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Abstract—The influence of the partial-wave states with nonzero orbital moment of the nucleon pair on the
binding energy of the triton T (nnp) in the relativistic case is considered. The relativistic generalization of
the Faddeev equation in the Bethe–Salpeter formalism is applied. Two-nucleon t matrix is obtained from
the Bethe–Salpeter equation with separable kernel of nucleon–nucleon interaction of the rank one. The
kernel form factors are the relativistic type of the Yamaguchi functions. The following two-nucleon partial-
wave states are considered: 1S0, 3S1, 3D1, 3P0, 1P1, 3P1. The system of the integral equations are solved
by using the iteration method. The binding energy of the triton and three-nucleon amplitudes are found.
The contribution of the P and D states to the binding energy of triton is given.
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1. INTRODUCTION

The study of three-nucleon systems has a long
history and many works are devoted to the descrip-
tion of such nuclei. One of the common nonrela-
tivistic description is based on the application of the
Faddeev equation with various two-particle poten-
tials. Among such potentials, there are realistic [1]
and separable [2]. Such studies made it possible
to achieve significant progress in the description of
static and dynamic properties of the three-nucleon
systems.

At the same time planned experiments on the
electrons scattering off the 3He and 3H nuclei, for in-
stance, Jefferson Lab Experiment E1210103, with the
energies of the initial particles up to 12 GeV, require
a relativistic description. There are several ways of
relativization of the non-relativistic description, and
the methods that follow from the quantum field theory
(QFT) first principles. Among them we single out
the quasipotential Gross equation with the exchange
kernel of a nucleon-nucleon interactions [3], and
approaches based on the Bethe–Salpeter formalism
with zero range of forces [4] and with a separable
kernel of interaction [5, 6]. This work develops the
ideas presented in the articles [5], where the triton is
considered in the S-state, and [6], where along with
the S-state, the contribution of the D-state into the
two-particle t matrix is considered. To describe a
three-nucleon bound state, the relativistic general-
ization of Faddeev equations in the Bethe–Salpeter
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formalism—Bethe–Salpeter–Faddeev equation—is
used. For simplicity of calculations, we consider
nucleons with the same masses and the scalar prop-
agators instead of the spinor ones. The spin-isospin
structure of the system is described by matrices of
recoupling coefficient from one partial-wave state to
another.

In previous works [7, 8] we considered the case
of taking into account the D-wave not only in the
two-particle t matrix, but also its amplitudes in the
system of integral equations. In the present paper,
the equation is generalized to the case of nonzero
values of the angular momentum of a pair of nucleons
(L > 0 : P- and D-states). The contributions of the
following two-particle partial-wave states with a total
angular momentum of the two-nucleon system j =

0, 1 are considered: 1S0, 3S1, 3D1, 3P0, 1P1, 3P1.
The resulting system of twelve integral equations for
real and imaginary parts of amplitudes is solved by
the iteration method and the binding energy of the
triton, as well as all three-particle amplitudes are
calculating.

The work is organized as follows: after a brief
description of the solution of Bethe–Salpeter equa-
tions for two-nucleon states (sec. 2), the relativistic
Bethe–Salpeter–Faddeev equation with scalar prop-
agators is introdused, and the partial-wave decom-
position is performed (sec. 3). In sec. 4 the results
of solving the system of equations and discussion is
presented.
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2. TWO PARTICLES CASE

Since the kernel of the Faddeev equation, written
in integral form, contains a two-particle t matrix we
consider first the two-body problem.

The system of two relativistic particles can be
described using the Bethe–Salpeter equation. The
equation for the two-particle t matrix has the follow-
ing form

T (p, p′;P ) = V (p, p′;P )

+
i

(2π)4

∫
d4kV (p, k;P )G(k;P )T (k, p′ ;P ), (1)

where p = (p1 − p2)/2 [p′ = (p′1 − p′2)/2] is the rel-
ative 4-momentum of the particles of the system in
the initial [final] state, s = P 2 is square of the total
4-momentum of the system P = p1 + p2 = p′1 + p′2,
T (p, p′;P ) is two-particle t matrix, V (p, k;P ) is ker-
nel (potential) of a nucleon-nucleon (NN ) interac-
tion, G(k;P ) is the product of two scalar propagators
of nucleons,

G−1(k;P )

=
[
(P/2 + k)2 −m2

N + iε
]

×
[
(P/2 − k)2 −m2

N + iε
]
. (2)

Considering the equation (1) in the center of mass
of system of two particles P = (

√
s,0), it is possible

to separate the angular dependence and perform the
partial-wave decomposition:

TLL′ (p0, |p|, p′0, |p′|; s) = VLL′ (p0, |p|, p′0, |p′|; s)

+
i

4π3

∫
dk0|k|2d|k|

∑
L′′

VLL′ (p0, |p|, k0, |k|; s)

×G(k0, |k|; s)TL
′′
L
′ (k0, |k|, p′0, |p′|; s). (3)

In the present paper, to solve equation we use the
kernel of the NN-interaction in the separable form
(rank one):

VLL′ (p0, |p|, p′0, |p′|; s)
= λg(L)(p0, |p|)g(L

′)(p′0, |p′|). (4)

Substituting the kernel of theNN-interaction in form
eq. (4) into the eq. (3), the two-particle t matrix also
have a separable form:

TLL′ (p0, |p|, p′0, |p′|; s)
= τ(s)g(L)(p0, |p|)g(L

′)(p′0, |p′|), (5)

where function τ is
τ(s) = 1/(λ−1 + h(s)) (6)

and

h(s) =
∑
L

hL(s)

= − i

4π3

∫
dk0

∫
|k|2d|k|

×
∑
L

[g[L](k0, |k|)]2S(k0, |k|; s). (7)

The relativistic generalization of the Yamaguchi-
type functions [9,10] is used as form factors g(L)(p0, |p|)
of NN kernel

g[S](p0, |p|) =
1

p20 − |p|2 − β2
0 + i0

, (8)

g[P ](p0, |p|) =
√
| − p20 + |p|2|

(p20 − |p|2 − β2
1 + i0)2

, (9)

g[D](p0, |p|) =
C2(p

2
0 − |p|2)

(p20 − |p|2 − β2
2 + i0)2

, (10)

where λ, β0, β1, β2 and C2 are the parameters of
the model, which are chosen to describe the two-
nucleons observables—the length and phase of the
scattering, the effective radius, and in the case
when there is a bound state—deuteron (3S1 −3 D1-
state),—binding energy. Numerical values of param-
eters λ and β can be found in [11].

3. THREE PARTICLES CASE

The system of three relativistic particles can be de-
scribed by using the Faddeev equations in the Bethe–
Salpeter formalism:⎡

⎢⎢⎢⎣
T (1)

T (2)

T (3)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
T1

T2

T3

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

0 T1G1 T1G1

T2G2 0 T2G2

T3G3 T3G3 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
T (1)

T (2)

T (3)

⎤
⎥⎥⎥⎦ , (11)

where full t matrix T =
∑3

i=1 T
(i), Gi—two-particle

Green’s function of particles j and n ((ijn) obeys
cyclic permutation):

Gi(kj , kn)

= 1/(k2j −m2
N + iε)/(k2n −m2

N + iε), (12)

Ti—two-particle t matrix. For a system of particles
with the same masses, Jacobi variables can be intro-
duced:

pi =
1

2
(kj − kn), qi =

1

3
K − ki,

K = k1 + k2 + k3. (13)
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On the basis of expression (13) the equation (11) can
be rewritten in the following way:

T (i)(pi, qi; p
′
i, q

′
i; s)

= (2π)4δ(4)(qi − q′i)Ti(pi; p
′
i; s)

− i

∫
dp′′i
(2π)4

Ti(pi; p
′′
i ; s)Gi(k

′′
j , k

′′
n)

×
[
T (j)(p′′j , q

′′
i ; p

′
i, q

′
i; s) + T (n)(p′′i , q

′′
i ; p

′
i, q

′
i; s)

]
.

(14)

We introduce the amplitude Ψ(i)(pi, qi; s) for a
bound three-particle state:

Ψ(i)(pi, qi; s)

= 〈pi, qi|T (i)|MB〉 ≡ ΨLM (p, q; s), (15)

where MB =
√
s = 3mN −EB—mass of bound state

(triton), s = K2—square of the total momentum.
To separate the angular integration and to per-

form the partial-wave decomposition it is need to
take into account, that solution for the two-particle
t matrix is found in the system of the center of mass
of two nucleons while the solution for the three-
particle amplitude—in the center of mass system of
three nucleons. Since the radial functions g[L](q0, |q|)
depend on the square of the relative 4-momentum
the Lorentz transformation must be carried out only
for arguments of spherical harmonics. In this paper
we assume, that the components of the relative 4-
vectors in the two systems coincide i.e we omit the
effects of the Lorentz transformation. In this case, the
dependence of the three-particle amplitudes on the
two 4-vectors p and q can be separated.

We present the total orbital angular momentum of
a triton in the following form: L = l + λ, where l—
internal orbital angular momentum of a two-particle
subsystem and λ—orbital angular momentum of the
third particle relative to the two-particle subsystem.

In order to distinguish the explicit dependence of
the amplitude on the angular momentum, we will

present it in the following form:

ΨLM(p, q; s)

=
∑
aλ

Ψ
(a)
λL(p0, |p|, q0, |q|; s)Y

(a)
λLM (p̂, q̂),

Y(a)
λLM (p̂, q̂) =

∑
mμ

CLM
lmλμYlm(p̂)Yλμ(q̂), (16)

where two-nucleon states a ≡ 2s+1lj are character-
ized by s is spin, l is angular and j—total angular
momentum. In the equation (16) the notetion â ≡ Ωa

for angular variables of 3-vector a is introduced, C
are the Clebsch-Gordan coefficients, and Y are the
spherical functions.

Using the result of the previous section for the
two-particle t matrix (5) and partial-wave decom-

position the amplitude Ψ
(a)
λL can be presented in a

separable form:

Ψ
(a)
λL(p0, |p|, q0, |q|; s) = g(a)(p0, |p|)

× τ (a)

[(
2

3

√
s+ q0

)2

− q2

]
Φ
(a)
λL (q0, |q|; s). (17)

The functions Φ
(a)
λL satisfy the following system of

integral equations:

Φ
(a)
λL(q0, |q|; s)

=
i

4π3

∑
a′λ′

∞∫

−∞

dq′0

∞∫

0

q′2d|q′|

× Z
(aa′)
λλ′ (q0, q; q

′
0, |q′|; s)

×
τ (a

′)
[(

2
3

√
s+ q′0

)2 − q′2
]

(
1
3

√
s− q′0

)2 − q′2 −m2 + iε
Φ
(a′)
λ′L(q

′
0, |q′|; s),

(18)

with effective kernels

Z
(aa′)
λλ′ (q0, |q|; q′0, |q′|; s) = C(aa′)

∫
d cos ϑqq′K

(aa′)
λλ′L(|q|, |q

′|, cos ϑqq′)

× g(a)(−q0/2 − q′0, |q/2 + q′|)g(a′)(q0 + q′0/2, |q + q′/2|)
(13
√
s+ q0 + q′0)

2 − (q+ q′)2 −m2
N + iε

, (19)

where

K
(aa′)
λλ′L(|q|, |q

′|, cos ϑqq′) = (4π)3/2
√
2λ+ 1

2L+ 1

× (−1)l
′ ∑
mm′

CLm
lmλ0C

Lm
l′m′λ′m−m′Y ∗

lm(ϑ, 0)Yl′m′(ϑ′, 0)Yλ′m−m′(ϑqq′ , 0) (20)
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and

cos ϑ =

(
|q|
2

+ |q′| cos ϑqq′

)/ ∣∣∣q
2
+ q′

∣∣∣ ,

cos ϑ′ =

(
|q|+ |q′|

2
cos ϑqq′

)/ ∣∣∣∣q+
q′

2

∣∣∣∣ .
The details of the calculation of the function K can be
found in [12].

Since we are considering the ground state of a
three-nucleon system L = 0 and correspondingly l =
λ, l′ = λ′, and the function K can be rewritten in the
following form:

K
(aa′)
ll′0 =

√
(4π)3Y ∗

l0(ϑ, 0)Al′(ϑ
′, ϑqq′),

Al′(ϑ
′, ϑqq′) =

∑
m′

C00
lm′l′−m′Yl′m′(ϑ′, 0)

× Yl′−m′(ϑqq′ , 0),

where l, l′ correspond to the orbital moments of the
partial states [a, a′].

To take into account of spin-isospin structure of
the equation, kernel can be expressed in terms of ma-
trix of recoupling coefficients from one partial-wave
state to another [(a) = 1S0,

3S1,
3D1,

3P0,
1P1,

3P1],
which have the following form:

C(aa′) =
1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 −3
√
3 −

√
3

√
3

−3 1 1
√
3 −

√
3

√
3

−3 1 1
√
3 −

√
3

√
3

√
3

√
3

√
3 −1 −3 −1

−
√
3 −

√
3 −

√
3 −3 −1 −3

√
3

√
3

√
3 −1 −3 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)

The system of integral equations (18)–(20) has
singularities on q0, however, in the case of bound
three-particles system (

√
s < 3mN ) all these singu-

larities do not cross the path of integration over q0 and
do not affect the implementation of the procedure of
Wick rotation q0 → iq4.

Table 1. The values of the binding energy of a triton (MeV)

pD
1S0 − 3S1

3D1
3P0

1P1
3P1

4 9.221 9.294 9.314 9.287 9.271

5 8.819 8.909 8.928 8.903 8.889

6 8.442 8.545 8.562 8.540 8.527

Experiment 8.48

System (18)–(20) after Wick rotation can be
solved using standard methods for solving integral
equations. One of them is discussed in the next
section.

4. NUMERICAL CALCULATIONS
AND RESULTS

In this paper, a homogeneous system of twelve
integral equation with a parameter, which is the bind-
ing energy of the triton, are solved using the iteration
method.

To determine the binding energy, the following
condition is used (more details in [13]):

lim
n→∞

Φn(s)

Φn−1(s)

∣∣∣
s=M2

B

= 1, (22)

where n—iteration number.
The procedure for solving the system of integral

equations (18)–(20) by the iteration method has good
convergence. In numerical calculations of the binding
energy of triton and the amplitudes of its states for
the Yamaguchi potential, the ratio of the previous
iteration to the next did not change with the growth
of the iteration number up to the sixth decimal place
starting with the 20th iteration.

For the numerical calculation of the integrals, the
Gauss method on two-dimensional grid of nodes by
dimension N1 ×N2 is used with mapping q4 = (1 +
x)/(1 − x), |q| = (1 + y)/(1− y). The influence of
the number of nodes on the convergence of the result
of numerical integration is investigated. For integra-
tion on |q| it is enough N2 = 15 nodes. With further
increase quantity of nodes the numerical value of the
integral did not change any more. For integration on
q4 it was not enough such number of nodes. For the
study of convergence we increased number of nodes
to N1 = 96. With further increasing number of nodes
the numerical value of the integral changed only in
the fourth decimal digit. This accuracy is sufficient
and allows us to take into account the contribution of
various states to the binding energy.

Table 1 presents the calculated values of the bind-
ing energy for different probabilities of the D-state
(pD = 4, 5, 6).

The above results show that the main contribution
to the binding energy of the triton is from S-states.
Contribution of D-state is positive and varies from
0.8 to 1.2 % depending on the probability of D-state
in deuteron (pD = 4-6 %). Contributions of P-
states have different signs and partially compensate
each other, and their total contribution is −0.2%.
So total contribution two-particle P- and D-partial
states with a total angular momenta j = 0, 1 into the
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Fig. 1. The real part of the amplitudes for all states considered in the work as a function of |q| with the value q4 = 0 and
q4 = 0.2 Fm−1.
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Fig. 2. The imaginary part of the amplitudes for all states considered in the work as a function of |q| with the value q4 = 0.1

and q4 = 0.2 Fm−1.

Re[Φ(q4, 1)]Re[Φ(q4, 0)]
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0 0.5 1.00 0.5 1.0

Fig. 3. The real part of the amplitudes for all states considered in the work as a function of q4 with the value |q| = 0 and
|q| = 1 Fm−1.

binding energy of a triton is from 0.5 to 1 %. Com-

parison of nonrelativistic and relativistic calculations

of binding energy can be found in [5]. The paper

shows that relativistic calculation of binding energy

in the case of accounting only S-states larger then

nonrelativistic at 0.44 MeV.
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Im[Φ(q4, 0)] Im[Φ(q4, 1)]
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Fig. 4. The imaginary part of the amplitudes for all states considered in the work as a function of q4 with the value |q| = 0 and
|q| = 1 Fm−1.

In Fig. 1–4 graphs of real and imaginary parts
of partial amplitudes on variables |q| (at fixed values
of q4) and q4 (at fixed values of |q|) are presented.
As can be seen from the graphs, amplitudes of S-
states dominate while other states give a nonzero
contribution. However we believe that interference
contributions of S-, P- and D-states in form fac-
tors of the three-particle system must be taken into
account in calculations. Obtained amplitudes will
be used to calculate the electromagnetic form factors
of the triton using the approximations described in
articles [5, 6].

5. CONCLUSION

The solution of the relativistic Bethe–Salpeter–
Faddeev equation for a three-nucleon system (triton)
are considered in article. A relativistic generaliza-
tion of the partial-wave decomposition procedure is
carried out, which is spread to the nonzero orbital
angular momenta of pair of the interacting nucleons.
The case of S -, P - and D-partial states of the
two-particle subsystems are considered. Using the
partial-wave decomposition and potential of NN-
interactions in a separable form led to a system of
integral equations for the amplitudes of states with
different orbital angular moments of particles in the
nuclei. The numerical solution of this system using
the iteration method allows find the binding energy of
a triton and amplitudes of the 1S0, 3S1, 3D1, 3P0, 1P1,
3P1 states as functions of two variables.
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