

where we have used the vacuum value  from (20).
The function  has a simple relation with the

proper time of the boundary. Since

(24)

For the linear dilaton vacuum, the boundary equa-
tion (21) has a solution . It appears
not to be a unique vacuum solution of Eq. (21). Con-
sider the corresponding general solution of Eq. (23):

(25)

Indeed, the solution with  yields the
boundary . However, there is also
a second branch with , which corresponds
to the boundary also in the motionless state,

.
By direct substitution one can verify that the first

boundary trajectory is matched onto the f lat solution
with the metric  and zero curvature ,
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The second boundary trajectory yields the solution

(26)

with non-zero mass parameter  +

 + .

EVAPORATING BLACK HOLES

In the case of low energy of the field , the solu-
tion describes the full reflection off the boundary
without appearance of the event horizon. If Q is suffi-
ciently small in comparison with , the correspond-
ing solutions far before the end of evaporation only
slightly differ from those studied in [14]. Note that the
accelerated motion of the boundary also generates a
nonzero f lux of the field  in  representing quantum
creation of particles. The asymptotic boundary behav-
ior  at  guarantees the total
energy conservation with no regard to the presence of
a black hole.

With growing energy, the boundary 
becomes spacelike, what can be interpreted as a singu-
larity absorbing the matter fields. Then, the black hole
begins to evaporate producing field  with f lux

. During evaporation process, the singularity
 moves toward a turning point  and finally

meets the horizon and again becomes timelike. One
can show that this curve does not satisfy Eq. (21) and,
therefore, cannot be a regular part of the boundary,
violating the reflecting conditions, Eqs. (15) and (16).
Thus, the full analytical solution is incompatible. One
also notices that the matter fields at  violate energy
conservation and are in a causal contact with the black
hole interior, what is unphysical. The only way to
avoid this is to attach the new solution after the last ray

 satisfying the equation of motion (21) with the
vacuum asymptotics at .

The boundary condition could be such that a new
branch of the timelike boundary  emerges at the
endpoint  automatically satisfying Eq. (21). The
corrected solution is unique. Using the reflecting con-
ditions, one obtains the functions  and , which
have to be matched with  and  on the last ray
with use of free integration constants  and  in (15)
and (16). Otherwise, the fields  and  suffer from
discontinuity at , leading to a malicious singu-
larity in the energy density .
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Fig. 2. Spacetime of evaporating black hole. Two regular parts of the boundary correspond to the solution in regions I and III. II
is the quantum region.
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QUANTUM REGION
Unfortunately, the classical solution described in

the section above will suffer from the quantum pathol-
ogy known as the thunderbolt problem [15]. We con-
sider the behavior of the correlation functions

. Vacuum correlation of the
scalar field 

has a logarithmic singularity at  and . Using the
reflecting condition, one finds the correlation func-
tion for the field 

Now, we consider two points lying on opposite sides of
the last ray: the first one is at  and 
on the boundary before it went under the horizon, and
the second one is at  and  on the
boundary after its re-emerging at the endpoint (Fig. 2).
One can see that

differs significantly from the vacuum one for any ε.
This means that there must exist particles with arbi-
trarily large momenta  in the last ray vicinity of
size ε. The thunderbolt is a burst of particles with
infinite energy.

One may provide a following interpretation of such
a disaster. Delta-functional energy density on the last
ray indicates that semiclassical approximation is not
applicable there. The thunderbolt appears in this case
as an artifact signaling large quantum fluctuations of
the fields near the endpoint. One assumes that back-
reaction taken into account dissolves the thunderbolt

in a region of size , which can be estimated by

using energy conservation. Hence, the solution in this
quantum region cannot be determined uniquely and
the mean-field approximation is not meaningful even
in the weak coupling limit.
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It is well known that the evaporating black holes
violate global charge conservation laws. Massless sca-
lar field possesses a shift charge

One may wonder if this charge absorbed by a black
hole could be restored because of uncertainty of the
solution in the quantum region. Nevertheless, this is
impossible. It is easy to derive a Cauchy-type inequal-
ity , where Qf is the shift charge hidden inside
the quantum region with energy E and size . This
estimate reads Qf ( Q, so that is impossible to restore
an arbitrary amount of global charge absorbed by the
black hole.

CONCLUSIONS

We showed that the standard mean-field theory
suffers a defeat in the weakly-coupled model, Eq. (5).
For any solution with sufficiently large energies, there
appears a quantum region of finite width where the
usual semiclassical approximation does not work.

Is there any possible approach to the CGHS prob-
lem to solve it without complete rejection of semiclas-
sics? An interesting possibility arose from the method
of complex classical trajectories applied to the CGHS
model with boundary [14]. The idea is to start from
reflecting solution with subcritical energy  and
then perform analytic continuation avoiding singular-
ities of collapsing solution at energies with .

One may use the obtained solution to estimate the
suppression exponent of the multiparticle scattering of
the coherent states corresponding to the wave packets

 at energies sufficient for black hole formation in
a purely classical setup. If this method becomes suc-
cessful, it would be possible to test unitarity of the
gravitational S-matrix in this model.
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