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Abstract—In [R. Oste and J. Van der Jeugt, arXiv: 1507.01821 [math-ph]] we classified all pairs of
recurrence relations in which two (dual) Hahn polynomials with different parameters appear. Such pairs are
referred to as (dual) Hahn doubles, and the same technique was then applied to obtain all Racah doubles.
We now consider a special case concerning the doubles related to Racah polynomials. This gives rise
to an interesting class of two-diagonal matrices with closed form expressions for the eigenvalues. Just
as it was the case for (dual) Hahn doubles, the resulting two-diagonal matrix can be used to construct
a finite oscillator model. We discuss some properties of this oscillator model, give its (discrete) position
wavefunctions explicitly, and illustrate their behavior by means of some plots.
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1. INTRODUCTION

In a recent paper [1] all pairs of recurrence relations
in which two Hahn, dual Hahn or Racah polynomials
with different parameters appear were classified. We
used the term (dual) Hahn doubles or Racah doubles
for such pairs. They were shown to correspond to
Christoffel–Geronimus pairs of (dual) Hahn or Racah
polynomials [1].

In the present paper, we shall consider a special
case of a Racah double. This special case is chosen
in such a way that the related two-diagonal (Jacobi)
matrix M has a very simple spectrum. The eigen-
vectors of M can then be written in terms of the
corresponding Racah polynomials.

The main reason to study the special case consid-
ered here is because it is particularly interesting in the
framework of finite oscillator models. Finite oscillator
models were introduced and investigated in a number
of papers, see e.g. [2–7]. The standard example is
the su(2) oscillator model [2, 3]. In brief, this model
is based on the su(2) algebra with basis elements
J0 = Jz , J± = Jx ± Jy satisfying

[J0, J±] = ±J±, [J+, J−] = 2J0, (1)

with unitary representations of dimension 2j + 1
(where j is integer or half-integer). Recall that
the oscillator Lie algebra can be considered as an
associative algebra (with unit element 1) with three
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generators Ĥ , q̂ and p̂ (the Hamiltonian, the position
and the momentum operator) subject to

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, [q̂, p̂] = i, (2)

in units with mass and frequency both equal to 1, and
� = 1. The first two are the Hamilton–Lie equations;
the third the canonical commutation relation. The
canonical commutation relation is not compatible
with a finite-dimensional Hilbert space. Following
this, one speaks of a finite oscillator model if Ĥ , q̂, and
p̂ belong to some algebra such that the Hamilton–
Lie equations are satisfied and such that the spectrum
of Ĥ in representations of that algebra is equidistant
[3, 6].

In the su(2) model, one chooses

Ĥ = J0 + j +
1

2
, q̂ =

1

2
(J+ + J−),

p̂ =
i

2
(J+ − J−). (3)

These indeed satisfy [Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, and
the spectrum of Ĥ is equidistant in the representation
(j) labeled by j (and given by n+ 1

2 ; n = 0, 1, . . . , 2j).
Clearly, for this model the position operator q̂ =
1
2 (J+ + J−) also has a finite spectrum in the rep-
resentation (j) given by q ∈ {−j,−j + 1, . . . ,+j}.
In terms of the standard J0 eigenvectors |j,m〉, the
eigenvectors of q̂ can be written as

|j, q) =
j∑

m=−j

Φj+m(q)|j,m〉. (4)
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The coefficients Φn(q) are the position wavefunctions,
and in this model [2, 3] they turn out to be (normal-
ized) symmetric Krawtchouk polynomials, Φn(q) ∼
Kn(j + q; 12 , 2j). The shape of the these wavefunc-
tions is reminiscent of those of the canonical oscil-
lator: under the limit j → ∞ they coincide with the
canonical wavefunctions in terms of Hermite polyno-
mials.

In the present paper we develop a related but new
finite oscillator model, following the ideas of [6] where
a dual Hahn double was used to extend the su(2)
model. The recent classification [1] of all (dual) Hahn
doubles and Racah doubles opens the way to inves-
tigate such new models. The basic ingredient is a
special Racah double from this classification, that is
explained and analysed in Section 2. In Section 3
we study the related finite oscillator model, and in
particular we focus on some properties of the discrete
position wavefunctions.

2. RACAH POLYNOMIALS
AND TWO RACAH DOUBLES

Racah polynomials Rn(λ(x);α, β, γ, δ) of degree
n (n = 0, 1, . . . , N ) in the variable λ(x) = x(x+ γ +
δ + 1) are defined by [8–10]

Rn(λ(x);α, β, γ, δ) (5)

= 4F3

⎛

⎝−n, n+ α+ β + 1,−x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; 1

⎞

⎠ ,

where one of the denominator parameters should be
−N :

α+ 1 = −N or β + δ + 1 = −N

or γ + 1 = −N. (6)

Herein, the function 4F3 is the generalized hypergeo-
metric series [11, 12]:

pFq

⎛

⎝a1, . . . , ap

b1, . . . , bq
; z

⎞

⎠

=
∞∑

k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!
, (7)

where we use the common notation for Pochhammer
symbols [11, 12] (a)k = a(a+ 1) · · · (a+ k − 1) for
k = 1, 2, . . . and (a)0 = 1. Note that in (5), the se-
ries is terminating because of the appearance of the
negative integer −n as a numerator parameter.

Racah polynomials satisfy a (discrete) orthogonal-
ity relation (depending on the choice of which param-
eter relates to −N ) [8, 13]. For the choice α+ 1 =
−N we have

N∑

x=0

w(x;α, β, γ, δ)Rn(λ(x);α, β, γ, δ)

×Rn′(λ(x);α, β, γ, δ) = hn(α, β, γ, δ)δn,n′ , (8)

where

w(x;α, β, γ, δ) =
(α+ 1)x(β + δ + 1)x(γ + 1)x(γ + δ + 1)x((γ + δ + 3)/2)x
(−α+ γ + δ + 1)x(−β + γ + 1)x((γ + δ + 1)/2)x(δ + 1)xx!

,

hn(α, β, γ, δ) =
(−β)N (γ + δ + 2)N

(−β + γ + 1)N (δ + 1)N
(9)

× (n+ α+ β + 1)n(α+ β − γ + 1)n(α− δ + 1)n(β + 1)nn!

(α+ β + 2)2n(α+ 1)n(β + δ + 1)n(γ + 1)n
.

Under certain restrictions such as γ, δ > −1 and β >
N + γ or β < −N − δ − 1, which ensure positivity
of the functions w and h, we can define orthonormal
Racah functions as follows:

R̃n(λ(x);α, β, γ, δ)

≡
√

w(x;α, β, γ, δ)Rn(λ(x);α, β, γ, δ)√
hn(α, β, γ, δ)

. (10)

After settling this notation, let us turn to a result
from [1]. The matrices appearing here will always be

of a special tridiagonal form, namely

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 M0 0

M0 0 M1 0

0 M1 0 M2
. . .

0 M2 0
. . .

. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

and such matrices will be referred to as two-diagonal.
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The following two propositions were obtained in [1,
Appendix]:

Proposition 1. Let α+ 1 = −N , and suppose
that γ, δ > −1 and β > N + γ or β < −N − δ − 1.
Consider two (2N + 2)× (2N +2) matrices U and
M , defined as follows. U has elements (n, x ∈
{0, 1, . . . , N}):

U2n,N−x = U2n,N+x+1

=
(−1)n√

2
R̃n(λ(x);α, β, γ, δ + 1), (12)

U2n+1,N−x = −U2n+1,N+x+1

= −(−1)n√
2

R̃n(λ(x);α, β + 1, γ + 1, δ);

M is the two-diagonal (2N +2)× (2N +2) matrix
of the form (11) with

M2k = 2

√
(N − β − k)(γ + 1 + k)(N + δ + 1− k)(k + β + 1)

(N − β − 2k)(2k −N + 1 + β)
,

M2k+1 = 2

√
(γ +N − β − k)(k + 1)(N − k)(k + δ + β + 2)

(N − β − 2k − 2)(2k −N + 1 + β)
. (13)

Then U is orthogonal, and the columns of U are
the eigenvectors of M , i.e. MU = UD, where D is
a diagonal matrix containing the eigenvalues of
M :

D = diag(−εN , . . . ,−ε1,−ε0, ε0, ε1, . . . , εN ),

εk = 2
√

(k + γ + 1)(k + δ + 1)

(k = 0, 1, . . . , N). (14)

In short, the pair of polynomials Rn(λ(x);α, β, γ,
δ +1) and Rn(λ(x);α, β +1, γ +1, δ) form a “Racah
double”, and the relation MU = UD governs the
corresponding recurrence relations with M taking the
role of a Jacobi matrix [1].

Proposition 2. Let α+ 1 = −N , and suppose
that γ, δ > −1 and β > N + γ or β < −N − δ.

Consider two (2N +1)× (2N +1) matrices U and
M , defined as follows.

U2n,N−x = U2n,N+x =
(−1)n√

2
R̃n(λ(x);α, β, γ, δ),

(n = 0, . . . , N ; x = 1, . . . , N)

U2n+1,N−x−1 = −U2n+1,N+x+1

= −(−1)n√
2

R̃n(λ(x);α + 1, β, γ + 1, δ + 1),

(n, x ∈ {0, . . . , N − 1}),
U2n,N = (−1)nR̃n(λ(0);α, β, γ, δ),

U2n+1,N = 0. (15)

M is the two-diagonal (2N +1)× (2N +1) matrix
of the form (11) with

M2k = 2

√
(γ + k + 1)(−N + β + k)(N − k)(k + δ + β + 1)

(N − β − 2k)(N − β − 2k − 1)
,

M2k+1 = 2

√
(γ +N − β − k)(k + 1)(k + β + 1)(k − δ −N)

(N − β − 2k − 2)(N − β − 2k − 1)
. (16)

Then U is orthogonal, and the columns of U are
the eigenvectors of M , i.e. MU = UD, where D
is a diagonal matrix containing the eigenvalues
of M :

D = diag(−εN , . . . ,−ε1, 0, ε1, . . . , εN ),

εk = 2
√

k(k + γ + δ + 1) (k = 1, . . . , N). (17)

The special case considered in this paper is for
γ = δ = −1/2. The reason for this will be clear in the
following, but at this point one can already observe
that for these values the eigenvalues of D (both in
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even dimensions, (14), as in odd dimensions, (17))
take a simple form. For these special values, the

matrix elements of M in the case of Proposition 1
become:

M2k = 2

√
(k −N + β)(k + 1/2)(N − k + 1/2)(k + β + 1)

(2k −N + β)(2k −N + 1 + β)
,

M2k+1 = 2

√
(k −N + β + 1/2)(k + 1)(N − k)(k + β + 3/2)

(2k −N + β + 2)(2k −N + 1 + β)
.

We see that in this case the expressions for coefficients with even and odd indices coincide and can be written
as a single expression, namely

Mk =

√
(k + 1)(2N + 1− k)(k − 2N + 2β)(k + 2β + 2)

(2k − 2N + 2β)(2k − 2N + 2β + 2)
, (18)

with k ∈ {0, . . . , 2N}. Suppose we are in the case
β > N + γ, i.e. β > N − 1/2. It will be useful to

rewrite 2β = 2N − 1 + c, with c > 0, and then the
matrix elements take the form

Mk =

√
(k + 1)(2N + 1− k)(k − 1 + c)(k + 2N + 1 + c)

(2k − 1 + c)(2k + 1 + c)
, k ∈ {0, . . . , 2N}. (19)

Also in the case of Proposition 2 the matrix ele-
ments of M simplify for the special values γ = δ =
−1/2. They can also be written as a single expression,
and after writing 2β = 2N − 1 + c (c > 0) they read:

Mk =

√
(k + 1)(2N − k)(k − 1 + c)(k + 2N + c)

(2k − 1 + c)(2k + 1 + c)
,

k ∈ {0, . . . , 2N − 1}. (20)

Taking into account the size of the matrices in both
cases, the results from Proposition 1 and Proposi-
tion 2 can be unified in the following:

Proposition 3. For d a positive integer, k ∈
{0, . . . , d− 1} and a parameter c > 0, let

Mk =

√
(k + 1)(d− k)(k − 1 + c)(k + d+ c)

(2k − 1 + c)(2k + 1 + c)
.

(21)

The eigenvalues of the tridiagonal (d+ 1)× (d+
1) matrix of the form (11) are given by the integers

−d,−d+ 2,−d+ 4, . . . , d− 4, d− 2, d (22)

which are equidistant, symmetric around zero,
and range from −d to d. Hence for even d = 2N ,

they are d+ 1 consecutive even integers, while
for odd d = 2N + 1 they are d+ 1 consecutive odd
integers.

For d = 2N even, the eigenvectors of M are
the columns of the matrix U given by (15), with
α = −N − 1, β = N − 1/2+ c/2, γ = −1/2 and δ =
−1/2.

For d = 2N + 1 odd, the eigenvectors of M are
the columns of the matrix U given by (12), again
with α = −N − 1, β = N − 1/2 + c/2, γ = −1/2
and δ = −1/2.

Note in particular that the eigenvalues of M are
independent of the value of the parameter c, but of
course c appears in the expressions of the eigenvec-
tors.

3. A QUANTUM OSCILLATOR MODEL
BASED ON RACAH POLYNOMIALS

We now consider a one-dimensional quantum os-
cillator model based on the findings of the previous
section. Particularly interesting about this model is
that it contains a parameter c > 0. By construction,
the spectrum of the position operator in this model
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will be independent of the parameter c, equidistant
and coincide with the spectrum of the su(2) finite
oscillator model [3].

Let us first return to the su(2) model, briefly in-
troduced in Section 1. Working in a representation
(j) of dimension 2j + 1 (where j is integer or half-
integer), and in the standard basis |j,m〉 in which J0
is diagonal, it follows from (3) that the Hamiltonian is
a diagonal matrix,

Ĥ = diag
(
1

2
,
3

2
,
5

2
, . . . , 2j +

1

2

)
. (23)

In this context, it is more common to rewrite the basis
vectors |j,m〉 (m = −j,−j + 1, . . . , j) of this repre-
sentation space as |n〉 ≡ |j, n − j〉 (n = 0, 1, . . . , 2j).
Thus we can write

Ĥ|n〉 =
(
n+

1

2

)
|n〉, (n = 0, 1, . . . , 2j). (24)

Also from (3), the matrix form of the position operator
q̂ in this basis is given by

q̂ =
1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ0 0

μ0 0 μ1 0

0 μ1 0 μ2
. . .

0 μ2 0
. . .

. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

μk =
√

(k + 1)(2j − k), (25)

and the momentum operator p̂ takes the form

p̂ =
i

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −μ0 0

μ0 0 −μ1 0

0 μ1 0 −μ2
. . .

0 μ2 0
. . .

. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

μk =
√

(k + 1)(2j − k). (26)

Clearly, these operators (and matrix representations)
satisfy the Hamilton–Lie equations from (2) (but not
the canonical commutation relation).

Let us now turn to a new finite oscillator model
based on the Racah polynomials introduced in the
previous section. For this purpose, observe that for
any dimension d+ 1 = 2j + 1, there is a close re-
lationship between the matrix elements of M , given
by (21), and those of the above matrix (25):

Mk =

√

(k + 1)(2j − k)
(c+ k − 1)(c + k + 2j)

(c + 2k − 1)(c + 2k + 1)
,

μk =
√

(k + 1)(2j − k). (27)

Indeed, the positive parameter c appearing in Mk can
be seen as a “deformation” of the element μk. And
clearly, in the limit c → +∞ one has that Mk → μk.
Following this, the elements of the new finite oscilla-
tor model—in any dimension 2j +1 (j integer or half-
integer) —are defined as follows: the Hamiltonian Ĥ
is the same operator as in (23) or (24); the operators
q̂ and p̂ are

q̂ =
1

2
M =

1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 M0 0

M0 0 M1 0

0 M1 0 M2
. . .

0 M2 0
. . .

. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

p̂ =
i

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −M0 0

M0 0 −M1 0

0 M1 0 −M2
. . .

0 M2 0
. . .

. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

with Mk given by (21) or equivalently (27).
For this new model, the Hamiltonian–Lie equa-

tions are satisfied. So let us turn our attention to the
properties of the position operator q̂ (the properties of
the momentum operator p̂ are completely similar and
will not be given explicitly). Following Proposition 3,
the spectrum of q̂ = 1

2M is simply given by

−j,−j + 1,−j + 2, . . . , j − 2, j − 1, j. (29)

Quite surprisingly, this spectrum is independent of
the parameter c appearing in the matrix elements (28)
of q̂; but of course this is a consequence of Proposi-
tion 3, and in particular of the special choice of γ and
δ earlier on in Section 2. So the spectrum of q̂ in the
new model is just the same as in the familiar su(2)
model. For the eigenvectors of q̂, however, things are
different, as follows from the last part of Proposition 3.
The orthonormal eigenvector of the position operator
q̂ for the eigenvalue q, denoted by |q), is given in terms
of the eigenstate basis of Ĥ by

|q) =
2j∑

n=0

Un,j+q|n〉,

q ∈ {−j,−j + 1 . . . , j − 1, j}. (30)

Herein, U = (Ukl)0≤k,l≤2j is the (2j + 1)× (2j + 1)
matrix with elements defined in terms of normalized
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Racah polynomials (10) as in the previous section.
Explicitly, for j half-integer, the elements of U fol-
low from Proposition 1, with N = j − 1/2 and n, x ∈
{0, . . . , N}:

U2n,N−x = U2n,N+x+1 =
(−1)n√

2

× R̃n(λ(x);−N − 1, N − 1/2 + c/2,−1/2, 1/2),

U2n+1,N−x = −U2n+1,N+x+1 = −(−1)n√
2

× R̃n(λ(x);−N − 1, N + 1/2 + c/2,

1/2,−1/2). (31)

For j integer, they follow from Proposition 2, with
N = j:

U2n,j−x = U2n,j+x =
(−1)n√

2

× R̃n(λ(x);−j − 1, j − 1/2 + c/2,−1/2,−1/2),

(n = 0, . . . , j; x = 1, . . . , j),

U2n+1,j−x−1 = −U2n+1,j+x+1 = −(−1)n√
2

× R̃n(λ(x);−j, j − 1/2 + c/2, 1/2, 1/2),

(n, x ∈ {0, . . . , j − 1}),
U2n,j = (−1)nR̃n(λ(0);−j − 1, j − 1/2 + c/2,

−1/2,−1/2), U2n+1,j = 0. (32)

These expressions deserve further attention. Re-
member that, just as in (4) for the su(2) model, quite
generally the position (resp. momentum) wavefunc-
tions are the overlaps between the normalized eigen-
states of the position operator q̂ (resp. the momentum
operator p̂) and the eigenstates of the Hamiltonian.
Let us denote the position wavefunctions for the new

oscillator model by Φ
(c)
n (q), in order to emphasize the

dependence upon the positive parameter c. We can
thus write:

Φ(c)
n (q) = 〈n|q) = Un,j+q, (33)

where n = 0, 1, . . . , 2j and q = −j,−j + 1, . . . , j −
1, j. So Φ

(c)
0 (q) is the “ground state”, Φ(c)

1 (q) the first
excited state, and so on. All these expressions are
real, and since we are dealing with a finite oscillator
model they satisfy a discrete orthogonality relation:

j∑

q=−j

Φ(c)
n (q)Φ

(c)
n′ (q) = δn,n′ ,

2j∑

n=0

Φ(c)
n (q)Φ(c)

n (q′) = δq,q′ . (34)

Let us examine the explicit form of these functions
in more detail, for the case j half-integer (the case j
integer is similar, and will not be treated explicitly).
The expressions follow essentially from (31). The
even wavefunctions are given by

Φ
(c)
2n (q) =

(−1)n√
2

√
W (n, q; c, j)

× 4F3

⎛

⎝−q + 1/2, q + 1/2,−n, n + (c− 1)/2

1/2, j + (c+ 1)/2,−j + 1/2
; 1

⎞

⎠ ,

(35)

where

W (n, q; c, j)

=
w(|q| − 1/2;−j − 1/2, j − 1 + c/2,−1/2, 1/2)

hn(−j − 1/2, j − 1 + c/2,−1/2, 1/2)

is written in terms of the weight function and square

norm (9) of the Racah polynomials. Note that Φ(c)
2n (q)

is indeed an even function of the position q, and
depends on q2 only.

The odd wavefunctions are given by

Φ
(c)
2n+1(q)

= (−1)n

√
(4n+ c+ 1)(2n + c− 1)(2n + 1)

(4n+ c− 1)(2n + c+ 2j)(j − n)

×
√

W (n, q; c, j) · q

· 4F3

⎛

⎝−q + 1/2, q + 1/2,−n, n + (c+ 1)/2

3/2, j + (c+ 1)/2,−j + 1/2
; 1

⎞

⎠ .

(36)

Clearly, because of the factor q, Φ(c)
2n+1(q) is an odd

function of q. The overall factor in (36), by the way,
arises from

w(|q| − 1/2;−j − 1/2, j + c/2, 1/2,−1/2)

hn(−j − 1/2, j + c/2, 1/2,−1/2)

=
2q2(4n+ c+ 1)(2n + c− 1)(2n + 1)

(4n + c− 1)(2n + c+ 2j)(j − n)

× w(|q| − 1/2;−j − 1/2, j − 1 + c/2,−1/2, 1/2)

hn(−j − 1/2, j − 1 + c/2,−1/2, 1/2)
.

It is interesting to study these discrete wavefunc-
tions for varying values of c. We know already that
in the limit c → +∞ the position operator q̂ tends
to the position operator of the su(2) model, so also
the wavefunctions should have this behavior. When c
tends to infinity, the wavefunctions Φ(c)

n (q) are indeed
Krawtchouk functions. Clearly, the 4F3 series in (35)
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Plots of the discrete wavefunctions Φ
(c)
n (q) in the representation with j = 33/2, for n = 0 (left column), for n = 1 (middle

column) and for n = 2 (right column). The wavefunctions are plotted for the following values of c (from top to bottom):
10−6, 0.5, 1.5, 2, 4, 8, 32.

and (36) reduce to 3F2 series, which in turn reduce to

2F1 series according to

3F2

⎛

⎝−q + 1/2, q + 1/2,−n

1/2,−j + 1/2
; 1

⎞

⎠ = (−1)n

×
(
2j
2n

)
(j−1/2

n

)2F1

⎛

⎝−2n,−j − q

−2j
; 2

⎞

⎠ , (37)

3F2

⎛

⎝−q + 1/2, q + 1/2,−n

3/2,−j + 1/2
; 1

⎞

⎠ = −(−1)n

2q
(38)
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×
( 2j
2n+1

)
(j−1/2

n

)2F1

⎛

⎝−2n− 1,−j − q

−2j
; 2

⎞

⎠ .

These reductions have been given in [14] and can be
obtained, e.g., from [5, (48)]. The 2F1 series in the
right hand side correspond to symmetric Krawtchouk
polynomials (i.e. Krawtchouk polynomials with p =
1/2 [8]). When j tends to infinity, they yield the
ordinary oscillator wavefunctions [5].

For other values of c, let us examine some plots
of the discrete wavefunctions. In the figure, we give

the plots of Φ(c)
n (q) for n = 0, n = 1 and n = 2, and

for some fixed j value j = 33/2. The purpose is to ob-
serve the behavior of the wavefunctions as the positive
parameter c varies. With this in mind, we have plotted

these functions for the following c-values:

c = 10−6, c = 0.5, c = 1.5, c = 2, c = 4,

c = 8, c = 32.

For large values of c, the discrete wavefunctions take
indeed the shape of those of the su(2) model (which,
in turn, tend to the canonical oscillator wavefunctions
when j tends to infinity). The case c = 0 is ruled
out, but we have examined a c-value close to 0, for
which the behavior is somewhat “degenerate”. To our
surprise, the value c = 2 is a kind of transition value
for the ground state. Just looking at the ground state
(n = 0), one observes that for c < 2 the shape is like
a cup, whereas for c > 2 it is like a cap. In order to
explain this transition value, recall from (35) that

Φ
(c)
0 (q) =

1√
2

√
W (0, q; c, j) =

1√
2

(
w(|q| − 1/2;−j − 1/2, j − 1 + c/2,−1/2, 1/2)

h0(−j − 1/2, j − 1 + c/2,−1/2, 1/2)

)1/2

. (39)

Using (9),

w(|q| − 1/2;−j − 1/2, j − 1 + c/2,−1/2, 1/2)

=
(−j + 1/2)|q|−1/2(j + c/2 + 1/2)|q|−1/2

(j + 3/2)|q|−1/2(−j − c/2 + 3/2)|q|−1/2
, (40)

and thus for c = 2 one finds w(|q| − 1/2;−j − 1/2, j −
1 + c/2,−1/2, 1/2) = 1. In other words, for this
special transition value c = 2, the ground state wave-

function Φ
(c)
0 (q) is a constant function.

To conclude, in the field of finite quantum oscilla-
tors the original su(2) model remains an interesting
model because of two reasons: the simple equidistant
spectrum of the position (and momentum) operator,
and the behavior of the position wavefunctions (which
really look like discrete versions of the canonical os-
cillator wavefunctions, and tend to them when j is
sufficiently large). The new model introduced in this
paper deforms the su(2) model by a parameter c >
0. The spectrum of the position (and momentum)
operator is the same and thus remains simple and
equidistant. The wavefunctions are deformed by the
parameter c, and tend to those of the su(2) model
when c goes to infinity. The wavefunctions them-
selves are written in terms of Racah polynomials, and
originate from a Racah double [1]. The shape of the
wavefunctions could open applications beyond those
of the su(2) model.
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