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Abstract—The elastic-scattering process proceeding through two resonance levels that have the same
spin j and equal resonance energies, (E1 = E2), but different widths (Γ1 �= Γ2) is considered. It is shown
that the energy dependence of the total scattering cross section has two equal maxima at the points
E1 ± (1/2)

√
Γ1Γ2, the cross-section value at the maxima being 4π (2j + 1) λ̄2, where λ̄ is the wavelength

of the incident particle in the c.m. frame, and that, at the energy E1, the cross section vanishes, σ (E1) = 0.
The cross section is symmetric with respect to the point E1.
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Via observing the energy dependence of the cross
section for a nuclear reaction, it is possible to unearth
the role of long-lived states (resonance levels) in the
reaction mechanism. At low excitation energies, we
have the well-known Breit–Wigner formula induced
by a level of resonance energy E0 and width Γ0(E),
where E is the kinetic energy of the relative motion
of colliding particles in the c.m. frame [1–5]. As the
excitation energy grows, in which case the level spac-
ing D decreases, while the widths Γ0(E) increase,
the levels begin overlapping one another. In the case
where Γ � D, the cross sections develop Ericson
fluctuations in their energy dependence [6].

The energy dependence of reaction cross sections
that was determined by two overlapping levels was
explored in a number of studies [7–9]. In particu-
lar, the behavior of the cross section for the charge-
exchange reaction p̄p → nn̄ was studied in [8] with
allowance for the interference between two overlap-
ping resonances (1932 and 2020) and the interference
with the background.

The present study is devoted to considering the
single-channel reaction (elastic scattering) [7, 9] for
the case where the level spacing D is so small that
it is legitimate to set it to zero (D = 0)—that is, the
resonance energies of the levels are equal, E1 = E2—
but where Γ1 �= Γ2. The S-matrix formalism is the
most adequate means for describing elastic scatter-
ing. Within this formalism, there are no theoretical
arguments that would forbid the S matrix to have
such a pair of poles. Therefore, there arises the
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question of how this pair manifests itself in the energy
dependence of the cross section for elastic scattering.

In the case of single-channel processes (elastic
scattering) of spinless particles, the partial-wave S
matrix has the form [1, 4, 5]

Sl (k) = eiπl
fl (k)

fl (−k)
, (1)

where fl (k) and fl (−k) is the Jost function and k is
the relative momentum of colliding particles in the
c.m. frame. The partial-wave S matrix Sl (k) (1)
satisfies the unitarity condition

|Sl|2 = 1. (2)

As was shown in [1, 4, 5], a pole of Sl (k) in the lower
half-plane of the complex plane of k at a point kj =
qj − iκj (where κj > 0) corresponds to a resonance
level (long-lived state). This pole induces yet another
pole at the point −k∗j and two zeros at the points −kj
and k∗j (requirement of the unitary condition). This
arrangement of the singularities in the complex plane
of k leads to the appearance of a pole of Sl (E) on
the second sheet of the complex plane of E at the
point Ej − (i/2) Γj and a zero on the first sheet at
the point Ej + (i/2) Γj , where 2mEj = q2j + κ2j , Γj =

2κj
√

E/m, and m is the reduced mass of colliding
particles [10].

In the case of two resonance levels, the only pos-
sible expression for the partial-wave S matrix Sl (E)
such that it satisfies the unitarity condition in (2) has
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the form [9]

Sl = e2iδl(E)
2∏

j=1

E − Ej −
i

2
Γj

E − Ej +
i

2
Γj

, (3)

where δl(E) is the phase shift that takes into account
nonresonance (so-called potential) scattering. S-
matrix theory does not impose any constraint on the
parameters Ej and Γj(E), which are the physical
values of the resonance energy of the levels and their
levels or on the parameters qj and κj (where j =
1, 2) [9].

Expression (3) can be represented in the form of a
sum over pole terms [9, 11]; that is,

Sl(E) = e2iδl(E)

(

1− i

2∑

k=1

Γkγkj
E − zk

)

, (4)

where the complex-valued quantity zk characterizes
the kth resonance level,

zk = Ek −
i

2
Γk(E);

the quantity γkj has the form

γkj =
zk − z∗j
zk − zj

;

and the index j takes the values of 1 and 2, but j �=
k. From these relations, it follows that |γkj | = |γjk|.
Therefore, the ratio of the residues at the two poles is
given by

Γkγkj
Γjγjk

=
Γk

Γj
e−2iΦ, (5)

where

Φ = arctan
Γk + Γj

2(Ek − Ej)

We can then state that, if the levels do not over-
lap each other—that is, Γ � |E1 − E2|—then Φ ≈
(Γk + Γj)/2(Ek − Ej) and tends to zero, so that
the ratio of the residues in (5) tends to Γk/Γj ,
but, in the case of overlapping levels—Γ2, Γ1 �
|E1 − E2|—Φ ≈ (π/2) − 2(Ek − Ej)/(Γk + Γj) and
tends to π/2, so that the ratio of the residues tends to
−(Γk/Γj).

In the following, we consider the case where E1 =
E2 (in the complex plane of k, this condition is equiv-
alent to the equality q21 + κ21 = q22 + κ22), but where
Γ1 �= Γ2 (that is, κ1 �= κ2). The existence of such
pairs of levels is allowed in S-matrix theory. It is
unlikely that such a pair of poles exists within po-
tential theory. It may arise owing to a nonpotential
interaction of particles. The present study is aimed at
an analysis of the energy dependence that the elastic-
scattering cross sections σ(E) develops owing to the
presence of such pairs of levels. In the following, we
assume that Γ1 > Γ2.

In the case of E1 = E2, the partial-wave S matrix
Sl (E) in (3) can be represented in the form

Sl(E) = e2iδl(E)

(
1− i(Γ1 + Γ2)(E − E1)

(E − z1)(E − z2)

)
. (6)

This expression satisfies the unitarity condition in (2).
By employing formulas of scattering theory [3],

one can obtain the total cross section for elastic scat-
tering in the form

σ(E) =
4π

k2

∑

l

(2l + 1) sin2 δl(E)− (2j + 1)π

k2
(E − E1)(Γ1 + Γ2) (7)

×

{
2
[
(E − E1)

2 − (1/4) Γ1Γ2

]
sin 2δj(E)− (E − E1)(Γ1 + Γ2) cos 2δj(E)

}

[
(E −E1)

2 + (1/4) Γ2
1

] [
(E − E1)

2 + (1/4) Γ2
2

]

In expression (7), the first term describes nonreso-
nance (potential) scattering, which is completely de-
termined by the phase shifts δl(E), while the second
term takes into account purely resonance scattering
and the interference between resonance and nonreso-
nance scattering. From expression (7), it follows that,
at E = E1, the cross section is completely determined
by nonresonance scattering. This feature peculiar to
the cross section σ(E) in (7) is due exclusively to the

unitarity condition in (2) but has nothing to do with
the origin of the resonance [see Eq. (6)].

In the following, we consider purely resonance
scattering; that is, we set all phase shifts δl(E) to
zero (δl(E) = 0). The resonance cross section then
assumes the form

σres(E) = (2j + 1)πλ̄2 (8)
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× (E − E1)
2 (Γ1 + Γ2)

2

[
(E − E1)

2 + (1/4) Γ2
1

] [
(E − E1)

2 + (1/4) Γ2
2

] ,

where λ̄ is the wavelength of the incident particle
in the c.m. frame. The cross section σres(E)
is symmetric with respect to the point E1; there-
fore, we introduce the dimensionless variable x =
2(E − E1)/Γ1 and the dimensionless cross section
σ̄(x) = σres(E)/(2j + 1) 4πλ̄2. Expression (8) then
assumes the form

σ̄(x) =
(1 + a)2x2

(x2 + 1) (x2 + a2)
, (9)

where a = Γ2/Γ1. Since we assumed that Γ1 >
Γ2, the parameter a changes within the range of
0 < a < 1. The cross section σ̄(x) has the follow-
ing characteristic properties: first, it is symmetric
with respect to the point x = 0 (E = E1); second,
it exhibits two maxima at the points x± = ±

√
a(

E± = E1 ± (1/2)
√
Γ1Γ2

)
; and, third, the cross

section σ̄(x) vanishes at the point x = 0 (σ̄(x = 0) =
0). All of these special features in the behavior of the
cross section σ̄(x) stem from the unitarity condition
in (2) and are independent of resonance nature. The
maximum cross section at the peaks is σ̄(±√

a) = 1;
that is, σres = 4π(2j + 1)λ̄2. This value is coincident
with the maximum cross section in the case of an
isolated resonance [3, 5]. However, the shapes of the
curves in the vicinity of the peaks are different. In the
case of an isolated resonance, the curve is symmetric
with respect to the resonance energy. In the case
considered here, the curves are asymmetric with
respect to the energy values of E± corresponding to
the maxima. In order to characterize this asymmetry,
we introduce the quantity Γfwhs defined as the width of
the peak of the cross section σres(E) in the vicinity of
the points E± at the height equal to half the maximum
cross section. These widths satisfy the equation
σ̄(x) = 1/2, whose roots have the form

x1,2 = ±
√

a+
1 + a

2

(
1 + a+

√
Δ
)
, (10)

x3,4 = ±
√

a+
1 + a

2

(
1 + a−

√
Δ
)
,

where we have introduced the notation Δ ≡ (1 +
a)2 + 4a. The width Γfwhs of the peak in the vicinity
of the point x+ =

√
a is then given by

Γfwhs = E(1) − E(3) (11)

=
Γ1

2
(x1 − x3) =

Γ1

2
(1 + a),

where E(i) = E1 + (Γ1/2)xi (i = 1, ..., 4). In the
case of an isolated resonance, the quantity Γfwhs is

referred to as the resonance width; it is divided by
the resonance energy into two equal parts (symmetric
curve). In the case being considered, the points E± =
E1 ± (1/2)

√
Γ1Γ2 at which the cross section peaks

divide Γfwhs into two unequal parts; that is,

Γ
(1)
fwhs = E(1) − E+ =

Γ1

2
(x1 −

√
a), (12)

Γ
(2)
fwhs = E+ − E(3) =

Γ1

2
(
√
a− x3).

For the difference Γ
(1)
fwhs − Γ

(2)
fwhs, which characterizes

the asymmetry of the curve with respect to a point of
maximum, we then have the relation

ΔΓfwhs = Γ
(1)
fwhs − Γ

(2)
fwhs (13)

=
Γ1

2

[√
(1 + a)2 + 4a− 2

√
a
]
.

This quantity is maximal at small values of a (that
is, a → 0). In the limiting case of a = 0 (Γ2 = 0), the
two roots x3,4 of the equation are equal to zero (x3,4 =

0); accordingly, Γ
(2)
fwhs also vanishes, along with

the distance between the maxima, Dmax = Γ1
√
a:

Γ
(2)
fwhs = 0 and Dmax = 0. This means that the two

peaks in the cross sections (8) and (9) merge together
into one at the pointE1, whereas expressions (11) and
(12) assume the form

Γfwhs = Γ
(1)
fwhs = Γ1/2. (14)

Accordingly, expression (8) for the cross section
σres(E) goes over in this limiting case to the well-
known Breit–Wigner formula [3, 5] with resonance
width Γ1.

The quantity Γ
(1)
fwhs − Γ

(2)
fwhs is minimal for a → 1

and assumes the value of Γ1(
√
2− 1) in the limit of

a = 1. This asymmetry is the fourth special feature of
the cross section under study as a function of energy.

For the ensuing analysis, it is convenient to intro-
duce a dimensional asymmetry, and we denote it by
A. Employing Eqs. (11) and (13), we define it as

A =
ΔΓfwhs

Γfwhs
=

√

1 +

(
2
√
a

1 + a

)2

− 2
√
a

1 + a
. (15)

This quantity is maximal at the point a = 0, taking
the value of unity (A = 1); at the point a = 1, the
dimensional asymmetry is minimal and has the value
of A =

√
2− 1.

Taking into account Eq. (11) and the definition of
Dmax, we arrive at the equation

Dmax

Γfwys
=

2
√
a

1 + a
, (16)
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Fig. 1. Cross section σ̄(x) as a function of energy at a = 1.

which relates a to two experimental observables.

Let us introduce two other experimental observ-

ables. The first, Γ(F )
fwhs, is the total width (it involves

both maxima and the minimum) of the graph of the
scattering cross section as a function of energy at the
height equal to half the maximum cross section; that
is,

Γ
(F )
fwhs = E(1) − E(2) (17)

= Γ1

√

a+
1 + a

2
(1 + a+

√
Δ).

The second, Γmin
fwhs, is the width of the cross-section

minimum at the point E1 at the height equal to half
the maximum cross section; that is,

Γmin
fwhs = E(3) − E(4) (18)

= Γ1

√

a+
1 + a

2
(1 + a−

√
Δ).

The experimental observables Γfwhs, Γ(F )
fwhs, and Γmin

fwhs
satisfy the following trivial relation:

Γ
(F )
fwhs = Γmin

fwhs + 2Γfwhs. (19)

Let us consider in more detail the limiting case
where a = 1 and Γ1 = Γ2. It corresponds to the case
where the partial-wave S matrix has a second-order
pole both in the complex plane of k and in the complex
plane of E. In this limiting case, expression (8) for σres
reduced to the form

σres = 4π(2j + 1)λ̄2 Γ2
1(E − E1)

2

[
(E − E1)2 +

1
4Γ

2
1

]2 . (20)

From expression (20), it follows that the cross section
σres assumes the maximum values of 4π(2j + 1)λ̄2 at

the points E± = E1 ± (1/2)Γ1. In this liming case,
the width Γfwhs of the cross-section peaks becomes

Γfwhs =
Γ1

2

[√
3 + 2

√
2−

√
3− 2

√
2

]
= Γ1. (21)

As was indicated above, the asymmetry of the curve
with respect to the points E± is minimal and takes the
value of A0 = (

√
2− 1). On the contrary, the widths

Γ
(min)
fwhs and Γ

(F )
fwhs are maximal in this limiting case,

and we have the equalities Γ(min)
fwhs = Γ1

√
3− 2

√
2 and

Γ
(F )
fwhs = Γ1

√
3 + 2

√
2 for them. One can see that

Eq. (19), which relates Γfwhs, Γ(F )
fwhs, and Γmin

fwhs, holds.
Figure 1 shows the scattering cross section σ̄(x) as
a function of energy at a = 1—that is, for the case
where the partial-wave S matrix Sl(E) has a second-
order pole. This figure also gives the quantities Γfwhs,

Γ
(1)
fwhs, Γ(2)

fwhs, and Γmin
fwhs introduced in the present study.

It should be noted that the presence of multiple
poles in the S matrix was considered earlier in [2,
4, 12]. In particular, the resonance cross section
given in [2] for the case where a second-order pole is
present is fully coincident with that in expression (20).
Also, the scattering cross section as a function of the
energy E is given in [2] (Fig. 8.9). However, Fig. 1 of
the present article shows the asymmetry of the two-
humped curve with respect of the points of maximum,
whereas Fig. 8.9 do not exhibit it.

In the present study, it was shown that the ap-
pearance of two peaks in the energy dependence of
the elastic-scattering cross section σres(E) that are
characterized by equal values at the point of maxi-
mum may be associated either with the second-order
pole of the S matrix or with the presence of two
simple poles on the second sheet of the energy surface
that correspond to equal resonance energies (E1 =
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Fig. 2. Cross section σ̄(x) as a function of energy at the parameter values of (solid curve) a = 0.1 and (dashed curve) a = 0.9.

E2) but different widths (Γ1 �= Γ2). It is possible
to discriminate between these two possibilities by
studying the asymmetry of the peaks with respect to
the point where the cross section has a maximum. In
particular, one can determine a by comparing Γfwhs
with Dmax and taking into account Eqs. (16). All of
the results of the present study rely on the unitarity
condition and are independent of the nature of those
long-lived states that are described by resonance lev-
els (poles) in the partial-wave S matrix. It is worth
noting that the inclusion of nonresonance scattering
[see expression (7)] violates all symmetry properties
described above.

Summarizing the foregoing, we will describe the
behavior of the curve that represents the cross section
as a function of the relative energy E in response
to the change in Γ2 from zero to Γ1 (that is, in the
range of 0 < Γ2 < Γ1). At Γ2 = 0, there is only one
level of resonance energy E1 and width Γ1. The cross
section σres(E) then has one peak with a maximum
at the resonance-energy point E1 and the width Γ1

(this corresponds to the well-known Breit–Wigner
formula). Suppose that the second levels of resonance
energy E1 and width Γ2 appears and that the value
of Γ2 is very small—that is, Γ2 → 0. The Breit–
Wigner peak than splits into two equal halves, and
the cross section vanishes at the resonance point—
that is, σres(E1) = 0. In this case, the asymmetry of

the two emerging peaks is maximal, since Γ
(2)
fwhs →

0, while Γ
(1)
fwhs → (1/2)Γ1. As Γ2 grows further, the

curve representing the cross section as a function of
energy develops two peaks in which the cross section
reaches the maximum value of 4π(2j + 1)λ̄2 at the
points E±. In this case, the peak width Γfwhs is
defined as (1/2)(Γ1 + Γ2), while the width of the dip
with a minimum at the point E1 is determined by
expression (18). As Γ2 grows, these parameters of

the curve increase, while the asymmetry, which is
determined by expression (15), decreases. As soon as
Γ2 becomes equal to Γ1, the two simple poles merge
together into a single second-order pole lying on the
second sheet of the energy surface. Concurrently, the
peak width reaches Γ1, whereas the dip width be-

comes Γ1

√
3− 2

√
2. The asymmetry is then minimal

and takes the value of A0 =
√
2− 1. As Γ2 changes

from zero to Γ1, the curve representing the cross
section σres(E) as a function of the relative energy E
of colliding particles remains symmetric with respect
to the resonance energy E1. At this point, the cross
section σres(E) vanishes. All of the aforementioned
maximum cross-section values are equal to 4π(2j +
1)λ̄2; that is, only the shape of the curve changes.
Figure 2 illustrates the foregoing. It displays two
curves representing the total cross section as a func-
tion of energy at two values of the parameter a: (solid
curve) a = 0.1 and (dashed curve) a = 0.9. In the
case where the asymmetry A is smaller than A0, this
asymmetry is due to the presence of two overlapping
levels in the partial-wave S matrix Sl(E) that have
incoincident resonance energies.

Let us now clarify the last statement. Employing
either relation (3) or relation (4) and assuming that
potential scattering is absent—that is, all of the phase
shifts δl(E) are equal to zero—one can obtain the
resonance-scattering cross section for the case where
the resonance energies are unequal. It has the form

σres(E) = π(2j + 1)λ̄2 (22)

× (Γ1(E − E2) + Γ2(E − E1))
2

((E − E1)2 + Γ2
1/4)((E − E2)2 + Γ2

2/4)

Let us introduce the dimensionless parameter b =
2(E1 − E2)/Γ1 and assume that E2 < E1. The pa-
rameter b than changes from zero at E2 = E1 to b0 =

PHYSICS OF ATOMIC NUCLEI Vol. 81 No. 1 2018
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Fig. 3. Cross section σ̄(x) as a function of energy at b values of (solid curve) b = 0.1, (dashed curve) b = 1, and (dash-dotted
curve) b = 2 for a = 0.1.

2E1/Γ1 at E2 = 0 and, accordingly, Γ2 = 0. In this
limiting case, expression (22) reduces to the well-
known Breit–Wigner formula [3, 5]. Using the pa-
rameter b, we can recast the cross section in (22) into
the form

σ̄(x) =
(x(a+ 1) + b)2

(x2 + 1)((x + b)2 + a2)
, (23)

where σ̄, x, and a were defined above. From this
equation, it follows that the cross section vanishes
at the point x0 = −b/(a+ 1) (at E1 = E2, this point
reduces to zero)—that is, at the energy E(0) =
(E1Γ2 + E2Γ1)/(Γ1 + Γ2). Figure 3 gives three
curves. These are the solid curve for a = 0.1 and
b = 0.1, the dashed curve for a = 0.1 and b = 1 and
the dash-dotted curve for a = 0.1 and b = 2. This
figure shows that, as the parameter b grows, the point
x0 and the point where the peak has a maximum move
leftward, the asymmetry of the peak decreasing. For
b → b0, x0 → −b0, the point at which the right-hand
peak has a maximum reaching the point E1.

Thus, we can state that, in the case of two res-
onance levels, the unitarity-condition requirement,
which couples them, induces an asymmetry for each
peak in relation to the symmetric peak of the Breit–
Wigner formula. This asymmetry is always present—
only its magnitude, which depends on the positions of
the poles in the complex plane of E, changes.

ACKNOWLEDGMENTS

I am grateful to O.D. Dal’karov and A.E. Kudryavt-
sev for an enlightening discussion on the results of the
present study.

REFERENCES

1. V. de Alfaro and T. Regge, Potential Scattering
(North Holland, Amsterdam, 1965), Chapts. 5, 7.

2. M. Goldberger and K. Watson, Collision Theory
(Wiley, New York, 1964; Mir, Moscow, 1967), Chap.
8.

3. L. D. Landau and E. M. Lifshitz, Course of The-
oretical Physics, Vol. 3: Quantum Mechanics:
Non-Relativistic Theory (Fizmatgiz, Moscow, 1989;
Pergamon, New York, 1977), Chapts. 17, 18.

4. J. Taylor, Scattering Theory: The Quantum Theory
of Nonrelativistic Collisions, (Dover, New York,
2006; Mir, Moscow, 1975), rus. p. 306.

5. V. A. Khangulyan and I. S. Shapiro, Selected Prob-
lems in Nuclear Theory. Part 2: Analytic Structure
of Scattering Amplitudes (NIYaU MIFI, Moscow,
2011), Chapts. 2, 3 [in Russian].

6. T. Ericson and T. Mayer-Kuckuk, Ann. Rev. Nucl.
Sci. 16, 183 (1966).

7. M. V. Terent’ev, JETP Lett. 6, 47 (1967).

8. L. N. Bogdanova, O. D. Dal’karov, B. O. Kerbikov,
and I. S. Shapiro, JETP Lett. 23, 68 (1976).

9. I. S. Shapiro, in Proceedings of the 2nd Sympo-
sium on Problems in Nuclear Physics: Problems
in Modern Nuclear Physics, Novosibirsk, June 12–
19, 1970 (Nauka, Moscow, 1971), p. 273.

10. A. I. Akhiezer and I. Ya. Pomeranchuk, Zh. Eksp.
Teor. Fiz. 18, 693 (1948).

11. A. E. Kudryavtsev Sov. J. Nucl. Phys. 10, 179 (1969).

12. I. Yu. Kobzarev, N. N. Nikolaev, and L. B. Okun’, Sov.
J. Nucl. Phys. 10, 499 (1969).

PHYSICS OF ATOMIC NUCLEI Vol. 81 No. 1 2018


