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Abstract—A self-consistent approach in the problem of taking into account quasiparticle–phonon inter-
action provides a high predictive power and is free from adjustable parameters (this is of crucial importance
for astrophysics). Moreover, it is consistent and makes it possible to take into account new effects. A
brief survey of the results obtained within this approach on the basis of Skyrme or Fayans functionals
by employing the smallness parameter g2, where g is the phonon-production amplitudes, with allowance
for tadpole effects is presented. The contribution of quasiparticle–phonon interaction to ground-state
electromagnetic moments of odd nuclei; second-order anharmonic effects in g2, including quadrupole
moments of the first 2+ and 3− states and EL transitions between one-phonon states; third-order
anharmonic effects; pygmy dipole and giant resonances; and the contribution of quasiparticle–phonon
interaction to radiative properties of nuclear reactions are considered. For magic and semimagic nuclei,
additional effects and structures arising in nuclear features because of quasiparticle–phonon interaction
are discussed along with new—that is, three- and four-quasiparticle ground-state—correlations. Earlier
unknown values of the above features, including the features of the pygmy dipole resonance in neutron-rich
nickel isotopes, are predicted. It is shown that, in all of the aforementioned problems, the contributions of
quasiparticle–phonon interaction is sizable, is of fundamental importance, and is necessary for explaining
experimental data.

DOI: 10.1134/S1063778819040100

1. INTRODUCTION

The problem of including quasiparticle–phonon
interaction in the microscopic theory of the nucleus
has a long history that was full of interesting and
important achievements [1, 2]. The fact of employing
two phenomenological parameter sets that describe a
nuclear mean field and an effective interaction (that
is, single-particle and collective excitations) was the
most important and the most characteristic point
of this history. As was convincingly demonstrated
in the studies of the Copenhagen school [1], these
parameters could be determined from experimental
data. However, a vigorous development of astrophys-
ical lines of research in nuclear physics and addi-
tional needs for nuclear data revealed that information
about the properties of nuclei and features of nuclear
reactions are required for nearly all nuclides (there
are approximately six to eight thousands of them),
the overwhelming majority of which are unstable.
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For such nuclei, there are virtually no experimen-
tal data necessary for evaluating phenomenological
parameters. Therefore, there arose an urgent need
for developing microscopic approaches that would
at least exclude the existence of two parameter sets
by reducing them to one set. This set would make
it possible to calculate both the nuclear mean field
and the effective interaction—that is, the properties
of both the ground state and excited states—at least
in the region of relatively low (up to 30 or 40 MeV)
energies (regions of pygmy and giant resonances).
This goal was accomplished owing to the develop-
ment of self-consistent microscopic approaches [3–
5]. The self-consistent theory of finite Fermi systems
(TFFS) [6] that employs the Fayans functional [7,
8] or the Skyrme functional [9] is one version of the
aforementioned approaches.

As a matter of fact, microscopic approaches that
take into account quasiparticle–phonon interaction
within the non-self-consistent quasiparticle–phonon
model [2] and within the Green’s function formal-
ism [10–12, 15] were developed earlier than the
above methods or simultaneously with them. In
the quasiparticle–phonon model, the quasiparticle–
phonon interaction was taken into account in a
unified way over the whole region of low energies,
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Table 1. Energies ω3 (in MeV units) and probabilities
B(E3)↑ (in e2b3 units) for the excitation of 3−1 states in
even tin isotopes (the experimental data on display were
taken from [21])

A ω3 ω
expt
3 B(E3) B(E3)exp

100 5.621 – 0.109 –

102 3.959 – 0.0565 –

104 3.643 – 0.0760 –

106 3.457 – 0.0901 –

108 3.350 – 0.0959 –

110 3.282 [2.459] 0.0996 –

112 3.221 2.355 0.102 0.087(12)

114 3.157 2.275 0.106 0.100(12)

116 3.100 2.266 0.106 0.127(17)

118 3.072 2.325 0.106 0.115(10)

120 3.069 2.401 0.112 0.115(15)

122 3.112 2.493 0.107 0.092(10)

124 3.208 2.614 0.103 0.073(10)

126 3.346 – 0.0973 –

128 3.547 – 0.0870 –

130 3.822 – 0.0784 –

132 4.572 [4.351] 0.129 –

but, in [6, 11], the properties of the ground state and
low-lying one-phonon states were studied along with
anharmonic effects involving two to three phonons,
while the region of pygmy and giant resonances was
treated on the basis of generalizing the standard the-
ory of finite Fermi systems [12] to the case of taking
into account quasiparticle–phonon interaction in the
particle–hole propagators of TFFS [13–16].

The development and application of self-consistent
approaches for problems that require the inclusion
of quasiparticle–phonon interaction [17, 18] was
the next step aimed at improving the description of
available experimental data and at predicting new
physics results associated with taking into account
quasiparticle–phonon interaction. Here—in con-
trast to what we have within the self-consistent
quasiparticle–phonon model [17]—there still exists
a gap between approaches applied in the region of
the ground state and low-lying excited states [6, 19],
on one hand, and the approach in the region of the
pygmy dipole resonance and giant dipole resonance
(PDR and GDR) [18, 20], on the other hand.

The main body of the present article contains two

parts that differ substantially from one another. In
the first part, we describe the properties of the ground
state and low-lying one-phonon states of magic and
semimagic nuclei on the basis of the energy density
functional in the Fayans form and analyze second-
and third-order anharmonic effects in g2, where g
is the dimensionless phonon-production amplitude.
The second part is devoted to analyzing and cal-
culating nuclear features in the region of PDR and
GDR energies. The respective calculations are per-
formed self-consistently in the sense that the mean
field and effective interaction are determined by em-
ploying Skyrme functionals. The features of nuclear
reactions involving gamma rays (radiative-capture
cross sections and spectra, as well as mean radia-
tive widths) are also calculated in the second part.
The conclusions drawn from the present analysis and
some as-yet-unresolved problems are listed in the last
section.

2. GROUND AND LOW-LYING STATES
OF NUCLEI

We make use of the fact that there exists the small
parameter

α =
|〈1‖gL‖2〉|2
(2j1 + 1)ω2

L
� 1 (1)

for magic [1] and semimagic nuclei, where gs is the
reduced matrix element for the amplitude of creation
of a collective phonon with energy ωL.

Basic TFFS equations [12] that describe, respec-
tively, the polarizability of nuclei and the phonon-
production amplitude have the following symbolic
form:

̂V = ̂V0 + ̂F ̂ÂV , (2)

ĝL = ̂F ̂AĝL, (3)

In these equations, all terms are matrices; F is an
effective interaction amplitude that is calculated as
the second variational derivative with respect to the
density (for the scalar Landau–Migdal amplitude) or
is taken from a description on numerous experimental
data on magnetic moments (for the spin part of the
interaction in F ); and A is the particle–hole propa-
gator, which is an integral of the products of various
combinations of Green’s functions: Gp(ε) and Gh(ε)

and the anomalous Green’s functions F (1) and F (2).
As an example, the results of self-consistent cal-

culations of the properties of the first 3− phonons in
tin isotopes are presented in Table 1. These calcula-
tions were performed on the basis of self-consistent
TFFS with parameters of the DF3-a Fayans func-
tional. One can see that we have obtained a rea-
sonable description for the energies of the first 3−
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Fig. 1. Corrections of order g2 to the mass operator in
magic nuclei. The circles with one wavy line in the first
term represent the phonon-production amplitude g, and
the wavy lines stand for the phonon Green’s function
D. The solid lines represent the single-particle Green’s
functions. The second term is the phonon tadpole.

phonons and, what is of particular importance for g2

effects, a good description of the reduced probabilities
B(E3).

In order to take into account corrections for
quasiparticle–phonon interaction to single-particle
features, it is necessary to consider such corrections
to the mass operator shown in Fig. 1. In it, the pole
diagram is supplemented with a nonpole diagram
in the form of the so-called tadpole, which is the
convolution of the phonon Green’s function with δ1g2
(case of 1 = 2). One can find this quantity as a
variation of Eq. (3) for the amplitude g2 in the field
of phonon 1, and find that it satisfies the integral
equation

g12 = δ1FAg2 + F (δ1A)g2 + FAg12. (4)

In the case of 1 �= 2, we continue calling them tadpole
effects. The corrections to the self-energy operator

Table 2. Contribution of quasiparticle–phonon interaction
to neutron single-particle energies (in MeV units) in 208Pb

λ ελ [DF3-a + ph] εexpλ [22] ελ [RMF + ph]

3d3/2 −1.171 −1.40 −0.63

2g7/2 −1.426 −1.45 −1.14

4s1/2 −1.483 −1.90 −0.92

3d5/2 −2.023 −2.37 −1.39

1j15/2 −2.483 −2.51 −1.84

1i11/2 −2.327 −3.16 −3.30

2g9/2 −3.924 −3.94 −3.29

3p1/2 −7.549 −7.37 −7.68

2f5/2 −8.316 −7.94 −8.66

3p3/2 −8.338 −8.27 −8.26

1i13/2 −8.905 −9.00 −9.10

2f7/2 −10.059 −9.71 −9.71

1h9/2 −10.535 −10.78 −11.78

have the form

δΣ = δΣpole + δΣtad, (5)

δΣtad =

∫

dω

2πi
δLgLDL(ω). (6)

2.1. Contribution of Quasiparicle–Phonon
Interaction to Ground-State Properties

2.1.1. Single-particle features. In Fig. 2,
theoretical single-particle levels obtained from self-
consistent calculations with various functionals, in-
cluding the HFB-17 Skyrme functional proposed
most recently, are compared with experimental data.
One can see that the theoretical spectrum is sub-
stantially less dense in the HFB-17 case than in
the case of Fayans functionals, and the description
of the experimental data is worse in the former
case. The deviation from experimental data is due
to the disregard of the contribution of quasiparticle–
phonon interaction, and Table 2 gives the same levels
calculated with allowance for quasiparticle–phonon
interaction according to the equations

δελ = Zλ(δΣ
pole
λλ + δΣtad

λλ), (7)

Zλ =

(

1− ∂Σλλ(ε)

∂ε

∣

∣

∣

∣

ε=ελ

)−1

(8)

[the column containing the results of the calculations
based on the relativistic-mean-field (RMF) method
stands on the right]. One can see that the inclusion of
the quasiparticle–phonon interaction improves sub-
stantially agreement with experimental data. A de-
scription of the same quality was obtained for other
versions of the Fayans functional as well. The version
of the RMF functional leads to substantially poorer
results.

Table 3 gives two components of the correction
for quasiparticle–phonon interaction in Eq. (5). One
can see that the pole term is basically negative, while
the nonpole term δεtad

λ is always positive, so that, in
the majority of cases, these corrections have opposite
signs. Usually, the nonpole term is smaller in magni-
tude than the pole one, but, sometimes, the nonpole
term makes a dominant contribution.

Figures 3 and 4 illustrate a more complicated case
of self-consistent calculations, where single-particle
features for semimagic nuclei have the form

ελ =
ε
(0)
λ +M even

λ (Eλ)

1 + qλ(Eλ)
, (9)

Δλ =
Δ

(0)
λ +M

(1)
λ (Eλ)

1 + qλ(Eλ)
, Eλ =

√

ε2λ +Δ2
λ,
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Table 3. Pole and tadpole contributions of corrections for
quasiparticle–phonon interaction from 3− states to neu-
tron single-particle energies (in MeV units) in 208Pb

λ δεpole
λ δεtad

λ δελ

3d3/2 −0.150 0.012 −0.137

2g7/2 −0.142 0.061 −0.081

4s1/2 −0.134 0.016 −0.118

3d5/2 −0.147 0.023 −0.124

1j15/2 −0.708 0.204 −0.504

1i11/2 −0.058 0.198 0.140

2g9/2 −0.244 0.076 −0.167

3p1/2 −0.220 0.053 −0.167

2f5/2 −0.186 0.094 −0.092

3p3/2 −0.205 0.056 −0.149

1i13/2 0.057 0.211 0.269

2f7/2 0.724 0.091 0.815

1h9/2 −0.014 0.197 0.184

where

qλ = −Modd
λ (Eλ)

Eλ
, (10)

while M even and Modd are, respectively, even and odd
(in energy) parts of the pole term in Fig. 1 (M =

M even +Modd).

The energies ελ and ε
(0)
λ are reckoned from the

respective chemical potentials μ and μ(0). Here, we
have employed the SLy4 Skyrme functional. Since
the problem at hand is very complicated, the respec-
tive calculations were performed without taking into
account corrections for tadpole effects in nuclei where
pairing is present. So far, such corrections were only
introduced in [27]. The contribution of quasiparticle–
phonon interaction to the spectroscopic factor for the
2d3/2 level in 119Sn is quite significant. Reasonable
agreement with experimental data from [23–25] was
obtained for stable tin isotopes. For unstable tin
isotopes, the contribution of quasiparticle–phonon
interaction leads to a strong fragmentation of single-
particle levels, so that it is hardly possible to single out
dominant levels. This is likely to be associated with
a higher degree of collectivity of phonons in unstable
than in stable nuclei, as can clearly be seen from the
results of the calculations in Fig. 4 for pairing-gap
fragmentation in tin isotopes. Good agreement with
experimental data was obtained for the stable isotope
120Sn upon taking into account the contribution of

quasiparticle–phonon interaction [26]. The calcula-
tions considered here are a “self-consistent” contin-
uation of the analysis performed in [28]. A rather
comprehensive survey of the results on the role of
quasiparticle–phonon interaction in the pairing gap
can be found in [29] (see also [26, 30–36]).

2.1.2. Ground-state electromagnetic mo-
ments of odd nuclei. Within standard TFFS,
electromagnetic moments of nuclei are determined
in terms of the diagonal matrix element as

Qλ = 〈λ|V |λ〉m=j , (11)

where λ is the odd-nucleon state and V is the normal
component of the effective field. In the second order,
corrections associated with quasiparticle–phonon in-
teraction have the following symbolic form:

δ(2)Vλ1λ2 ≡ δ2V12 (12)

= (δ2φ1V φ2) + (φ1V δ2φ2) + (δ1φ2V δ1φ1)

+ (φ2, δ
2V φ1) + (δ1φ2δ

1V φ1) + (φ2δ
1V δ1φ1).

These corrections are called and are shown graphi-
cally in Fig. 5. In magic nuclei, a dominant correction
stems from the 3−1 phonon, while, in semimagic ones,
it is due to the 2+1 phonon. The main results of the
present calculations is a very strong compensation
of the diagram in Fig. 5c (effect of phonon-induced
interaction) and the two pole diagrams in Fig 5a.
The remaining corrections then make a sizable con-
tribution. The results obtained by calculating them
are shown in Fig. 6. One can clearly see that the
corrections for quasiparticle–phonon interaction im-
prove substantially agreement with experimental data
[37]. For more detailed results, the interested reader
is referred to the studies reported in [30, 38–43].

2.2. Second-Order Anharmonic Effects

Anharmonic effects, which were qualitatively
studied in low-energy nuclear physics, can be par-
titioned into second- and third-order effects in the
phonon-production amplitude g if a relatively weak
anharmonicity associated with the small parameter
in (1) is assumed (in the following, such effects
are referred to as, respectively, g2 and g3 effects).
This means that the problem at hand is solved in
a step-by-step way: first, phonons are constructed,
whereupon their interactions are considered.

Anharmonic corrections of order g2 for magic nu-
clei were studied long ago within nuclear field theory
(NFT) [1] and by the Green’s function method. For
nuclei where pairing is present, such corrections were
studied within the NFT framework, by the Green’s
function method, and within the consistent Hamil-
tonian approach implemented on the basis of the
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Fig. 2. Neutron single-particle levels in 208Pb. The experimental data on display were borrowed from [22].
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Fig. 3. Spectroscopic factors (single-particle strength)
calculated for the d3/2 orbital in 119Sn and 121Sn.
The experimental data on display were borrowed from
[23–25].

quasiparticle–phonon model [2, 44] (for more details,
see references in [45]).

A new effect of three-quasiparticle ground-state
correlations (GSC), which proved to be large [in
contrast to two-quasiparticle GSC appearing in the
quasiparticle random-phase approximation (QRPA)]
and which saturate one-half of anharmonic cor-
rections, was first considered in [45]. It should
be noted that, in the g2 approximation, these new
GSC were in fact taken into account within the
NFT framework [46] and within the Green’s function
method [47], but they were not singled out quantita-
tively and were not specially called.

The study reported in [11] and performed for magic

1.0
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0.5
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3.0

2.5

110 120 130 140 150 160 170

HFB, levels below EF
HFB, levels above EF

HFB + PC, levels above
12A−1/2

experiment

HFB + PC, levels below

Δ, MeV

A

Fig. 4. Neutron gap with allowance for quasiparticle–
phonon interaction in tin isotopes (results of calculations
with SLy4 Skyrme forces) [26].

nuclei on the basis of the Green’s function method
and within the TFFS framework [12] played an im-
portant role in exploring second- and third-order ef-
fects. In that study, the condition of consistency
between the mean field and nuclear interaction was
used, which permitted avoiding the introduction of
new parameters. As a starting point, use was made
there of RPA—more precisely, the Bohr–Mottelson
approximation—in order to calculate the amplitude
g with allowance for all g2 corrections. For the g2

problem, the inclusion of these corrections is accom-
plished by introducing phonon-tadpole effects (see
Fig. 1), which should be taken into account in the
corrections to the mean field (for more details, see [6]).
The quantity δ1g2, which appears in the definition
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Fig. 5. Corrections for quasiparticle–phonon interaction to static electromagnetic moments: (a) “end” corrections for
quasiparticle–phonon interaction, (b) corrections for quasiparticle–phonon interaction to the mass operator, (c) interaction-
induced corrections for quasiparticle–phonon interaction, (d) corrections induced by the direct action of the electromagnetic
field on the phonon, and (e) tadpole-like diagram for the contribution of the phonon electromagnetic field.

of the tadpole, satisfies the integral equation (4) and
takes into account all g2 terms.
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Fig. 6. Ground-state quadrupole moments of odd indium
and antimony isotopes after and before taking into ac-
count corrections for quasiparticle–phonon interaction.
The experimental data on display were taken from [37].

According to [11], the amplitude of the transition
for two phonons under the effect of the external field
V0 has the form

M (2) = V0GGg1Gg2 + V0GGg12, (13)

where g12 can be represented in the form of the di-
agrams in Fig. 7. Hereafter, g is treated within
the RPA—more precisely, TFFS—framework. After
some algebra, the expression for M (2) can be repre-
sented in the form

M (2) = V GGGg1g2 + V GGδ1FGGg2; (14)

that is, the final expression for M (2) contains the
nuclear-polarizability effect described in RPA (more
precisely, TFFS) terms (first term) and δF (second
term). The calculations performed in [45] show that
the contribution of this, second, term is small.

For nuclei with pairing, it is also necessary to
make use of the anomalous Green’s functions F (1)

and F (2) and six additional diagrams, some of which
are shown in Fig. 8. In the case of identical phonons,
the final expression for the amplitude M (2) (phonon
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Fig. 7. Equation (4) in a diagram form.
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Fig. 8. Matrix elements M (1) and M (2) for nuclei where pairing is present.
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Fig. 9. Quadrupole moments of the first 3− states in even lead isotopes.

static moment) has the form

M
(2)
LL (15)

=
∑

123

(−1)L+1

⎛

⎝

I L L

0 L −L

⎞

⎠

⎧

⎨

⎩

I L L

j3 j2 j1

⎫

⎬

⎭

× 〈1 ‖ V ‖ 2〉〈3 ‖ gL ‖ 1〉〈2 ‖ gL ‖ 3〉
8

∑

i=1

A
(i)pair
123 ,

where

8
∑

i=1

A
(i)pair
123 =

(

1

(ωL + E13)(ωL + E23)
(16)

+
1

(ωL − E13)(ωL − E23)

)

×
[

u21u
2
2v

2
3 − v21v

2
2u

2
3 +

Δ1Δ2

4E1E2
(u23 − v23)
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Table 4. Transition probabilities B(EL)↓ e2 fm2L (the quoted experimental data were taken from [21]; in column 4, the
results of the calculations are given without taking into account new GSC and the nuclear polarizability; the values in
column 5 were obtained with GSC �= 0 and with the polarizability estimated in terms of eeff; in column 6, the results are
presented for GSC = 0 and upon taking into account the polarizability via solving Eq. (2) for the vertex; and final results
are given in column 7)

1 2 3 4 5 6 7 8

EL Transition Nucleus GSC = 0
V = eqV0

GSC �= 0
eeff �= 0

GSC = 0
V �= 0

GSC �= 0
V �= 0

Expt.

E1↓ 3−1 → 2+1
132Sn 7.6× 10−4 2.8× 10−2 6.9× 10−5 1.3× 10−3 >2.8× 10−4

2+1 → 3−1
208Pb 2.45× 10−4 8.19× 10−4 2.4× 10−5 9.5× 10−4 (7.9± 2.7)× 10−4

E2↓ 5−1 → 3−1
132Sn 3.28× 10−3 7.79 13.8 25.7 24.3± 1.2

5−1 → 3−1
208Pb 19.35 36.21 46.0 18.8 27.9± 1.5

+
Δ1Δ3

4E1E3
(u22 − v22) +

Δ2Δ3

4E2E3
(u21 − v21)

]

+
1

E12

[

2E23(u
2
1u

2
3v

2
2 − v21v

2
3u

2
2)

E2
23 − ω2

L

+
2E13(u

2
2u

2
3v

2
1 − v23v

2
2u

2
1)

E2
13 − ω2

L

−
(

Δ1Δ2

2E1E2
(u23 − v23) +

Δ1Δ3

2E1E3
(u22 − v22)

+
Δ2Δ3

2E2E3
(u21 − v21)

)(

E13

E2
13 − ω2

L

+
E23

E2
23 − ω2

L

)]

.

Here, E12 = E1 +E2, E1 =
√

(ε1 − μ)2 +Δ2
1, and

the subscripts 1 ≡ (n1, l1, j1) (spherical nuclei) de-
note sets of single-particle quantum numbers. Fur-
ther, V and gL are, respectively, the effective field that
determines the nuclear polarizability and the ampli-
tude for the production of a photon characterized by
an angular momentum L and an energy ωs. These
quantities are determined by the TFFS equations (2)
and (3) in which it is necessary to take pairing into ac-
count [12]. The second half of expression (16), which
involves the factor (E12)

−1, describes new (that is,
three-quasiparticle) GSC.

Figure 9 shows the quadrupole moments in the
first 3− state that were obtained from a self-consistent
calculation for lead isotopes with the DF3-a Fayans
functional. In our calculations, the value of Q(3−1 ) is
determined by two effects: the GSC effect (which is
responsible for 50% to 60% of Qtot) and the nuclear
polarizability (which saturates approximately 40%
to 50% of Qtot). These two effects have identical
signs, in contrast to what we have in the case of
E1 transitions in the doubly magic nuclei 132Sn and
208Pb (see below), where they compensate strongly
each other. For 208Pb, in which case there is only one

experimental value of Q(3−1 ) = −0.35 ± 0.15 e b, we
obtained Q(3−1 ) = −0.40 e b. In this value, the GCS
contribution is [−0.40− (−0.18)] = −0.22 e b (55%),
while the polarizability contribution is [−0.18 −
(−0.074)] = −0.17 e b (43%). In the final result,
Qtot, all values of the proton and neutron components
are negative. The values calculated for Q(3−1 ) in
semimagic nuclei exceed Q(3−1 ) in the magic nucleus
of 208Pb by a factor of two to three for all lead
isotopes, with the exception of 210Pb and 206Pb,
and by a factor of three to four for all tin isotopes,
with the exception of 102Sn. This complies with the
qualitative assumptions on the values of Q(3−1 ) in [1]
(p. 501), even though there is no order-of-magnitude
distinction for semimagic nuclei studied thus far.

Table 4 gives the results obtained for another
second-order effect—the probabilities for E1 and E2
transitions in the doubly magic nuclei 208Pb and
132Sn—from self-consistent calculations performed
with the DF3-a Fayans functional. Good agreement
with experimental data were obtained. In order to
estimate the role of individual effects that determine
B(EL), the results of various approximate calcu-
lations are presented in columns 4, 5 and 6. The
polarization effects for E1 transitions are determined
first of all by the difference in sign between the local
charges epq(E1) and enq (E1). However, the inclusion
of GSC increases B(E1) by more than one order of
magnitude (columns 6 and 7), whereas the inclusion
of the polarizability reduces this quantity by one order
of magnitude as well (see columns 4 and 6); that is,
the final result for the observed effect is the difference
of two large values. This highlights the importance of
self-consistency in the computational scheme used.
For E2 transitions, the inclusion of GSC changes
B(E2) values by a factor of two to three, while the
inclusion of the polarizability increases the effect
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differently for different nuclei. More detailed results
can be found in [45, 48–50].

2.3. Third-Order Anharmonic Effects

The amplitude of the transition for three phonons
under the effect of the external field V0 has the
form [11]

M (3) = V0GGg1Gg2Gg3 + V0GGg12Gg3 (17)

+ V0GGg123.

In order to derive, for M (3), an expression that sim-
ilar to Eq. (13) for M (2), it is necessary to obtain a
more complicated integral equation for g123 by vary-
ing Eq. (4); that is,

g123 = δ1δ2FGGg3 (18)

+ δ1FGg2Gg3G+ δ1FGGg12 + FGg12Gg3G

+ FGg1Gg2Gg3G+ FGGg123.

This equation (Fig. 10) contains five [rather than two
as g12 in (4)] various free terms, apart from similar
terms arising from phonon permutations. Replicat-
ing, by analogy, the derivation of M (2), we obtain an
expression for M (3) in the form

M (3) = V Gg1Gg2Gg3G+ V Gg12Gg3G (19)

+ V GGδ1FGGg12 + V GGδ1FGg1Gg2G

+ V Gδ1δ2FGg3G.

In terms of Feynman diagrams, it can be represented
in the form shown in Fig. 11.

By analogy with the results obtained in [45] on
the smallness of the diagrams involving δF , we can
assume that the diagrams in Fig. 11 that contain
δF and δ1δ2F also make a small contribution. The
diagram in Fig. 11 with g12 determines the effects of
the phonon tadpole. As far as we know, it has never
attracted the attention of theorists. In the following,
we therefore consider, for the problem of interaction
of three phonons, only the first diagram in Fig. 11
with four Green’s functions. For the problem involv-
ing three “equivalent” phonons that was considered
in [11], it is necessary to take into account phonon
permutations, so that, in fact, we should evaluate the
contribution of six such diagrams.

In order to consider nuclei with pairing in terms
of Green’s functions, it is necessary to make use of
four Green’s functions: G, Gh, F (1), and F (2) [12].
Following the above line of reasoning in the problem
with pairing [45], we spell out the first diagram for
M (3) with allowance for these Green’s functions. In
doing this, we take into account, as in [45], only
particle–hole (ph) vertices. We disregard particle–
particle (pp) and hole–hole (hh) vertices, since they

usually make a small contribution and since their
inclusion would complicate the problem being con-
sidered substantially. In the case of pairing, it is then
necessary to calculate the contribution of seven types

of diagrams containing the products F (1)
1 F

(2)
2 .

It is of interest to consider the specific case of a
transition between a two-phonon and a one-phonon
state in nuclei with pairing, since, for this case, there
are experimental data and calculations based on dif-
ferent models. The problem of the E1 transition
between a specific two-phonon and a specific one-
phonon state in nuclei with pairing was considered
in [44]. The authors of [44] calculated the probability
for the observed E1 transitions from the two-phonon
1− state consisting of low-lying first one-phonon 2+

and 3− states to the one-phonon 2+ state in three
nuclei (Sn, Sm, and Nd) and reached good agreement
with experimental data. By analogy with [44], we
have considered the [1× 2] → 4 transition between
the two-phonon state and the 4 one-phonon state.

The results obtained in [44] arise within the ap-
proach considered here if, in particular, we neglect the
following terms in the integral of four Green’s func-
tions that contains 14 terms involving the product of
four Bogolyubov coefficients:

(i) four-quasiparticle GSC—that is, four terms
of the u2u2v2v2 type, where u2 and v2 are the Bo-
golyubov coefficients squared, which appear in the
definition of Green’s functions in nuclei with pair-
ing [12];

(ii) eight terms of the u2v2v2v2 or u2u2u2v2 type,
which are possibly four-quasiparticle GSC as well;

(iii) δ1g2 diagrams (second ones in Fig. 11), which
contain tadpole effects and three-quasiparticle GSC;

(iv) Terms in Fig. 11 with δF and δ1δ2F , which are
likely to be small.

Since the authors of [44] obtained a good descrip-
tion of experimental data, we cannot rule out the
possibility that future complicated calculations will
show that all of the disregarded effects compensate
for one another.

3. PYGMY DIPOLE AND GIANT DIPOLE
RESONANCES

We now consider the region of PDR and GDR
energies, which is a different region of nuclear excita-
tions and where one employs Skyrme functionals and
takes into account coupling to phonons within the
method of quasiparticle time-blocking approximation
(QTBA) for magic and semimagic nuclei [16, 15, 18].
The most recent method of continuum time-blocking
approximation (CTBA) (see Subsection 3.4) is also
used for magic nuclei.
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δFδ1δ2F

F

δF

FF

Fig. 10. Equation (18) in a diagram form.

V V V δFM(3) = 

V V δ1δ2FδF

Fig. 11. Equation (19) in a diagram form.

The concept of the radiative strength function
(RSF) fE1(ω) is a key point here. Under the assump-
tion that the Brink–Axel hypothesis is valid, this
concept is used to describe radiative nuclear reactions
in terms of

fE1(ω) =
1

3(π�c)2
σabs(ω)

ω
, (20)

where ω is the gamma-ray energy and σabs is the
photoabsorption cross section.

3.1. Contribution of Quasiparticle–Phonon
Interaction to Radiative Strength Functions

In Figs. 12 and 13, the radiative strength functions
in the PDR region for tin and nickel isotopes are
given along with their experimental counterparts
obtained by means of the “Oslo method” [51–54]
and on the basis of the popular EGLO (Enhanced
Generalized LOrentzian) phenomenological model.
These figures show that, in contrast to what we
have within the EGLO phenomenological model, the
pygmy dipole resonance in tin and nickel isotopes
develops a structure caused both by effects of the self-
consistent method of the quasiparticle random-phase

approximation (QRPA) and by effects of coupling
to phonons. The structures associated with the
effects of coupling to phonons arise in the calculations
because of the existence of poles at the energies E =
E1 + E2 − ωs, where E1,2 and ωs are, respectively,
the quasiparticle and phonon energies. In the PDR
region, the effects of coupling to phonons are sizable
at energies between 3 MeV and 9 to 10 MeV.

Further, a good microscopic description of exper-
imental data in the PDR region [51–54] is attained
only owing to taking into account effects of coupling
to phonons. However, the enhancement observed for
the 70Ni nucleus in the energy region of Eγ < 3 MeV
is similar to the enhancement found in the strength
function for 94,96Mo nuclei [55] and explained by nu-
cleon E1 transitions from single-particle states to
a single-particle continuum [56] or M1 transitions
between excited states because of spin reorientation
in proton and neutron states characterized by high
values of j [57].

For the 68Ni nucleus, which is neutron-rich and
which has the neutron separation energy of Sn =
7.79 MeV, Wieland and his coauthors [58] measured
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Fig. 12. Radiative strength function for the isotopes 116,118,122Sn and 60,68,72Ni. The results of calculations based on the
EGLO phenomenological model, microscopic calculations within the QRPA framework, and calculations within the self-
consistent version of generalized TFFS (QTBA) are represented by, respectively, the dashed, dotted, and solid curves. The
experimental data on display were borrowed from [51] for tin isotopes and from [52] for the 60Ni nucleus.

features of the PDR and obtained the following re-
sults: the PDR lies in the range between 7 and
13 MeV, having a mean energy of about 11 MeV, and
exhausts approximately 5% of the energy-weighted
sum rule; that is, the PDR is well above the neu-
tron separation energy. In the interval of observa-
tion between 7 and 13 MeV, good agreement with
experimental data on the mean PDR energy (〈E〉 =
11.2 MeV) and a satisfactory description of the ex-
haustion of the sum rule (4.85%) were obtained by our
group on the basis of QRPA calculations. Upon tak-
ing into account coupling to phonons, the mean en-
ergy undergoes virtually no change, becoming 〈E〉 =
10.9 MeV, but the degree of exhaustion (in percent) of
the sum rule grows substantially, to 8.7%. Earlier, the
authors of [56, 59] performed similar calculations for
68Ni and 70Ni within the relativistic version of QTBA,
but they had to take additionally into account two-
phonon configurations in order to explain experimen-
tal data.

Figure 13 shows that, for the 70Ni nucleus (Sn =
7.31 MeV), the radiative strength function obtained
on the basis of the EGLO model does not have struc-
tures up to an energy of 14.5 MeV; on the contrary,

a microscopic approach yields distinct structures for
E > Sn both within the QRPA and within the QTBA
framework. Thus, we have obtained 〈E〉 = 12.2 MeV
for the interval between 8 and 14 MeV and 〈E〉 =
11.4 MeV for the interval between 7.3 and 13.3 MeV.
With allowance for coupling to phonons, the degree of
exhaustion of the energy-weighted sum rule is 20.6%
and 27.7% in the cases of, respectively, QRPA and
QTBA calculations in the first interval and 12.7%
and 19.5% for the same approximations in the second
interval. Thus, the quantitative effect of coupling
to phonons in terms of the difference between the
QRPA and QTBA results is the strongest for the de-
gree of exhaustion of the energy-weighted sum rule.
The mean values 〈E〉 remain nearly unchangeable
for all three versions (QRPA, QTBA, and EGLO).
The results of our calculations for the 70Ni nucleus in
the PDR region (more precisely, in the energy range
between 5 and 9 MeV) were already confirmed by the
most recent experimental data [53, 54].

For the features of the PDR in the 72Ni nucleus
(Sn = 6.89 MeV) in the energy range between 8 and
14 MeV, it was found within the QTBA framework
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Fig. 14. Cross sections for radiative neutron capture according to calculations based on the QRPA and QTBA methods. The
uncertainty band is associated with employing different models for the nuclear level density. The experimental data on display
were taken from [67, 68].

that the mean energy is 〈E〉 = 12.4 MeV and that
the PDR exhausts 25.7% of the energy-weighted sum
rule. So large a value of the degree of sum-rule ex-

haustion is due to the fact that the nucleus in question
is a highly neutron-rich nucleus. It is noteworthy
that a dominant contribution to the PDR in 72Ni lies
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Table 5. Average radiative widths Γγ (in meV units) for s-wave neutrons {for each of the adopted approaches (EGLO,
QRPA, and QTBA), use was made of two models for the nuclear level density: the phenomenological generalized
superfluid model (GSM) [71] (first row) and the microscopic combinatorial plus Hartree–Fock–Bogolyubov (HFB)
model [72] (second row)}

110Sn 112Sn 116Sn 118Sn 120Sn 122Sn 124Sn 58Ni 60Ni 62Ni 68Ni 72Ni

EGLO 147.4 105.5 72.9 46.6 55.0 56.6 49.9 1096 474 794 166 134

207.9 160.3 108.9 106.7 124.3 110.2 128.7 2017 1882 1841 982.2 86.4

QRPA 45.6 34.4 30.4 22.1 23.8 27.9 22.3 358 594 623 75.4 83.8

71.0 49.7 44.3 40.3 43.0 50.1 68.9 450.8 1646 490.9 406.4 46.7

QTBA 93.5 65.7 46.8 33.1 34.1 35.8 27.9 1141 971 1370 392 154

119.9 87.0 58.4 58.1 61.5 64.0 84.8 1264 2800 2117 2330 53.8

Expt. [78] – – – 117 (20) 100 (16) – – – 2200 (700) 2000 (300) – –

[71] – – – 80 (20) – – – – 2200 (700) – –

Syst. 112 109 107 106 105 104 103 2650 1900 1300 420 320

in the energy range between 10 and 14 MeV and
saturates 13.9% (within the QRPA framework) or
23.2% (within the QTBA framework) of the energy-
weighted sum rule; that is, the effect of coupling to
phonons is quite significant. There are two maxima
in this energy range (see Fig. 12). For this reason,
the radiative strength function in the range between
10 and 14 MeV is nearly coincident with that in the
range between 8 and 14 MeV.

More detailed results on the subject can be found
in [60–66].

3.2. Radiative Neutron Capture

Figure 14 shows radiative neutron capture cross
sections obtained for some tin isotopes by means of
the EMPIRE code [69] with the radiative strength
functions that we calculated on the basis of micro-
scopic methods. The calculations were performed
by employing several models for the nuclear level
density, such as the enhanced generalized superfluid
model (EGSM) [70], the generalized superfluid model
(GSM) [71], and the microscopic combinatorial plus
Hartree–Fock–Bogolyubov (HFB) model [72]. The
cross sections for radiative neutron capture in nuclei
for which there are no experimental data were cal-
culated on the basis of the EGLO phenomenologi-
cal model of the radiative strength function and the
combinatorial plus HFB model of the nuclear level
density. One can see from Fig. 14 that the QRPA
method underestimates the cross sections in ques-
tion, and only upon taking into account coupling to
phonons is it possible to describe experimental data
microscopically, irrespective of the choice of model for
the nuclear level density. Such an underestimation of

the cross sections is usually remedied by an empirical
shift and a broadening of the strength distribution
within the QRPA framework to the region of low en-
ergies [5, 73]. For more detailed results, the interested
reader is referred to [74–77].

3.3. Average Radiative Widths of Neutron
Resonances

The average radiative widths of neutron reso-
nances, Γγ , are an important feature of gamma decay
from highly excited states. They are required in
calculations for nuclear reactions and are given by

Γγ =

J+1
∑

I=|J−1|

Sn
∫

0

ε3γfE1(εγ)
ρ(Sn − εγ , I)

ρ(Sn, J)
dεγ , (21)

where ρ is the level density in excited nuclei and J is
the spin of the original compound nucleus.

Table 5 gives the Γγ values calculated for seven
semimagic tin isotopes and five semimagic nickel
isotopes by means of the EMPIRE code [69] for three
different models of the radiative strength function—
the EGLO phenomenological model and the QRPA
and QTBA microscopic models—that are combined
with various models of the nuclear level density, such
as GSM [71] and the microscopic combinatorial plus
HFB model [72]. The calculated widths are com-
pared with experimental data [78], if any, and with
existing systematics [70, 71]. Table 5 shows that, for
stable nuclei, the inclusion of the effects of coupling
to phonons improves substantially agreement with
the systematics, especially with respect to the QRPA
results. Coupling to phonons leads to an increase of
50 to 200% in the Γγ values for all of the isotopes,
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Fig. 15. Experimental and theoretical spectrum of E1 excitations in 208Pb in the PDR region: (a and b) experimental data
from [85] and [81], respectively, and (c and d) results obtained with the CTBA framework with, respectively, SV-bas0 and
SV-bas1.

with the exception of 122Sn and 124Sn, where the
respective increase is moderately small.

The results for Γγ in 118Sn, 120Sn, 60Ni, and 62Ni,
for which there are experimental data, are the most
interesting. Good agreement with experimental data
for 60Ni and 62Ni and reasonable agreement for 118Sn
and 120Sn were obtained on the basis of QTBA and
the microscopic combinatorial plus HFB model of the
nuclear level density [72]. It should be noted that the
M1-resonance contribution calculated according to
the recommendation from [71] is taken into account
in evaluating the width Γγ . In determining the con-
tribution of the M1 resonance to Γγ , use is made of
a standard Lorentz parametrization [71] with a width
of Γ = 4 MeV [1] (this value of the width Γ can be
questioned, as was discussed in [79]). It turned out
that this contribution is about 10% to 12% of the
values in the first row of Table 5 for tin isotopes and
4%, 3%, 22%, and 16% for 58Ni, 62Ni, 68Ni, and
72Ni, respectively. In our opinion, the problem of the
M1-resonance contribution to Γγ deserves a special
analysis.

Agreement of the values calculated for Γγ with
experimental data becomes poorer upon employing
the EGLO or QRPA model, as well as GSM for the
model of the nuclear level density. For stable nuclei,
the results of the combinatorial plus HFB model are

in better agreement with the systematics in [70] than
the GSM-based results. Similar conclusions can
also be drawn for the EGLO model.

More detailed results can be found in [77, 80].

3.4. The Most Recent Theory of the PDR and GDR.
Fine Structure of the PDR in 208Pb

In describing the PDR in 208Pb, the main problem
arising within self-consistent models consists in the
deficiency of the E1 strength at excitation energies
below 6 MeV, where, in experiments, one observes
about 30% of the integrated PDR strength (see [81]).
The question of whether it is possible to describe the
PDR and GDR simultaneously within a single model
is yet another challenge in view of the fact that the
shape of the GDR strength function in RPA differs
strongly in the majority of cases from the experimen-
tal distribution. Therefore, the problem of describing
integrated features of the PDR in 208Pb and its fine
structure has still remained open.

It would therefore be reasonable to calculate E1
excitations in the energy region of the PDR in the
208Pb nucleus on the basis of the fully self-consistent
CTBA method [82, 83], which was recently developed
for nuclei without pairing and in which a single-
particle continuum is fully taken into account at the
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Fig. 16. Photoabsorption cross section calculated for 208Pb by the CTBA method with (solid curves) SV-bas0 and (dashed
curve) SV-bas1 Skyrme forces. The energy smoothing parameter was set to the value of Δ = 400 keV. The points on display
represent experimental data from [89].

RPA level in addition to effects of quasiparticle–
phonon interaction. This method was earlier applied
in [66] in order to explain the experimental results
obtained by the “Oslo method” in [84] for the radiative
strength function in 208Pb. In accordance with the
experimental data, the smoothing parameter value
of Δ = 200 keV was used in the calculations, and
quite a reasonable description of experimental data
from [84] for the E1 radiative strength function in
the range between 5 and 7.5 MeV was obtained. In
contrast to what was done in [66], all 1− levels of
208Pb and strength functions for E1 excitations in
this nucleus for energies between 0 and 10 MeV are
presented in Fig. 15 according to calculations with
the smoothing parameter values of Δ = 1 and 10 keV.

It is also of interest to study the effect of so-called
residual spin–spin forces (RSSF) on the properties of
low-lying 1− levels. These forces are taken into ac-
count self-consistently and without the introduction
of new parameters.

In Fig. 15, the results obtained by calculating
the fine structure of the PDR in 208Pb are shown
along with experimental data. Figures 15a and
Fig. 15b give experimental data from [85] and [81],
respectively. Those experiments involved measuring
the reduced probabilities B(E1) for excitations up
to the neutron separation energy and the sums of
the probabilities for respective energy intervals above
this threshold. Figures 15c and 15d give the results

obtained by the CTBA method for, respectively, SV-
bas0 and SV-bas1 forces with or without RSSF.
The analysis of experimental data in [81] reveals that
the PDR in 208Pb lies in the energy region below
8.23 MeV.

The data presented in [81, 85, 86] also show that
the PDR in this nucleus can be broken down into
two broad resonances: the lower PDR (LPDR—in
the energy range extending from 4.8 to approximately
5.7 MeV) and the higher PDR (HPDR—in the en-
ergy range extending from 5.7 to 8.23 MeV). Above
8.23 MeV, the UPDR borders on the low-energy
GDR tail. We note that the UPDR lies in the region of
the so-called 1�ω isoscalar dipole resonance (see [87,
88]), whose energy calculated on the basis of the
harmonic-oscillator shell model is 6.9 MeV in 208Pb.
Our research of the effect of residual spin–spin forces
on the properties of low-lying 1− levels reveals that
this effect may be sizable, but only upon refining the
respective parameters of the Skyrme energy density
functional, which have still remained poorly known,
can we draw a definitive conclusion on the point under
discussion.

The E1-excitation strengths calculated by the
CTBA method over a broad (0–30 MeV) energy in-
terval by employing two force parametrizations (SV-
bas0 and SV-bas1) and the smoothing parameter
of Δ = 400 keV are given in Fig. 16. A sizable
downward shift of the distributions obtained with
the SV-bas1 parametrization is explained primarily
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by a large difference in the number of phonons in
the CTBA phonon basis constructed according to
the new criterion of collectivity (see [90, 91]): 28
phonons in the case of SV-bas0 and 83 phonons
in the case of SV-bas1. Calculations show that,
within this approach, one can simultaneously obtain
a good description of the GDR structure in 208Pb
and integrated properties of the PDR in the energy
region above 5.7 MeV. A theoretical description of the
PDR below this energy within a self-consistent model
requires a further development of the theory, including
searches for new parametrizations of the Skyrme
energy density functional or, possibly, searches for
new functionals. More detailed results on this subject
can be found in [82, 83, 90–100].

4. CONCLUSIONS

We have considered the contribution of quasipar-
ticle–phonon interaction to the characteristics of nu-
clei and nuclear reactions involving gamma rays over
a broad energy region—from the ground state to the
energies of pygmy and giant dipole resonances. We
have shown that, as a rule, the inclusion of coupling
to phonons is mandatory for explaining experimental
data. This coupling generates additional structures in
radiative strength functions and, as a matter of fact,
is at odds with the Lorentzian approximation usually
used in nuclear reaction theory. A self-consistent
inclusion of quasiparticle–phonon interaction makes
it possible to predict reliably a large number of
nuclear features. An analysis of quasiparticle–
phonon interaction within nuclear quantum many-
body theory permits considering new effects—first
of all, three- and four-quasiparticle ground-state
correlations. Third-order anharmonic effects within
nuclear many-body theory are of particular interest
since they contain radically new effects and allow one
to test the well-known Brink–Axel hypothesis.

In the two energy regions being considered, we
have employed a unified approach that relies on the
Green’s function formalism and which is a natural
development of the theory of finite Fermi systems to-
ward consistently taking into account quasiparticle–
phonon interaction. This unified approach connects
the two energy regions in question and gives grounds
to hope for merging them together within the future
version of a “unified” theory. In this connection,
it would be of use to list some problems as-yet-
unresolved within the self-consistent microscopic ap-
proach for the two energy regions. Specifically, we
mean, for nuclei without pairing, the problem of con-
sistently taking into account tadpole effects for the
PDR and GDR regions (our group made the first
step along this line in [18]); for nuclei with pairing,
the problem of taking into account pairing-tadpole

effects [27] in the two energy regions; the prob-
lem of taking into account configurations more com-
plex than the 1p1h⊗phonon configuration {this is
necessary first of all for the theory of the PDR and
GDR, but advances made here within the Green’s
function method are quite slow (only the studies re-
ported in [56, 59] are worthy of note along with the
phenomenological analysis performed in [101])}; the
problem of explaining, within the Green’s function
method, the upband found in the radiative strength
function at energies below 3 MeV for many nuclei
(see [53]); and the problem of testing the Brink–Axel
hypothesis (this is possible upon performing cumber-
some calculations aimed at an analysis of third-order
anharmonic effects).
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