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Abstract—A simple, physically validated, model of charge-independence and charge-symmetry breaking
is proposed for the pion–nucleon coupling constant. Within this model, the pion–nucleon coupling
constants are assumed to be in direct proportion to the masses of nucleons and pions involved in the
interaction. The charge dependence of the pion–nucleon coupling constants and low-energy parameters
of nucleon–nucleon scattering in the 1S0 spin-singlet state is studied on the basis of Yukawa’s meson
theory. By using the value of f2

ppπ0 = 0.0749 (7) established reliably for the pseudovector pion–nucleon
coupling constant, which characterizes the strength of the nuclear proton–proton interaction, the values
of f2

c = 0.0802 (7) and f2
0 = 0.0750 (7) were calculated for, respectively, the charged and neutral pion–

nucleon coupling constants, along with the value of f2
nnπ0 = 0.0751 (7), which characterizes the strength of

the nuclear neutron–neutron interaction. The values calculated for the low-energy parameters of neutron–
proton and neutron–neutron scattering with the aid of the above constants agree well with experimental
data.
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1. INTRODUCTION

The pion–nucleon coupling constants are funda-
mental physics features of strong nuclear interac-
tion. There are two kinds of them—the pseudovec-
tor, fπ, and pseudoscalar, gπ, pion–nucleon coupling
constants, which are related by the equation gπ =
(2MN/mπ±) fπ, where MN and mπ are the masses
of the nucleon and pion, respectively, involved in the
interaction. The pion–nucleon coupling constants
play an important role in studying nucleon–nucleon
and pion–nucleon scattering processes. In view of
this, much attention has been given to studying them
and to refining their values [1–25]. The pion–nucleon
coupling constants are especially important for low-
energy nuclear physics owing to the fact that the
pions are the lightest mesons, so that their exchange
determines the most well known and, simultane-
ously, most long-range part of the nucleon–nucleon
interaction—its so-called one-pion tail.

The aforementioned fact that the pion is the meson
of greatest importance for obtaining deeper insight
into the properties of nuclear forces explains why the
understanding and a precise quantitative description
of pion–nucleon interaction would provide a clue to
constructing the theory of strong nuclear interaction
as such [1–3]. In the 1970s and the early 1980s,
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there was some kind of consensus on the value of
the pion–nucleon coupling constant g2π , which was
generally thought to be charge-independent and ap-
proximately equal to 14.5 [2–8], but, later on, the sit-
uation changed substantially and became more am-
biguous [9–24].

For example, a Nijmegen group of physicists pub-
lished a series of articles in the 1990s [9–11], where,
on the basis of an energy-dependent partial-wave
analysis of data on nucleon–nucleon scattering, they
obtained the values of g2π0 = 13.47 (11) and g2π± =
13.54 (5) for, respectively, the neutral and charged
pion–nucleon coupling constants. These values are
approximately 7% smaller than their counterparts ob-
tained earlier. The values presented by the Nijmegen
group for the neutral and charged coupling constants
are in close agreement within the errors, which con-
firms to some extent the charge independence of the
pion–nucleon coupling constant. Similar smaller
values of the charged pion–nucleon coupling con-
stants, g2π± ∼ 13.7–13.8, were obtained in a number
of other studies [14–17].

At the same time, the Uppsala group for neutron
studies [18] obtained, for the charged pion–nucleon
coupling constant, a much greater value of g2π± =
14.52 (26), which exceeds substantially the generally
accepted value obtained for the neutral pion–nucleon
coupling constant, g2π0 = 13.55 (13) [the respective
value of the pseudovector coupling constant is f2

π0 =

952
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0.0749 (7)], in [9] on the basis of a partial-wave anal-
ysis of proton–proton scattering in the energy range
of Tlab � 350 MeV. Other studies of the Uppsala
group [19, 20] confirmed a rather “large” value of
the charged pion–nucleon coupling constant, g2π± ∼
14.5, this being in agreement with the results of some
earlier studies reported in [4–6, 8] and devoted to
determining the charged pion–nucleon coupling con-
stants.

It follows that, at the present time, the problem of
the possible charge dependence of the pion–nucleon
coupling constant is of paramount fundamental im-
portance. In other words, this is problem of the
distinction between the pion–nucleon coupling con-
stants for neutral and charged pions. By and large,
quite a detailed history of the change in the situation
around the pion–nucleon coupling constants can be
found in [3, 11–13, 21, 22]. The problem of the
possible breakdown of charge symmetry of the pion–
nucleon coupling constant is even subtler and has not
yet received adequate study. This is the problem of the
distinction between the pion–nucleon coupling con-
stants corresponding to proton–proton and neutron–
neutron interaction. The point is that, because of
the absence of neutron targets, direct experiments
aimed at studying neutron–neutron scattering have
to date remained impossible, as is well known. Any-
where, however, the amount of the breakdown of
charge symmetry of the pion–nucleon coupling con-
stant should obviously be less than the amount of the
breakdown of its charge independence.

In our earlier studies [23, 24], the pion–nucleon
coupling constant and the breakdown of charge in-
dependence of nuclear forces were studied in the ap-
proximation of one-pion exchange by employing the
standard classic Yukawa model [1–3]. According to
Yukawa’s meson theory, strong nuclear interaction
between two nucleons at low energies is due primarily
to the exchange of virtual pions, which determines
the long-range part of the nucleon–nucleon (NN )
interaction and, accordingly, governs NN scattering
in the low-energy region. In that case, the pion–
nucleon coupling constants, which are fundamen-
tal physics parameters of strong nuclear interaction,
control the strength of nuclear interaction. The re-
sults obtained in those studies are indicative of a
substantial charge dependence of the pion–nucleon
coupling constants, which characterize the NN in-
teraction. On the basis of a simultaneous analysis
of low-energy pion–nucleon and nucleon–nucleon
parameters, we showed that the breakdown of charge
independence of nuclear forces stems primarily from
the mass difference between the charged and neutral
pions. In the present article, which, in fact, reports on
a continuation of our earlier studies quoted above [23,

24], we describe charge-independence and charge-
symmetry breaking for nuclear forces in the pion–
nucleon coupling constant and low-energy parame-
ters of nucleon–nucleon scattering on the basis of a
simple phenomenological model that takes into ac-
count the mass difference between the charged and
neutral pions, as well as the mass difference between
the neutron and proton, and which is compatible with
the standard classic Yukawa meson model.

2. DERIVATION AND DISCUSSION
OF BASIC FORMULAS THAT ESTABLISH

A RELATION BETWEEN DIFFERENT KINDS
OF PION–NUCLEON COUPLING

CONSTANTS

With allowance for electric-charge conservation
in pion–nucleon and nucleon–nucleon systems, it
is necessary in general to discriminate between four
kinds of the elementary pseudovector pion–nucleon
coupling constants [11, 22]:

fpπ0→p, fnπ0→n, fpπ−→n, fnπ+→p. (1)

These kinds correspond to four possible types of
elementary interaction vertices: pπ0 → p, nπ0 →
n, pπ− → n, and nπ+ → p. Here, the pπ− → n
vertex, for example, corresponds to the process in
which proton annihilation and neutron creation occur,
along with π−-meson annihilation or π+-meson
creation. The remaining pion–nucleon interaction
vertices admit a similar interpretation. It is note-
worthy that, instead of the detailed notation fpπ0→p,
fnπ0→n, fpπ−→n, and fnπ+→p for the elementary
pion–nucleon coupling constants, use is made of the
notation fp, fn, f−, and f+, respectively, in some
articles [11, 22]. For the sake of convenience, we
will henceforth use the notation fpπ0, fnπ0 , fpπ−, and
fnπ+ , where the subscripts correspond to the initial
channel of the Nπ → N ′ reaction.

It should be noted that the normalization of the
elementary coupling constants in (1) is chosen in
such a way that, in the limiting particular case of ex-
act fulfillment of charge independence (CI), all these
coupling constants are coincident with one another;
that is,

fCI
pπ0 = fCI

nπ0 = fCI
pπ− = fCI

nπ+. (2)

At the same time, we emphasize that, in the present
study, we assume that all coupling constants in (1)
are different in general, since, in the processes that
they describe, one deals with particles of different
mass corresponding to the nucleon, MN (N = p, n),
and pion, mπ (π = π0, π+, π−) masses.

The pion–nucleon coupling constants that char-
acterize the strength of nuclear interaction between
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two nucleons are important combinations of the ele-
mentary coupling constants in (1). They are defined
as follows [11, 22]:

f2
ppπ0 = fpπ0fpπ0 , (3)

f2
nnπ0 = fnπ0fnπ0 , (4)

f2
0 = fpπ0fnπ0 , (5)

f2
c = fpπ−fnπ+. (6)

The coupling constants in (3) and (4) characterize the
strength of the nuclear interaction in the 1S0 spin-
singlet state between two protons and between two
neutrons, respectively, via the exchange of neutral
pions. In the case of neutron–proton interaction,
the exchange of both neutral and charged pions oc-
curs. In the latter case, it is necessary to employ
the neutron–proton coupling constant f2

npπ defined
as the average of the neutral, f2

0 , and charged, f2
c ,

pion–nucleon coupling constants [23–26]; that is,

f2
npπ ≡ 1

3

(
f2
0 + 2f2

c

)
. (7)

In [24], we showed that the following approximate
relation holds for the pseudovector pion–nucleon
coupling constant:

fπ±

fπ0

=
mπ±

mπ0

. (8)

This relation, which is highly precise, indicates that
the charge splitting of the pion–nucleon coupling
constant is nearly identical to the charge splitting of
the pion mass. The analysis in [24] is performed in the
approximation of exact fulfillment of charge symmetry
(CS); that is,

f2
π0 ≡ f2

ppπ0 = f2
nnπ0 = f2

0 , f2
π± = f2

c .

Relation (8) has a straightforward physical vali-
dation [24]. Indeed, we note that, since the pion–
nucleon coupling constant fπ measures the strength
of the pion-field action on a nucleon, the higher the
pion mass mπ, the stronger this action. Thus, the
meson field of charged pions having the mass mπ± in
excess of the neutral-pion mass mπ0 and surrounding
a nucleon has a stronger effect on it than the neutral-
pion field. In other words, relation (8) can also be
recast into the form

fπ = Cmπ. (9)

This form reflects directly the above physical property
of the pion–nucleon system. We would like to em-
phasize that relations (8) and (9), taken in one form
or another, attracted the attention of the authors of
some earlier studies [12, 13, 27, 28].

Taking now into account the presence of four
forms of the pion–nucleon coupling constants in the
general case, as well as the finiteness of the nucleon
masses and the difference in them, we then obtain
the following relations for the elementary pion–
nucleon coupling constants fNπ ≡ fNπ→N ′, which
characterize the strength of the nuclear nucleon–pion
interaction:

fpπ0 = CMpmπ0 , (10)

fnπ0 = CMnmπ0 , (11)

fpπ− = CMpmπ− , (12)

fnπ+ = CMnmπ+ . (13)

They provide a natural generalization of relation (9).
We note that, to some extent, relations (10)–(13)

for pion–nucleon systems appear to be an analog of
Newton’s law of universal gravitation and Coulomb’s
law, since, in these relations, some feature of the
interaction strength in the system being considered—
namely, the pion–nucleon coupling constant—is in
direct proportion to the product of what plays the
role of charges in the system. In this connection,
it is worth recalling that Yukawa’s meson the-
ory [1–3] was originally constructed by analogy with
electromagnetic-interaction theory for the strong-
interaction case where the interaction is mediated by
massive mesons rather than by massless photons. In
general, relations (10)–(13) admit the same physics
interpretation and have the same validation as rela-
tions (8) and (9), which are their particular case.

It is of importance that, from the proposed rela-
tions in (10)–(13), it obviously follows that, in the
particular limiting case where the nucleon masses are
equal to each other (Mn = Mp = MN ) and where,
simultaneously, all of the pion masses are equal to one
another (mπ± = mπ0 = mπ), all elementary pion–
nucleon coupling constants in (1) are equal to one an-
other, and so are therefore all of the constants in (3)–
(7); that is, the charge independence of nuclear forces
holds exactly and fully in this particular case for the
pion–nucleon coupling constant. Further, charge-
independence and charge-symmetry breaking for nu-
clear forces in the simple model being considered
turns out to be due fully and directly to, as follows
from relations (10)–(13), the mass difference between
the particles involved in the interaction (nucleons)
and the mass difference between the mediators of the
interaction (pions).

The ensuing calculations and conclusions drawn
from them show that the proposed hypothesis leads to
a series of reasonable results and implications, which,
in a number of cases, agree well with experimental
data. In passing, we emphasize that the hypothesis
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that charge-independence breaking for nuclear forces
in nucleon–nucleon systems stems primarily from
the mass difference between the charged and neutral
pions has a rather long and rich history and a sound
validation [12, 13, 28–36]. However, it has yet to be
proven conclusively.

Ultimately, charge-independence breaking for nu-
clear forces, in general, and for the pion–nucleon
coupling constant, in particular, is due, from the mi-
croscopic point of view of quantum chromodynamics
(QCD), to the mass and charge difference between
u- and d-quarks, which are elementary constituents
of hadrons, as well as to microscopic electromagnetic
effects in quark–gluon interaction that are induced
by these distinctions. Thus, the modern generally
accepted microscopic theory of strong interaction in
the form of QCD predicts that charge-independence
breaking inevitably occurs for the pion–nucleon cou-
pling constant, and there only remains the question of
the amount of this breaking for various forms of this
constant.

As was indicated earlier, the proton–proton cou-
pling constant f2

ppπ0 has been determined to date
most reliably and most precisely from experiments [9].
There is no substantial discrepancies between its
known values. Within the proposed model, the
neutron–neutron coupling constant f2

nnπ0 , the neu-
tral coupling constant f2

0 , and the charged coupling
constant f2

c are expressed, according to Eqs. (3)–(6)
with allowance for Eqs. (10)–(13), in terms of the
coupling constant f2

ppπ0 as

f2
nnπ0 =

M2
n

M2
p

f2
ppπ0 , (14)

f2
0 =

Mn

Mp
f2
ppπ0, (15)

f2
c =

Mn

Mp

m2
π±

m2
π0

f2
ppπ0. (16)

From Eqs. (7), (15), and (16), it follows that the
neutron–proton coupling constant has the form

f2
npπ =

1

3

Mn

Mp

(
1 + 2

m2
π±

m2
π0

)
f2
ppπ0 . (17)

The pseudoscalar pion–nucleon coupling con-
stant gNπ and the pseudovector coupling constant
fNπ are related by the well-known equivalence equa-
tion [1, 3]

gNπ =
2MN

mπ±
fNπ. (18)

We note in passing that many authors use the nota-
tion g2/4π for the pseudoscalar pion–nucleon cou-
pling constant instead of our notation g2. Our no-
tation, which is also used quite widely, is obtained
from the aforementioned one by means of the sim-
ple scaling transformation g → g

√
4π [22], which is

quite obvious. Taking into account Eq. (18) and also
employing relations (3)–(6) and (14)–(17), we obtain
the following expressions for the pseudoscalar pion–
nucleon coupling constants

g2ppπ0 =

(
2Mp

mπ±

)2

f2
ppπ0 , (19)

g2nnπ0 =
M4

n

M4
p

g2ppπ0 , (20)

g20 =
M2

n

M2
p

g2ppπ0 , (21)

g2c =
M2

n

M2
p

m2
π±

m2
π0

g2ppπ0 , (22)

g2npπ =
1

3

M2
n

M2
p

(
1 + 2

m2
π±

m2
π0

)
g2ppπ0 . (23)

3. NUMERICAL RESULTS
AND DISCUSSION

ON CHARGE-INDEPENDENCE BREAKING
FOR THE PION–NUCLEON COUPLING

CONSTANT

Taking into account Eqs. (14)–(17) and employ-
ing the reliably established experimental value of the
proton–proton coupling constant [9],

f2
ppπ0 = 0.0749 (7) , (24)

and the experimental values of the nucleon and pion
masses [37],

Mp = 938.272046 MeV/c2, (25)

Mn = 939.565379 MeV/c2,

mπ0 = 134.9766 MeV/c2, (26)

mπ± = 139.57018 MeV/c2,

we obtain the following values for the pion–nucleon
coupling constants f2

nnπ0 , f2
0 , f2

c , and f2
npπ:

f2
nnπ0 = 0.0751 (7) , (27)

f2
0 = 0.0750 (7) , (28)

f2
c = 0.0802 (7) , (29)
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f2
npπ = 0.0785(7). (30)

In this case, the use of Eqs. (19)–(23) leads to the
following results for the pseudoscalar pion–nucleon
coupling constants:

g2ppπ0 = 13.54 (13) , (31)

g2nnπ0 = 13.61 (13) , (32)

g20 = 13.58 (13) , (33)

g2c = 14.52 (13) , (34)

g2npπ = 14.20(13). (35)

The value in (34) that we found for the charged
pseudoscalar pion–nucleon coupling constant g2c in
the way outlined above on the basis of the proposed
model is in perfect agreement with the experimental
value

g2c = 14.52 (26) (36)

obtained by the Uppsala group for neutron stud-
ies [18]. The value in (34) is also in very good
agreement with the value of g2π± = 14.55 (13) that we
obtained in [23, 24] on the basis of Yukawa’s pion–
nucleon model by employing the low-energy param-
eters of pp and np scattering in the approximation of
exact fulfillment of charge symmetry (g2π0 ≡ g2ppπ0 =

g2nnπ0 = g20 and g2π± = g2c ). The value in (34) obtained
for the coupling constant g2c within the model being
considered also agrees with a number of other val-
ues deduced for the charged pion–nucleon coupling
constant from an analysis of experimental data on
nucleon–nucleon and pion–nucleon interaction [4–
6, 8, 19, 20].

At the same time, some other experimental deter-
minations [10, 11, 14–17, 38–40] led to substantially
smaller values for the charged coupling constant g2c ,
which are close to the value of the neutral pion–
nucleon coupling constant in (33), g20 = 13.58 (13);
this may suggest the possible charge independence
of the pion–nucleon coupling constant. Thus, the
problem of charge dependence or charge indepen-
dence of the pion–nucleon coupling constants f2 and
g2 is open at the present time and calls for further
experimental and theoretical investigations [9–24,
38–43]. Nevertheless, the results of the present
study and the results of our earlier studies reported
in [23, 24] and based on Yukawa’s meson theory are
indicative of charge-independence breaking for the
pion–nucleon coupling constant, fully in agreement
with the concepts adopted in QCD, which underlies
generally accepted microscopic strong-interaction

theory. The recently published review article of
Matsinos [22] provides a more detailed description
of the situation around the pion–nucleon coupling
constants and their determination.

The value obtained within the proposed model for
the ratio of the neutral pseudoscalar pion–nucleon
coupling constants gnπ0 ≡ gnnπ0 and gpπ0 ≡ gppπ0

corresponding to the neutron and proton,

gnπ0

gpπ0

=
M2

n

M2
p

= 1.0028, (37)

agrees well with the value
gnπ0

gpπ0

= 1.0038, (38)

obtained in [44] on the basis of the chiral Cloudy Bag
Model (CBM) and with the value

gnπ0

gpπ0

= 1.0023, (39)

found in [45] by the method of Feynman graphs.
On the whole, the problem of the value of the

pion–nucleon coupling constant gnnπ0 correspond-
ing to the neutron–neutron interaction has not yet
received adequate study, and the number of investi-
gations devoted to it is rather small. In any case, the
distinction between the neutron, gnnπ0 , and proton,
gppπ0 , coupling constants is small, as can be seen
from the values in (37)–(39), but the spread of the
specific values obtained for gnnπ0/gppπ0 within var-
ious models is quite large. The value obtained for
this quantity on the basis of our model and presented
in (37) agrees with the results based on some of the
aforementioned models but disagrees with the results
produced by some other models. A more detailed
investigation of the neutron coupling constant gnnπ0

and a comparison with the results of the calculations
already performed on the basis of various models will
be the subject of our subsequent studies.

Let us now consider numerical characteristics of
charge-independence and charge-symmetry break-
ing for the pion–nucleon coupling constants f2 and
g2 within the proposed model. From Eqs. (14)–(23),
it follows that

f2
c

f2
0

=
g2c
g20

=
m2

π±

m2
π0

= 1.0692, (40)

f2
npπ

f2
0

=
g2npπ
g20

=
1

3

(
1 + 2

m2
π±

m2
π0

)
= 1.0461, (41)

f2
nnπ0

f2
ppπ0

=
M2

n

M2
p

= 1.0028, (42)
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g2nnπ0

g2
ppπ0

=
M4

n

M4
p

= 1.0055. (43)

These important relations characterize the amount of
charge-independence and charge-symmetry break-
ing for the pion–nucleon coupling constants. The
degree of charge-independence breaking for the
pion–nucleon coupling constants is determined by
the mass difference between the charged and neutral
pions (mπ± > mπ0), while the degree of charge-
symmetry breaking is completely determined by the
mass difference between the neutron and proton
(Mn > Mp). In the particular case of exact charge
symmetry, relation (40) written in the form fc/f0 =
mπ±/mπ0 reduces to relation (8).

From Eqs. (40)–(43), one can see that the pion–
nucleon coupling constants satisfy the following im-
portant inequalities:

f2
ppπ0 < f2

0 < f2
nnπ0 < f2

npπ < f2
c , (44)

g2ppπ0 < g20 < g2nnπ0 < g2npπ < g2c . (45)

The numerical values obtained above for the pion–
nucleon coupling constants and presented in (24)
and (27)–(35) illustrate and confirm the inequali-
ties in (44) and (45). Under the condition of exact
charge symmetry, we obtained the following inequal-
ities in [24]:

f2
0 < f2

c , g20 < g2c . (46)

They are a particular case of the inequalities in (44)
and (45).

The inequalities in (44) and (45) have a clear phys-
ical validation and admit a straightforward interpre-
tation. Namely, the fact that the pion–nucleon cou-
pling constant f2

NN ′π characterizes the strength of
the nuclear interaction between respective nucleons
in the 1S0 spin-singlet state entails the conclusion
that, with allowance for Eqs. (24), (27), (28) and
(30), the inequalities in (44) and (45) are indicative of
a substantially greater strength of the np interaction
in relation to the pp- and nn-interaction strengths,
as well as in relation to the averaged strength of pp
and nn interactions. The important fact that the
strength of the np interaction in the 1S0 spin-singlet
state is substantially greater than the strength of the
pp interaction is beyond any doubt now [24]. The
fact that the singlet np scattering length is larger in
absolute value than the purely nuclear pp scattering
length, |anp| > |app|, is an argument in support of the
statement that the np interaction is stronger at low
energies than the pp interaction. The hypothesis that
the neutron–neutron interaction is stronger than the
proton–proton interaction, fully in accord with the
inequalities in (44) and (45), seems quite justified at

the present time, even though there is no consensus
on the value of the nn scattering length [13, 28, 33–
36, 46–48]. In addition, we recall that, by definition,
the coupling constant f2

0 is the average of the cou-
pling constants f2

ppπ0 and f2
nnπ0 , while the coupling

constant f2
npπ is the average of the coupling constants

f2
0 and f2

c , and this also leads to the respective in-
equalities in the chains of inequalities in (44) and (45).

Thus, it follows from Eqs. (24)–(35) and (40)–
(43) that, in the model being considered, charge-
independence breaking (CIB) is mandatory for the
pion–nucleon coupling constant. Along with
Eqs. (40)–(43), the difference of the charged and
neutral coupling constants is frequently viewed as the
degree of CIB for pion–nucleon coupling constants;
that is,

Δf2
CIB ≡ f2

c − f2
0 (47)

=
Mn

Mp

(
m2

π±

m2
π0

− 1

)
f2
ppπ0 = 0.0052,

Δg2CIB ≡ g2c − g20 (48)

=
M2

n

M2
p

(
m2

π±

m2
π0

− 1

)
g2ppπ0 = 0.94.

The relative degree of CIB for the pion–nucleon cou-
pling constants is given by

δf2
CIB ≡ Δf2

CIB

f2
0

=
m2

π±

m2
π0

− 1 = 0.069, (49)

δg2CIB ≡
Δg2CIB

g20
= δf2

CIB = 0.069. (50)

In the model being considered, it is quite significant,
amounting to about 7% in relative units. It should be
emphasized that, in the model being considered, the
relative degree of CIB for the pion–nucleon coupling
constants is fully determined by the mass difference
between the neutral and charged pions.

The difference of the neutron–neutron and proton–
proton coupling constants measures the degree of
charge-symmetry breaking (CSB) for the pion–
nucleon coupling constants; that is,

Δf2
CSB ≡ f2

nnπ0 − f2
ppπ0 (51)

=

(
M2

n

M2
p

− 1

)
f2
ppπ0 = 0.00021,

Δg2CSB ≡ g2nnπ0 − g2ppπ0 (52)

=

(
M4

n

M4
p

− 1

)
g2ppπ0 = 0.075.
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The relative degree of CSB for the pseudovector and
pseudoscalar pion–nucleon coupling constants is
given by

δf2
CSB ≡ Δf2

CSB

f2
ppπ0

=
M2

n

M2
p

− 1 = 0.0028, (53)

δg2CSB ≡ Δg2CSB

g2
ppπ0

=
M4

n

M4
p

− 1 = 0.0055. (54)

Thus, the relative amount of CSB for the pion–
nucleon coupling constants is fully determined by the
mass difference between the neutron and proton. As
might have been expected, it is rather small, amount-
ing to about 0.5%.

The ratios of the relative amount of CIB for pseu-
dovector and pseudoscalar pion–nucleon coupling
constants to the relative amount of CSB for them are
given by

δf2
CIB

δf2
CSB

=
m2

π±/m
2
π0 − 1

M2
n/M

2
p − 1

= 25.09, (55)

δg2CIB

δg2CSB
=

m2
π±/m

2
π0 − 1

M4
n/M

4
p − 1

= 12.53. (56)

The ratios of their absolute values have the form
Δf2

CIB

Δf2
CSB

=
Mn

Mp

δf2
CIB

δf2
CSB

= 25.13, (57)

Δg2CIB

Δg2CSB
=

M2
n

M2
p

δg2CIB

δg2CSB
= 12.56. (58)

Thus, we see that, according to (55)–(58), the degree
of CSB for the pseudovector pion–nucleon coupling
constant is approximately 25 times less than the de-
gree of CIB for this quantity, while the degree of CSB
for the pseudoscalar pion–nucleon coupling constant
is less than the degree of CIB for this coupling con-
stant by a factor of about 12.

4. ON THE CHARGE DEPENDENCE
OF THE NUCLEON–NUCLEON

SCATTERING LENGTH

The low-energy parameters of effective-range the-
ory for nucleon–nucleon scattering, which include
the scattering length and the effective range, are
fundamental physics features of the nucleon–nucleon
interaction and nuclear forces in general [1, 2, 49–
56]. On the basis of the influence on the change in
these parameters and on the basis of their values, one
estimates, among other things, the degree of CIB and
CSB for nuclear forces [13, 28, 33–36], as well as
the properties of various nucleon–nucleon potentials
and other physics parameters and properties of the

nucleon–nucleon system [1, 2, 53–55]. In doing this,
it is precisely the nucleon–nucleon scattering length
that usually turns out to be the most sensitive (and,
simultaneously, the most characteristic) parameter
with respect to moderately small variations in the
nucleon–nucleon potential or in some other physics
features of the system being considered.

In order to calculate or estimate the low-energy
parameters of nucleon–nucleon scattering within
the proposed model, we now consider a description
of the nucleon–nucleon interaction in terms of the
nucleon–nucleon potential following from meson
field theory—namely, the Yukawa potential, which
contains the pion–nucleon coupling constant as an
input parameter. For the NN interaction in the 1S0

spin-singlet state, the Yukawa potential has a simple
form [1–3]; that is,

VY (r) = −V0
e−μr

μr
. (59)

In Eq. (59), r is the distance between the two nucle-
ons involved, while μ is related to the pion mass mπ

by the equation

μ =
mπc

�
, (60)

where c is the speed of light and � is the reduced
Planck constant. The nuclear-force range R ≡
1/μ∼ 1.4 fm is in inverse proportion to the pion
mass and is small. The potential depth V0 in (59)
is related to the dimensionless pseudovector pion–
nucleon coupling constant fπ by the following simple
equation [1–3, 23, 24, 33]:

V0 = mπc
2f2

π . (61)

Thus, the pion mass mπ and the pion–nucleon cou-
pling constant fπ are basic features of the pion–
nucleon interaction, which play an important role in
studying NN and πN interactions [1–3, 13, 28].

Two interacting protons or two interacting neu-
trons exchange neutral pions, in which case the pa-
rameters of the Yukawa potential in (59), μpp and V pp

0
in the former and μnn and V nn

0 in the latter case, are
determined, according to Eqs. (60) and (61), by the
neutral-pion mass mπ0 and the coupling constants
f2
ppπ0 and f2

nnπ0 . In the case of interaction between a
neutron and a proton, both neutral and charged pions
are exchanged, in which case the parameters μnp and
V np
0 of the potential in (59) should be determined by

employing [23–26] the charge-averaged pion mass

m̄π ≡ 1

3
(mπ0 + 2mπ±) (62)

and the averaged neutron–proton coupling constant
f2
npπ in (7).
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For input model parameters, we will use the rather
well-known low-energy parameters of proton–proton
scattering in just the same way as we earlier em-
ployed and specified the proton–proton pion–nucleon
coupling constant f2

ppπ0. Further, we will determine

the parameters μpp and V pp
0 of the proton–proton

Yukawa potential on the basis of the experimental
values of the proton–proton scattering length app
and the proton–proton effective range rpp. In do-
ing this, it is necessary to remove corrections in-
duced by the electromagnetic interaction from the real
experimental values of the nuclear–Coulomb low-
energy parameters of proton–proton scattering. After
the removal of these corrections, the purely nuclear
proton–proton scattering length, app, and effective
range, rpp, take the following values [28]:

aexpt
pp = −17.3 (4) fm, (63)

rexpt
pp = 2.85 (4) fm. (64)

Employing the variable-phase approach [57] and the
values of the proton–proton scattering parameters
in (63) and (64) for the case of proton–proton interac-
tion, we obtain the following values for the parameters
of the Yukawa potential in (59):

μpp = 0.8392 fm−1, (65)

V pp
0 = 44.8259 MeV. (66)

It should be noted that all of the ensuing calculations
of the low-energy parameters of nucleon–nucleon
scattering with the aid of the Yukawa potential are
performed here on the basis of the variable-phase
approach developed in [57].

In [23, 24], we showed that the neutron–proton
parameters μnp and V np

0 of the potential in (59) were
related to the analogous parameters μpp and V pp

0 of
the proton–proton interaction by the equations

μnp =
m̄π

mπ0

μpp, (67)

V np
0 =

m̄π

mπ0

f2
npπ

f2
ppπ0

V pp
0 . (68)

Similarly, the neutron–neutron parameters μnn and
V nn
0 of the potential in (59) are related to the parame-

ters μpp and V pp
0 of the proton–proton interaction by

the equations

μnn = μpp, (69)

V nn
0 =

f2
nnπ0

f2
ppπ0

V pp
0 . (70)

Within the model being considered, expressions (68)
and (70) for the potential depths V np

0 and V nn
0 can be

recast with allowance for Eqs. (14) and (17) into the
form

V np
0 =

1

3

Mn

Mp

m̄π

mπ0

(
1 + 2

m2
π±

m2
π0

)
V pp
0 , (71)

V nn
0 =

M2
n

M2
p

V pp
0 . (72)

Relying on Eqs. (67)–(72) and employing the values
of the parameters of the Yukawa potential for proton–
proton interaction in (65) and (66), as well as the val-
ues of the nucleon and pion masses in (25) and (26),
we calculate the parameters μ and V0 of the Yukawa
potentials for neutron–proton and neutron–neutron
interactions. The results are the following:

μnp = 0.8583 fm−1, (73)

V np
0 = 48.0246 MeV, (74)

μnn = 0.8392 fm−1, (75)

V nn
0 = 44.9496 MeV. (76)

The singlet neutron–proton scattering length, anp,
and effective range, rnp, calculated in this way on the
basis of the proposed model with the values in (73)
and (74) obtained for the parameters of the potential
in (59) are the following:

anp = −23.4 (4) fm, (77)

rnp = 2.70 (5) fm. (78)

They are in good agreement with their experimental
counterparts [50, 51, 55, 56]

aexpt
np = −23.715 (8) fm, (79)

rexpt
np = 2.71 (7) fm. (80)

For the low-energy neutron–neutron scattering
parameters ann and rnn, we similarly obtain the
following values by employing the values in (75)
and (76) for the parameters of the Yukawa potential:

ann = −18.2 (4) fm, (81)

rnn = 2.84 (5) fm. (82)

As a result, the values in (81) and (82) that we cal-
culated for ann and rnn on the basis of the proposed
model agree well, with allowance for the errors, with
the respective experimental values

aexpt
nn = −18.6 (5) fm, (83)
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rexpt
nn = 2.83 (11) fm, (84)

which the authors of [58] found in the reaction π− +
d → γ + n+ n. The values in (81) and (82) found for
the low-energy neutron–neutron scattering parame-
ters are also in very good agreement with the values
of ann = −18.38 (55) fm and rnn = 2.84 (4) fm that
we obtained in [47, 48] on the basis of an analysis
of the binding-energy difference between the 3H and
3He mirror nuclei. Thus, the value in (81) obtained for
the neutron–neutron scattering length on the basis
of the model being considered is in good agreement
with the averaged experimental value of this quantity,
a

expt
nn � −18.5 fm, but deviates, at the same time, from

its different averaged experimental value of a
expt
nn �

−16.5 fm. As is well known, the values obtained in
the past decades for the neutron–neutron scattering
length ann lie around the aforementioned two experi-
mental values of this quantity [13, 28, 46–48, 58–61],
which are markedly different.

Because of the presence of a virtual level at an
energy close to zero in the system of two nucleons in
the 1S0 state, the nucleon–nucleon scattering length
in this state is the most sensitive parameter with re-
spect to moderately small variations in the nucleon–
nucleon potential. For this reason, CIB for nuclear
forces in the nucleon–nucleon system is often quan-
titatively measured [28, 36] in terms of the difference
of the average of the proton–proton and neutron–
neutron scattering lengths and the neutron–proton
scattering length; that is,

ΔaCIB ≡ 1

2
(app + ann)− anp. (85)

According to (63), (79), and (83), the experimental
value of this difference is

Δa
expt
CIB = 5.8 (3) fm, (86)

which is about 30% in relative units. The value in (86)
is far beyond the experimental errors and is indica-
tive of the breakdown of the hypothesis of charge
independence of nuclear forces [28, 33–36]. As was
indicated earlier, the charge dependence of nuclear
forces is usually associated with the mass difference
between the charged and neutral pions [12, 13, 28–
36], but only about one-half of the experimental differ-
ence Δa

expt
CIB was then explained by the mass difference

between the π± and π0 mesons [12, 32–35].
The experimental value of the proton–proton scat-

tering length app in (63) and the values that we cal-
culated for the neutron–proton, anp [see (77)], and
neutron–neutron, ann [see (81)], scattering lengths
on the basis of the proposed model lead to the follow-
ing value of ΔaCIB within this model:

Δatheor
CIB = 5.7 (4) fm. (87)

The theoretical value obtained in this way for
ΔaCIB and presented in (87) agrees very well with the
experimental value in (86). Thus, we have seen that,
within the model being considered, CIB for nuclear
forces is due almost completely to the mass difference
between the charged and neutral pions. In this case,
the scattering-length difference Δatheor

CIB is about 98%

of the experimental value Δa
expt
CIB in (86). In contrast

to this, the theoretical valueΔatheor
CIB obtained in earlier

studies was about 50% of the experimental value
Δa

expt
CIB, as was indicated above.
Usually, CSB for nuclear forces in nucleon–

nucleon systems is quantitatively measured by the
difference of the proton–proton and neutron–neutron
scattering lengths [13, 28, 36]; that is,

ΔaCSB ≡ app − ann = |ann| − |app| . (88)

According to (63) and (83), the experimental value of
this difference is

Δa
expt
CSB = 1.3 (6) fm, (89)

which is about 7% in relative units. This deviation
is beyond the experimental errors and is indicative of
the breakdown of the hypothesis of charge symmetry
of nuclear forces [28, 33–36].

For the difference of the proton–proton and neu-
tron–neutron scattering lengths, the experimental
value of the proton–proton scattering length app
in (63) and the value presented in (81) for the
neutron–neutron scattering length ann and calcu-
lated in the present study on the basis of the proposed
model lead to the value

Δatheor
CSB = 0.9 (4) fm, (90)

which, within the errors, agrees with the experimental
value in (89). Thus, CSB of about 0.5% for the
pion–nucleon coupling constants (51)–(54), which,
in the model being considered, is due to the mass
difference between the neutron and proton, leads to
quite significant CSB of about 5% for the singlet
nucleon–nucleon scattering length. The latter is in
fairly good agreement with experimental data.

5. BASIC CONCLUSIONS AND SUMMARY

In the present study, we have proposed a phe-
nomenological model of charge-independence and
charge-symmetry breaking for pion–nucleon cou-
pling constants. In this model, the distinctions be-
tween the available four types of the elementary pseu-
dovector pion–nucleon coupling constants are de-
scribed by simple expressions in terms of the splitting
proportional to the masses of nucleons and pions
involved in the interaction process—namely, by ex-
pressions (10)–(13). The proposed model generalizes
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relation (8) considered earlier in [24] and based on the
assumption that, in the approximation of exact charge
symmetry, the charge splitting of the pion–nucleon
coupling constant is equal to the charge splitting of
the pion mass.

As a physics substantiation and a physics in-
terpretation of this model, we can indicate the fact
that the pion–nucleon coupling constants fNπ are
a measure of the strength of pion–nucleon interac-
tion; therefore, the assumption that the higher the
masses of the particles involved in the interaction
process, the greater the strength in question would
be reasonable. It follows that charge-independence
and charge-symmetry breaking for the pion–nucleon
coupling constant in the proposed model is directly
related to the mass difference between interacting
particles (nucleons and pions). Thus, CIB for the
pion–nucleon coupling constant is completely ex-
plained by the mass difference between the charged
and neutral pions and between the neutron and pro-
ton, CSB for the coupling constant being associ-
ated with the mass difference between the neutron
and proton. We have found that the charged pion–
nucleon coupling constants f2

c and g2c exceed the
neutral pion–nucleon coupling constants f2

0 and g20
by about 7%, which is indicative of a substantial
breakdown of charge independence of nuclear forces
in the pion–nucleon coupling constants (f2

c > f2
0 and

g2c > g20). In the case of CSB, the neutron–neutron
coupling constant exceeds the proton–proton cou-
pling constant by about 0.5%, which is indicative of
CSB in the pion–nucleon coupling constant.

The calculations performed in the present study
and the conclusions drawn on the basis of their results
have revealed that the proposed model leads to a
number of reasonable results and implications that
agree well with experimental data. In particular, a
relation between the different pion–nucleon coupling
constants characterizing nucleon–nucleon interac-
tion in the 1S0 spin-singlet state has been derived
within this model. By employing the experimental
value of f2

ppπ0 = 0.0749 (7) reliably established for the
neutral pion–nucleon coupling constant, which char-
acterizes the proton–proton interaction, we have cal-
culated the charged and neutral pion–nucleon cou-
pling constants. The results are f2

c = 0.0802 (7) and
f2
0 = 0.0750 (7), respectively. We have also calcu-

lated the pion–nucleon coupling constants f2
nnπ0 =

0.0751 (7) and f2
npπ = 0.0785 (7), which characterize,

respectively, the neutron–neutron and the neutron–
proton interaction.

The value of g2c = 14.52 (13) found within the
proposed model for the charged pseudoscalar pion–
nucleon coupling constant is in perfect agreement

with the experimental value of g2c = 14.52 (26) ob-
tained by the Uppsala group for neutron studies [18]
and is also in good agreement with a number of
other values obtained for the charged pion–nucleon
coupling constant [4–6, 8, 19, 20, 23, 24]. The
value obtained for the ratio of the neutral pseudoscalar
neutron, gnnπ0 , and proton, gppπ0 coupling constants,
gnnπ0/gppπ0 = 1.0028, also agrees well with other two
values found for this quantity on the basis of different
models [44, 45].

The results that we obtained within the proposed
model for the neutron–proton scattering length
and effective range—anp = −23.4 (4) fm and rnp =
2.70 (5) fm—and for the neutron–neutron scattering
length and effective range—ann = −18.2 (4) fm and
rnn = 2.84 (5) fm—by employing the experimental
low-energy parameters of proton–proton scatter-
ing agree within the errors with their experimental
counterparts. Thus, we have seen that, within the
proposed model, charge-independence breaking for
nuclear forces is due almost completely to the mass
difference between the charged and neutral pions,
the scattering-length difference Δatheor

CIB being, in this

case, about 98% of the experimental value Δa
expt
CIB. By

and large, the proposed model leads to a number of
results that agree well with experimental data. This
concerns both the various forms of the pion–nucleon
coupling constants and the calculated low-energy
parameters of nucleon–nucleon scattering.
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Rep. 194, 1 (1990).
29. A. Sugie, Prog. Theor. Phys. 11, 333 (1954).
30. Riazuddin, Nucl. Phys. 2, 188 (1956–1957).
31. Riazuddin, Nucl. Phys. 7, 217 (1958).
32. E. M. Henley and L. K. Morrison, Phys. Rev. 141,

1489 (1966).
33. L. A. Sliv, Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 2

(1974).
34. B. Kyun, Sov. J. Part. Nucl. 6, 139 (1975).
35. T. E. O. Ericson and G. A. Miller, Phys. Lett. B 132,

32 (1983).
36. G. A. Miller and W. T. H. van Oers, nucl-th/9409013.
37. Particle Data Group (K. A. Olive et al.), Chin. Phys.

C 38, 090001 (2014).

38. R. A. Arndt, I. I. Strakovsky, and R. L. Workman,
Phys. Rev. C 52, 2246 (1995).

39. E. R. Arriola, J. E. Amaro, and R. N. Pérez, Mod.
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Rev. C 73, 034001 (2006).

60. W. von Witsch, X. Ruan, and H. Witała, Phys. Rev. C
74, 014001 (2006).

61. E. S. Konobeevsky, S. V. Zuev, A. A. Kasparov,
V. I. Kukulin, V. M. Lebedev, M. V. Mordovskoy,
V. N. Pomerantsev, and A. V. Spassky, Phys. At. Nucl.
81, 595 (2018).

PHYSICS OF ATOMIC NUCLEI Vol. 82 No. 6 2019


