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ELEMENTARY PARTICLES AND FIELDS
Theory

The Discrete Family Symmetries as the Possible Solution
to the Flavour Problem∗
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Abstract—In order to explain the fermions’ masses and mixing parameters appearing in the lepton sector
of the Standard Model, one proposes the extension of its symmetry. A discrete, non-Abelian subgroup of
U(3) is added to the gauge group SU(3)C × SU(2)L ×U(1)Y . Apart from that, one assumes the existence
of one extra Higgs doublet. This article focuses mainly on the mathematical theorems and computational
techniques which brought us to the results.
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1. INTRODUCTION

The flavour problem constitutes one of the most
serious disadvantages of the Standard Model [1]. It
does not allow us to predict theoretically the particles’
masses nor the parameters describing PMNS mixing
matrix (Pontecorvo–Maki–Nakagawa–Sakata ma-
trix). This fact clearly points to some extension of the
present-day theory.

In our approach, one adds some new, non-Abelian
discrete symmetry GF to the Standard Model’s gauge
group. This step can be partially justified bearing
in mind the enormous success of the tribimaximal
mixing [2] which could be explained by such a group.
Since 2004 many similar ideas have already been
widely studied, but gave no reasonable results. For
this reason, we have decided to go one step fur-
ther and widen the scalar sector as well. To our
knowledge, not so many attempts have been ven-
tured in this direction, so far. Only one article con-
cerning such a model (with 3 Higgs doublets) has
been found in the literature [3]. This fact motivated
us to investigate the model with two Higgs dou-
blets with a lot of possible choices for group GF [4].
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1.1. The Main Concept

To start with, it is necessary to introduce the
Yukawa part of the considered model:

LY = −
∑

α,β=e,μ,τ

∑

j=1,2

[(hlj)αβL̄αLΦjlβR (1)

+ (hνj )αβL̄αLΦ̃jνβR],

where
e, μ, τ—three different flavors of charged leptons

and neutrinos,

LαL =

⎡

⎣ ναL

lαL

⎤

⎦—the lepton doublet composed of

left-handed charged lepton and neutrino field of given
flavor α,

lβR, νβR—the right-handed charged lepton and
neutrino field of given flavor β,

Φ1,2 =

⎡

⎣ Φ+
1,2

Φ0
1,2

⎤

⎦—two Higgs doublets,

Φ̃1,2 = iσ2Φ
∗
1,2,

hl1,2, hν1,2—Yukawa couplings.

We assumed here the minimal extension of the
Standard Model: to get the masses for neutri-
nos, three right-handed neutrino singlets have been
added.

In principle, four Yukawa couplings hl,ν1,2 occurring
in the model are arbitrary 3-dimensional matrices.
This lack of any restrictions causes that the masses
of fermions and mixing parameters are treated as free
parameters within the Standard Model.
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In order to solve this problem, one can try to
constrain the allowed masses by imposing some ad-
ditional symmetry GF on the Lagrangian. In simple
terms, we expect Eq. (1) to be invariant under the
following set of transformations:

L′
αL = (AL)α,βLβL, l′βR = (Al)β,γ lγR,

ν ′βR = (Aν)β,δνδR, Φ′
i = (AΦ)i,kΦk. (2)

In the above formulas AL, Aν , Al stand for 3-
dimensional irreducible (in general different) repre-
sentations of GF . On the other hand, AΦ denotes
the 2-dimensional irreducible representation of the
same group. The dimensions of these representations
follow from the existence of 3 families of fermions and
2 Higgs doublets which are assumed in the model.

The requirement of the invariance of Eq. (1) under
the transformations given in the above-mentioned
formulas leads to the equations restricting the form
of Yukawa couplings [5]:

∑

i=1,2

(Aφ)i,k(A
L)†αγ(h

l
i)γδ(A

l)δβ = (hlk)αβ ,

∑

i=1,2

(Aφ)∗i,k(A
L)†αγ(h

ν
i )γδ(A

l)δβ = (hνk)αβ , (3)

which after some indice manipulation take the form of
2 eigenproblems to the eigenvalue 1:

N1Γ
l = Γl, N2Γ

ν = Γν , (4)

where

(Γl,ν)T (5)

=
[
(hl,ν1 )11, ..., (h

l,ν
1 )33, (h

l,ν
2 )11, ..., (h

l,ν
2 )33

]

and

N1 = (AΦ)T ⊗ (AL)† ⊗ (Al)T , (6)

N2 = (AΦ)† ⊗ (AL)† ⊗ (Aν)T . (7)

Thus in order to get the desired form of Yukawa
couplings one should simply find the eigensubspaces
of matrices N1 and N2 corresponding to the eigen-
value 1.

However, the group has got many elements, each
of them has got its own set of irreducible represen-
tations. Thus, should we solve Eq. (4) for each
group’s element separately? Luckily, the answer to
this question is negative. It turns out that one has
to take only generators’ representations in order to
obtain the Yukawa couplings which are invariant with
respect to the whole group GF [5].

Theorem 1. If the relation:
∑

i=1,2

(Aφ)i,k(A
L)†αγ(h

l
i)γδ(A

l)δβ = (hlk)αβ

holds for the generators’ representations of some
group GF , then it holds for the representations of
all group’s elements.

Proof: Every element of the group G can be
presented as a unique combination of its generators
{A,B,C, ...}:

G = An1Bn2Cn3 ...,

where n1, n2, n3, ... are natural numbers.
Therefore it is sufficient to prove that if the rela-

tions:∑

i=1,2

(AΦ)ik(B)(AL)†αγ(B)(hli)γδ(A
l)δβ(B) = (hlk)αβ ,

∑

i=1,2

(AΦ)ik(C)(AL)†αγ(C)(hli)γδ(A
l)δβ(C) = (hlk)αβ

are fulfilled for the representations AΦ, AL, Al of
some generators B,C, then they are also valid for the
representations AΦ, AL, Al of their product:

∑

i=1,2

(AΦ)ik(BC)(AL)†αγ(BC)(hli)γδ(A
l)δβ(BC)

= (hlk)αβ.

The above-mentioned statement holds indeed:∑

i=1,2

(AΦ)ik(BC)(AL)†(BC)(hli)(A
l)(BC)

=
∑

i,m=1,2

(AΦ)ik(B)(AΦ)km(C)(AL)†(C)(AL)†

× (B)(hli)(A
l)(B)(Al)(C)

=
∑

i,m=1,2

(AΦ)km(C)(AL)†(C)(AΦ)ik(B)

× (AL)†(B)(hli)(A
l)(B)(Al)(C)

=
∑

i,m=1,2

(AΦ)km(C)(AL)†(C)(hlk)(A
l)(C)

= (hlm). (8)

We arrive thereby to the conclusion that only group’s
generators are necessary to find invariant Yukawa
couplings hl,ν1,2. After solving Eq. (4) for each of
the generators one will get some set of eigenspaces
Wi to the eigenvalue 1 (this eigenvalue is in general
degenerate). In order to get the appropriate solution,
one has to find the common eigenspace U of these
individual eigenspaces. Then, it is necessary to find
the basis vector of U which constitutes the ultimate
result.

At this point, knowledge about the form of Yukawa
matrices makes the construction of mass matrices
feasible:

M l
α,β =

1√
2
(v1h

l
1 + v2h

l
2), (9)
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Mν
α,β =

1√
2
(v1h

ν
1 + v2h

ν
2).

Then, we are able to find the UPMNS mixing matrix,
which is composed of the matrices that diagonalize
M l and Mν :

V l†
L M lV l

R = diag(me,mμ,mτ ),

V ν†
L MνV ν

R = diag(mνe ,mνμ ,mντ ),

UPMNS = V l†
L V ν

L . (10)

2. THE SEARCH FOR DESIRED GROUPS

It is clear, that in order to get the form of Yukawa
matrices one needs to find the irreducible representa-
tions of the groups which meet our requirements.

First of all, we want our group to be discrete, non-
Abelian and to be a subgroup of U(3) (similarly to
A4). Then, it is quite obvious that the group should
possess 2- and 3-dimensional irreducible representa-
tions, which are necessary for construction of Eq. (3).

To find such a group one can make use of GAP: the
program for discrete algebra computation available
on the website [6]. One would also need the Small-
Group library [7] and REPSN package [8] which
serve as indispensable tools for our purposes.

In order to perform the calculation it is recom-
mended to benefit from some mathematical theorems:

Theorem 2. The order of the finite group G is
divisible by dimension of its irreducible represen-
tation.

Theorem 3. A finite group G is isomorphic to a
finite subgroup of U(3) if and only if it possesses a
faithful (irreducible or reducible) 3-dimensional
representation.

Since our group has got 2- and 3-dimensional
irreducible representations, following the second the-
orem, one should first verify that the group’s order is
divided by 6.

The proof of the third theorem can be found in
many textbooks about finite groups (see, for exam-
ple, [9]). On the other hand, the justification of the last
statement is quite intuitive. In case of finite groups,
every representation has got its unitary equivalent

(it is possible to present the matrices of the given
representation in such a basis to make them unitary).
Therefore, the faithfulness assures that every element
g of G can uniquely be expressed as a unitary matrix
(see [10] for a more profound analysis of this theorem).

3. THE SEARCH FOR YUKAWA MATRICES

After finding the irreducible representations of GF ,
one has got almost everything to get to know how
Yukawa matrices look like. Since the equation re-
stricting the form of Yukawa matrices has the form
of eigenproblems to the eigenvalue 1, its solution is
rather straightforward. One can easily compute the
eigenspace Wi for each of the generators. The prob-
lem arises, when one wants to deal with the common
eigenspace U of the eigenspaces Wi. In order to
perform this calculation, one can follow very simple
algorithm (it is not necessarily the most efficient one).
To simplify the considerations, let us assume that one
has got two n-dimensional spaces S and T . Each
space is spanned by its basis vectors: {s1, s2, ..., sn}
and {t1, t2, .., tn} respectively. Vector a being the
part of the common subspace P = S ∩ T can be
equivalently expressed in two basis:

a = a1s1 + a2s2 + ...+ ansn,

a = a′1t1 + a′2t2 + ...+ a′ntn, (11)

where a1, a2, · · · , an, a′1, a′2, · · · , a′n are some com-
plex coefficients.

Denoting the basis vectors of space S via their
components as:

s1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11

s12

.

.

.

s1n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, s2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s21

s22

.

.

.

s2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , sn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn1

sn2

.

.

.

snn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and similarly for T , one can rewrite the equality fol-
lowing from Eq. (11) as a set of equations:

a1s11 + a2s21 + ...+ ansn1 − a′1t11 − a′2t21 − ...− a′ntn1 = 0,

a1s12 + a2s22 + ...+ ansn2 − a′1t12 − a′2t22 − ...− a′ntn2 = 0,

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

a1s1n + a2s2n + ...+ ansnn − a′1t1n − a′2t2n − ...− a′ntnn = 0, (12)
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which can be readily presented in the matrix form:

⎡

⎢⎢⎢⎢⎢⎢⎣

s11 s21 ... sn1 −t11 t21 ... tn1

s12 s22 ... sn2 −t12 t22 ... tn2

... ... ... ... ... ... ... ...

s1n s2n ... snn −t1n t2n ... tnn

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

.

.

.

an

a′1

a′2

.

.

.

a′n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

.

.

.

0

0

0

.

.

.

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, in order to find the common eigenspace
one needs to calculate the coefficients a1, a2, ..., an, a′1, ...,
a′2 (one has to find the null space of the matrix
composed of these coefficients).

The generalization of this algorithm for the case
of several spaces is trivial. One needs to repeat the
described steps iteratively: one should take 2 spaces
at first, find the null space, take another, calculate a
new null space, etc.

4. INTERPRETATION
OF YUKAWA MATRICES

It turns out, that the Yukawa matrices calculated
according to Eq. (3) have got simple mathematical
interpretation [5]. The following theorem clearly il-
lustrates this statement:

Theorem 4. If the coefficients h constitute the
solution to the equation:

(D∗ ⊗A⊗B)h = h,

then they can be interpreted as the Clebsch–
Gordan coefficients for the decomposition:

A⊗B = ⊕DD,

where A, B are 3-dimensional irreducible rep-
resentation and one of D is identified with 2-
dimensional irreducible representation.

Proof:
To start with, let us define the orthonormal basis

for appropriate matrix representations:

{eAk } for representation A, k = 1, 2, ..., NA (span-
ning the vector space VA),

{eBm} for representation B, k = 1, 2, ..., NB (span-
ning the vector space VB),

{eDn } for representation D, n = 1, 2, ..., NANB

(spanning the vector space VA ⊗ VB),

{eAB
km = eAk ⊗ eBm} for representation A⊗B (span-

ning the vector space VA ⊗ VB).

Since the vector bases {eD} and {eAB} act in the
same space (VA ⊗ VB) one can write:

eAB
km =

∑

D,n

αD
n e

D
n , eDn =

∑

m,n

βAB
mn e

AB
mn . (13)

At this moment, it is convenient to define the Clebsch–
Gordan coefficients CDAB

ijk as:

CDAB
ijk = (αD

i )
∗ = βAB

jk = (eAB
jk )†eDi . (14)

From Eq. (12) and Eq. (13) it is possible to investigate
the form of group’s elements in the {eLRkm} basis:

(eAB
ij )†(A⊗B)eAB

kl = ((eA)†i ⊗ (eBj )
†)

× (A⊗B)(eAk ⊗ eBl ) = (eA)†iAe
A
k ⊗ (eB)†jBeBj

= AikBjl(e
AB
ij )†(⊕DD)eAB

kl

=
∑

D′,D′′,m′,m′′

(αD′
m′)∗(αD′′

m′′)(eD
′

m′)†(⊕DD)eD
′′

m′′

=
∑

D′,D′′,m′,m′′

(αD′
m′)∗αD′′

m′′δD′,DδD′′,D

× ((eDm′)†DeDm′′) =
∑

D,m′,m′′

(αD
m′)∗αD

m′′Dm′,m′′

=
∑

D,m′,m′′

CDAB
m′ij (CDAB

m′′kl )
∗Dm′,m′′ .

The above calculations lead us to a very important
relation:

AikBjl = (A⊗B)ij,kl

=
∑

D′,m′,m′′

CD′AB
m′ij (CD′AB

m′′kl )
∗D′

m′,m′′ . (15)

Multiplying both sides of Eq. (15) by
∑

k,lC
DAB
mkl and

making use of the orthogonality relation for Clebsch–
Gordan coefficients (

∑
i,j(C

DAB
mij )∗CD′AB

m′ij =

δD,D′δm,m′) one arrives to:
⎛

⎝
∑

k,l

(A⊗B)ij,klC
DAB
mkl

⎞

⎠

=
∑

D′,m′,m′′

CD′AB
m′ij D′

m′,m′′δD,D′δm,m′′

=
∑

m′

CDAB
m′ij Dm′,m. (16)
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After multiplication of the previous equation by
(
∑

mD†
mn) one gets:

∑

mkl

(Dn,m)∗(A⊗B)ij,klC
DAB
mkl = CDAB

nij , (17)

which is equivalent to:
∑

mkl

(D∗ ⊗A⊗B)nij,mklC
DAB
mkl

= CDAB
nij ⇔

∑

mkl

(DT ⊗ (A)† ⊗ (B)†)nij,mklC
DAB
mkl

= CDAB
nij . (18)

Denoting the representation D by AΦ, replacing B →
(AR)∗ and A → AL one finds that previous equation
is completely analogical to the first part of Eq. (4). On
the other hand, when it comes to the second part of
Eq. (4) it is easy to notice that we get the equivalence
if we assume D = (AΦ)∗.

This theorem indicates that in order to find out if
any solution for Eq. (4) exists, all we need to do, is
the investigation of the Clebsch–Gordan decomposi-
tions:

AL ⊗Al = ⊕DD, (19)

AL ⊗Aν = ⊕DD. (20)

Therefore, if one finds the representations AL and
Al, direct product of which gives AΦ (one of the
2-dimensional representations among D) in the de-
composition, then we have the guarantee that some
solution to Eq. (4) exists. The similar situation takes
place, when it comes to AL ⊗Aν . The only exception
lies in the fact, that we need to look for (AΦ)∗ in
the decomposition. All these theorems can be easily
verified by GAP.

5. CONCLUSIONS

To sum up, it is necessary to replace TBM mixing,
which according to the experiments carried out in

2012, is no longer valid. Basing on the literature, we
have developed the tools which are indispensable to
search for the answer in the models with more Higgs
doublets (these methods can be trivially generalized
into the case of more Higgs doublets). Our results
will be presented in the forthcoming paper. In the
meantime, the preliminary outcomes can be found
in [11].
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