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Abstract—In Quantum Chromodynamics, the hadrons consisting of light (u, d, s) and heavy (c, b) quarks
are subject to approximate flavor symmetries, providing the basis for powerful effective theories. I will
briefly overview the origin of these symmetries and the scale of their violation. The current precision tests of
Standard Model in the electroweak decays of hadrons demand an accurate quantitative account of flavor-
symmetry violation effects. I will discuss the continuum (non-lattice) QCD calculation of these effects in
hadronic matrix elements, taking as an example the decay constants of heavy–light hadrons.
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1. QUARK MASSES IN QCD

Quantum chromodynamics (QCD) is a part of the
Standard Model (SM), and is described by the well-
known Lagrangian:

LQCD(x) = −1

4
Ga

μν(x)G
aμν(x)

+
∑

f=u,d,s,...

ψ̄f (x)(iDμγ
μ −mf )ψf (x), (1)

where Ga
μν(x) = ∂μA

a
ν(x)− ∂νA

a
μ(x) + gsf

abc ×
Ab

μ(x)A
c
ν(x) is the gluon field-strength tensor, and

Dμ = ∂μ − igs
λa

2 Aa
μ(x) is the covariant derivative.

Within QCD, the quark fields ψf (x) with different
flavors f = {u, d, s, c, b, t} differ only by their masses.
The primordial values of the mass parameters mf

originate beyond QCD. In Standard Model, the quark
masses are generated due to the Yukawa couplings
of quark fields with the scalar Higgs field. The
three-generation hierarchy of quark flavors, and the
relation between quarks and leptons constitute the
fundamental “flavor problem” of the SM. In what
follows, we consider mf as an external input in
Eq. (1). The quark–gluon interactions in QCD via
quantum-loop effects lead to the renormalization-
scale dependence (“running”) of the quark masses,

mq(μ) = mq(μ0)

(
αs(μ)

αs(μ0)

)γ0/β0

+ NLLO, (2)

∗The text was submitted by the author in English.
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similar to the scale dependence of the effective quark–
gluon coupling

αs ≡ g2s/(4π) → αs(μ)

=
αs(μ0)

1 + αs(μ0)
4π β0 log

μ2

μ2
0

+ NLLO, (3)

where β0 = 11− 2/3Nf > 0, γ0 = 4 and Nf is the
number of “active” flavors in the loops. The loga-
rithmic decrease of the coupling (3) at large scales
reflects the color-charge screening, and leads to the
“asymptotic freedom” of QCD at μ → ∞, allow-
ing one to establish the perturbation theory in αs

valid at the scales μ ≥ 1 GeV. The world average [1]
is αs(mZ) = 0.1185 ± 0.0006, so that αs(1 GeV) �
0.467.

At low scales, around ΛQCD ∼ 200−300 MeV
QCD undergoes a transition to the nonperturbative
regime where the perturbation theory in the αs cou-
pling is not applicable. QCD dynamics at these scales
is characterized by vacuum fields (condensates),
confinement of color charges and hadronization.

For our discussion the actual values of the quark
masses are crucial. One subdivides the quark flavors
into two distinct groups with respect to the QCD
scale ΛQCD: the light quarks q = u, d, s with mu,d 	
ΛQCD, ms � ΛQCD and the heavy quarks Q = c, b
with mQ 
 ΛQCD. The superheavy top quark will not
play role in the following.

The world averages of quark-mass determination
obtained combining the results of lattice QCD and
the continuum method of QCD sum rules, can be
found in the Review of Particle Properties [1]. The
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light quark masses normalized at a default scale μ0 =
2 GeV, are:

mu = 2.3+0.7
−0.5 MeV, md = 4.8+0.5

−0.3 MeV,

ms = 95± 5 MeV, (4)

and the heavy–quark masses normalized at the same
mass scale are:

mc(μ = mc) = 1.275 ± 0.025 GeV,

mb(μ = mb) = 4.18 ± 0.03 GeV. (5)

Hereafter, we only use the (renormalization scheme
dependent) quark masses in the MS scheme, their
relations to the other quark-mass definitions can be
found in the literature. Note that the ratios of the
quark masses remain scale independent. The errors
of the quark mass determination quoted above are
dominated by the lattice QCD results, whereas QCD
sum rules yield quark masses with somewhat larger
theoretical uncertainties.

2. FLAVOR SYMMETRIES IN QCD

Certain flavor symmetries of the hadronic (strong)
interactions were known long before the formulation
of QCD. The isospin symmetry for nuclei was intro-
duced by W. Heisenberg and studied by E. Wigner
in 1930’s. The SU(3)fl symmetry relating strange
and nonstrange hadrons was formulated by Gell-
Mann and Neeman in 1961 [2]. The most spectacular
prediction of this symmetry was the Ω− hyperon, the
spin-3/2 hadronic state with three valence s quarks.
Its existence is at the same time one of the strongest
implications of the color quantum number in QCD,
providing the necessary total asymmetry of the con-
stituent fermions.

In QCD the above-mentioned and other flavor
symmetries originate due to accidental relations be-
tween various quark masses with respect to ΛQCD

and/or with respect to each other. E.g., the origin of
the isospin symmetry lies in a small mass difference
mu −md 	 ΛQCD. This symmetry is described by
the SU(2) global gauge transformation, rotating the
doublet formed by u and d quark fields in the La-
grangian (1). The isospin invariance of hadrons is
the most accurate flavor symmetry. Its character-
istic violation at the percent level is caused by the
smallness of the ratio (mu −md)/ΛQCD ∼ 1% and
in addition, by the electromagnetic effects ∼O(αem).
The latter evidently violate the isospin symmetry since
u and d quarks have different electric charges. At the
same time, both mu and md are also small, hence
the chiral-symmetry limit mq = 0 seems to be a rea-
sonable one for q = u, d allowing one to develop the
QCD-based chiral perturbation theory (ChiPT). The

chiral symmetry in QCD is however nontrivially im-
plemented being spontaneously violated by the non-
perturbative vacuum condensate, 〈0|q̄q 0〉 
= 0. For a
detailed description of the chiral symmetry and related
dynamics see, e.g. the reviews [3, 4].

Adding s quark to the u, d quarks allows one to
formulate the approximate SU(3)fl symmetry. Its ac-
curacy is reasonably good for hadronic systems where
the mass difference ms −mu,d ∼ 100 MeV is still
smaller than the total binding energy due to quark–
gluon interactions. For example, baryons or vector
mesons (with JP = 1−) consisting of light quarks fall
under this category. In the heavy–light hadrons, such
as B or D mesons, the typical interaction energy of
quarks, defined as the difference between the meson
mass and the heavy–quark mass, is also substan-
tially larger than ms. Hence, the mass differences
of mBs −mB ∼ mDs −mD nicely reproduce the ms

value. The SU(3)fl symmetry can however be no-
ticeably violated, e.g. in the ratio of the leptonic
decay constants of kaon and pion, fK/fπ � 1.2. This
is not surprising at all, because the mass difference
ms −mu,d is in fact not much smaller than ΛQCD.
The SU(3)fl symmetry has three SU(2) subgroups,
one of which is the isospin which we already men-
tioned. The two others are U spin and V spin, based
on the (d, s) and (u, s) quark doublets, respectively.
Although the U-spin invariance is protected with re-
spect to the electromagnetic interaction of d, s quarks
having the same electric charge, the violation of this
symmetry is at the same level as the general SU(3)fl-
symmetry violation. Approximate chiral symmetry
and ChiPT can also be extended to the SU(3)fl level,
however, with the same reservations as the symmetry
itself, e.g., involving a large symmetry-violation ef-
fects when transforming from pions to kaons.

The light–quark flavor symmetries have their most
important applications in the relations between var-
ious hadronic parameters of nonperturbative origin
(decay constants, form factors and other hadronic
matrix elements) which are not calculable in pertur-
bative QCD and demand nonperturbative methods.
In all these applications the isospin symmetry re-
lations are usually taken as granted, anticipating a
large degree of precision, whereas the SU(3)fl viola-
tion needs case-by-case quantitative estimates of its
violation.

Turning to the heavy–quark sector, one encoun-
ters the heavy–quark symmetries manifesting them-
selves in the limit mQ → ∞, justified by the fact that
mc,mb 
 ΛQCD. These symmetries classify/relate
the heavy–light mesons Qq̄ and baryons Qqq′, (Q =
c, b; q, q′ = u, d, s) and their hadronic matrtix ele-
ments (decay constants and form factors). In the
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heavy–quark limit, the mass scale mQ and the Q-
quark spin effectively decouple from the dynamics of
the heavy–light state. In particular, replacing the
b quark by c quark does not change the hadronic
matrix elements of b → c weak transitions at certain
kinematical regions. The heavy–quark symmetry
triggered the development of the QCD-based heavy–
quark effective theory (HQET) [5–11]. Hadronic
matrix elements relevant for heavy-hadron decays are
very important for revealing the quark-flavor struc-
ture of the SM and for the search for new physics
effects. The currently achieved level of accuracy in
these studies needs calculating and taking into ac-
count the symmetry-violating O(1/mQ) corrections.

3. QUARK MASS DETERMINATION
IN NON-LATTICE QCD

Since flavor symmetries are closely related to the
quark masses, the first task is to determine these
masses with the highest possible accuracy, using
nonperturbative method in QCD and the data on
hadron masses. There is a continuous progress in
solving this problem in the framework of the lattice
QCD using a numerical simulation of QCD func-
tional integrals on the space–time lattice. Here I
will briefly discuss the application of the alterna-
tive, continuum (non-lattice) method of QCD sum
rules [12]. For the heavy–quark mass determina-
tion, the “cleanest” hadronic system is the heavy
quarkonium Q̄Q, with Q = c and b, observed as a
series of J/ψ, ψ(2S), ... and Υ,Υ(2S), ... resonances,
respectively [1]. To obtain the QCD sum rules for
quarkonium [12, 13], e.g., for the b-quark case, one
introduces a correlation function of the two quark–
antiquark vector (electromagnetic) currents:

Πμν(q) =

∫
d4x

× eiqx〈0|T{b̄(x)γμb(x)b̄(0)γνb(0)}|0〉. (6)

A perturbative expansion in αs(mb) 	 1 is appli-
cable at q2 	 m2

b , where this correlation function is
described by highly virtual b-quark loops with gluon
radiative corrections (see Fig. 1). In addition, the
nonperturbative contributions of the vacuum-gluon
condensate 〈0|Ga

μνG
aμν |0〉 have to be included; they

are power suppressed with respect to the perturbative
part. Note that due to the absence of light quarks in
the currents, the quark-condensate effects are absent
at the level of leading contributions. In the most
recent determinations [14, 15], gluon radiative cor-
rections up to O(α3

s) are taken into account.
Employing dispersion relation (analyticity and

unitarity) in the variable q2, the correlation func-
tion (6) calculated in QCD is matched to the sum of

b

b

q

Loop Gluon exchange

Gluon condensate
Fig. 1. Sample of quark–gluon diagrams for the correla-
tion function (6).

intermediate bottomonium-state (Υ) contributions,
schematically:

Π(QCD)
μν (q2, αs,mb, 〈0|GG|0〉)

=
∑

Υ

〈0|b̄γμb|Υ〉〈Υ|b̄γνb|0〉
m2

Υ − q2
, (7)

where the hadronic matrix elements 〈0|b̄γμb|Υ〉 on
r.h.s. (decay constants of the Υ states) are known
from the measured Υ → e+e− widths [1]. The
hadronic continuum states with b̄b quantum numbers
located above Υ(3S) and not shown in the above
sum explicitly, are taken into account using the
quark–hadron duality assumption [12] based on the
asymptotically free limit of the correlation function at
|q2| → ∞. The interval of mb obtained from the QCD
sum rule analyses, is currently in a very good agree-
ment with the one obtained from lattice QCD. Quite
analogously, mc is determined from the correlation
function of the product of c̄c currents, matched to the
hadronic sum over charmonium levels.

The light-quark masses can also be accurately
determined using the QCD sum rule method. Let us
consider as an example the s-quark mass determina-
tion. One possibility to access this mass parameter of
QCD is to introduce the underlying correlation func-
tion with pseudoscalar strangeness currents j5s =
∂μs̄γμγ5q = (ms +mq)s̄γ5q, (q = u, d):

Π5s(q
2) = i

∫
d4x

× eiqx
〈
0
∣∣∣T

{
j5s(x)j

†
5s(0)

}∣∣∣ 0
〉
. (8)

The dispersion relation (doubly differentiated) for
Π5s(q

2) is employed at spacelike Q2 = −q2 
 Λ2
QCD:

1

2

d2

d(q2)2
Π

(QCD)
5s (q2, αs,ms, 〈q̄q〉, ...)

=

∞∫

0

ds
ρ

(hadr)
5s (s)

(s− q2)3
, (9)

PHYSICS OF ATOMIC NUCLEI Vol. 80 No. 3 2017



QUARK-FLAVOR SYMMETRIES 545

where the hadronic sum

ρ
(hadr)
5s (s) =

∑

K

〈0|j5s|K〉〈K|j5s|0〉δ(m2
K − s) (10)

is saturated by the kaon and its radial excitations.
Their contributions to Eq. (10) are fixed by the meson
masses and decay constants, the latter defined as
〈0|j5s|K〉 = fKm2

K . The value fK = 159.8 MeV for
the kaon is measured in K → μνμ decays. Note that
according to ChiPT, the excited K(1460), K(1830)
resonances have very small decay constants fK(1460),

fK(1830) 	 fK , hence the accuracy of these hadronic
parameters has a small impact on the sum in (10).
The remaining contribution of hadronic states at s >
m2

K(1830) is estimated using the quark–hadron dual-
ity approximation.

The diagrams contributing to the correlation
function (8) are shown in Fig. 2. Their sum forms
the operator-product expansion (OPE) consisting of
the perturbative part (the loop diagram and gluon
radiative corrections) and nonperturbative, power-
suppressed part (condensate contributions). The
latter are strongly suppressed in this particular case.

The radiative gluon corrections to the loop di-
agrams have been calculated up to O(α4

s) in [16].
The OPE result for the correlation function can be
cast in a form of expansion in the powers 1/(Q)d+2,
d = 0, 2, 4, 6, where the dominant ms dependence is
factorized:

d2

d(Q2)2

[
Π

(QCD)
5 (Q2)

]
=

3(ms +mu)
2

8π2Q2

×
{
1 +

4∑

i=1

C0,i

(αs

π

)i

− 2
m2

s

Q2

(
1 +

∑

i=1,2

C2,i

(αs

π

)i
)

+
{d = 4}

Q4
+

{d = 6}
Q6

}
. (11)

In the above, the abbreviation {d = 4} for the coef-
ficient denotes a combination of vacuum-condensate
densities with dimension four (the terms ∼ms〈0|q̄q|0〉,
〈0|GG|0〉) and some minor O(m4

s) corrections from
the perturbative part, whereas {d = 6} contains
dimension six coefficients ∼ms〈0|q̄Gq|0〉, 〈0|q̄q|0〉2.
One of the analyses of this sum rule [17] contributing
to the PDG average yields

ms(2 GeV)

=
(
105 ± 6

∣∣∣
OPE

± 7
∣∣∣
hadr

)
[MeV], (12)

q

〈qq〉 〈GG〉

⊕O(αs ) ⊕ O(αs )  ⊕ O(αs ) 43 2 
s

u

〈qq〉2〈qGq〉

Fig. 2. Diagrams for the correlation function (8) corre-
sponding to the perturbative (upper row) and nonpertur-
bative (lower raw) contributions.

consistent with the other s-quark mass determina-
tions. The average of u-, d-quark masses can be ob-
tained repeating the same analysis for the correlation
functions of the j5ud = ūγ5d currents; the hadronic
input in this case provided by the pion states.

Note that the ms determination is sufficient if one
calculates then mu,d, employing very accurate ChiPT
relations relating π and K masses squared to the
ratios of light-quark masses [18]. Importantly, the
key nonperturbative parameter of the QCD vacuum,
the quark condensate density is determined from the
relation [19] between the pion characteristics and the
u, d-quark masses:

〈0|q̄q|0〉 = m2
πfπ

mu +md
, (13)

with negligibly small corrections. The current interval
of the quark condensate density normalized at the
default scale μ = 2 GeV is: 〈0|q̄q|0〉(μ = 2 GeV) =

(−277+12
−10 MeV)3. Another alternative method to

determine the light-quark masses is to use the
correlation functions with scalar (JP = 0+) quark–
antiquark currents saturating the hadronic sum with
the parameters of the light scalar (JP = 0+) mesons
(see e.g., [20]).

Replacing nonstrange quarks with s quarks in the
condensate density we arrive at a qualitatively new
situation in nonperturbative QCD: the SU(3)fl sym-
metry is effectively violated in the vacuum by the ratio:

〈0|s̄s|0〉
〈0|q̄q|0〉 = 0.8 ± 0.2, (14)

where q = u, d and isospin symmetry is assumed. A
direct relation of this ratio to ms/mu,d cannot be
simply derived. The above estimate is taken from the
dedicated analysis of the QCD sum rules for strange
baryons (hyperons) versus nucleon sum rules [21].
A numerically very similar relation is obtained for
the quark–gluon condensate density ratios. Impor-
tantly, the s-quark condensate density in the kaon
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sum rule (11), being multiplied by a very small mu,d,
does not influence the result for the s-quark mass.
On the other hand, the relation similar to (13) for
the strange-quark condensate density receives large
corrections and cannot be directly used. A further im-
provement of the precision in the ratio (14) represents
a topical problem.

Comparing QCD sum rules for correlation func-
tions constructed from similar quark currents of dif-
ferent flavors, it is possible to assess the effects of
flavor-symmetry violation in a quantitative way. One
has to keep in mind that the SU(3)fl-symmetry vio-
lation extends beyond the simple quark-mass differ-
ence.

4. CALCULATING SYMMETRY VIOLATING
RATIOS OF HADRONIC MATRIX

ELEMENTS

Having at hand a reliable method of quark mass
determination, on can extend the technique of QCD
sum rules with universal nonperturbative input pa-
rameters (condensate densities) to calculate vari-
ous hadronic matrix elements involving heavy–light
mesons. Here one “inverts” the sum rule setup:
knowing the OPE for a dedicated correlation func-
tion, one predicts the unknown hadronic parame-
ters entering the spectral density in the dispersion
relation. Since the calculation is done at finite
mass and in full QCD, quantitative estimates of the
flavor-symmetry-violation effects can be obtained
straightforwardly. Importantly, the results for the
ratios of hadronic parameters are more accurate than
the individual parameters, due to correlation of the
input.

As an example, let me illustrate how this approach
works for the decay constants of heavy–light D(s)

and B(s) mesons and their vector meson counterparts
D∗

(s) and B∗
(s) mesons. The B-meson decay constant

(see Fig. 3) is defined via the hadronic matrix element
〈0|j5|B〉 = fBm

2
B, where the heavy–light quark cur-

rent is j5 = q̄γ5b (q = u, d). All other decay constants
are obtained by replacing quark flavors (q → s, b →
c) in the currents. For the vector meson the cor-
responding definition reads: 〈0|jμ|B∗〉 ≡ fB∗mB∗εμ,
where jμ ≡ q̄γμb and εμ is the polarization vector of
the meson.

Calculating the SU(3)fl and heavy–quark sym-
metry-violating ratios represents a topical problem
for quark-flavor physics. The heavy–light meson
decay constants enter the widths of weak leptonic
decays. E.g., the Bu → τντ decay width depends on
the single hadronic parameter fB, whereas the rare
flavor-changing neutral-current decay Bs → μ+μ−

b

W

τ

νu

B−

Fig. 3. Schematic view of the leptonic decay of B meson.

recently observed by LHCb and CMS Collabora-
tions [22] is determined by fBs . The vector meson
decay constants are not directly measured but enter
the calculation of more complicated hadronic matrix
elements such as the strong coupling B∗Bπ.

The question, how much the ratio fBs/fB devi-
ates from its SU(3)fl limit equal to one, is nontriv-
ial because in QCD the heavy–light mesons involve
several mass/energy characteristic scales from the
largest (mb), to smallest (ΛQCD) one. Hence, a
“guesstimate” for the symmetry violation can span
from O(ms/mb) to O(ms/ΛQCD).

To obtain the QCD sum rule, we consider fB as
a study case and “design” an appropriate correlation
function of two currents j5 = q̄γ5b and its conjugate
(q = u, d):

Π
(B)
5 (q2) =

∫
d4xeiqx〈0|T{j5(x)j†5(0)}|0〉. (15)

At q2 	 m2
b the expansion of this correlation func-

tions in perturbative loops and vacuum-condensate
contribution is possible (see Fig. 4). The currently
achieved accuracy includes O(α2

s) gluon radiative
corrections to the leading-order quark loop and O(αs)
corrections to the quark-condensate contribution.
The latter is enhanced by the heavy–quark mass
factor. The hadronic sum (spectral density in the dis-
persion relation) contains the ground-state B-meson
contribution and the sum of the contributions of its
excitations. The latter is estimated with the help of
quark–hadron duality. Calculating mB from the sum
rule, one fixes the effective threshold parameter. The
resulting QCD sum rule has the form, schematically:

ΠQCD(q
2;αs,mb,mu, 〈0|q̄q|0〉, ...)

=
〈0|j5|B〉〈B|j5|0〉

m2
B − q2

+

{
∑

Bexc

}

duality approx.

, (16)

from which fB is extracted. It is clear that this
sum rule allows one the access to flavor symmetry
violation replacing {u, d} → s and b → c and forming
the ratios of the corresponding sum rules.

The most recent results on QCD sum rules for
B(s), B∗

(s), D(s), D∗
(s) decay constants are obtained
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u
Loop Gluon exchange

Gluon condensateQuark condensate

b

q

Fig. 4. Sample of diagrams for the correlation func-
tion (15).

with NNLO accuracy in [23]. The prediction of this
method fB = 207+17

−9 MeV, is in agreement with the
lattice QCD result fB = 197 ± 9 MeV [24].

Let me quote the SU(3)fl-violating ratios pre-
dicted in [23] by dividing to each other the corre-
sponding sum rules and varying the common input
parameters concertedly, so that the correlations are
taken into account:

fBs/fB = 1.17+0.03
−0.04, fDs/fD = 1.18+0.04

−0.05. (17)

Also calculated are the heavy–quark spin-symmetry
violating ratio:

fB∗/fB = 1.02+0.07
−0.09, fB∗

s
/fBs = 1.04+0.01

−0.08,

fD∗/fD = 1.20+0.13
−0.07, fD∗

s
/fDs = 1.24+0.13

−0.05, (18)

and the heavy–quark flavor symmetry violating ratio:

fB/fD = 0.93−1.19. (19)

Comparison of the latter ratio with the HQET re-
sult [25], including radiative corrections

fB
fD

=

√
mD

mB

(
αs(mc)

αs(mb)

)6/25

×
(
1 + 0.894

αs(mc)− αs(mb)

π

)
� 0.69, (20)

clearly indicates that the power corrections O(1/mc,b)
not accounted in HQET but implicitly included in the
sum rule calculation are essential.

5. CONCLUSION

The flavor symmetries of hadrons: the isospin,
SU(3)fl, and heavy–quark symmetries, emerge in
QCD due to the interplay of quark masses and
the ΛQCD scale. These symmetries form a basis
for classification of hadrons, provide many useful
relations between hadronic amplitudes, and serve

as a starting point for powerful effective theories
such as ChiPT and HQET. Employing the dedicated
correlation functions of quark currents, hadronic
dispersion relations and quark–hadron duality, one
obtains QCD sum rules, providing the determination
of quark masses and a possibility for an accurate
estimate of flavor-symmetry violating effects. In
the case of SU(3)fl symmetry a simple quark mass
difference is not sufficient, one needs to take into
account a nontrivial deviation between strange-
and nonstrange-quark condensates. I have briefly
discussed the possibility to extend these methods to
hadronic matrix elements for heavy–light hadrons,
where SU(3)fl-violation effects and heavy–quark
symmetry-violating effects are calculated. The same
methods are useful for other topical problems where
SU(3)fl violation is important such as the relation
of hadronic matrix elements in Bd−Bd and Bs−Bs
mixing. Concluding, let me mention a possibility
to access the flavor-symmetry violation also in the
heavy–light hadronic transition form factors (e.g.,
B → π vs Bs → K or D → K vs D → π transitions)
calculated with the method of QCD light-cone sum
rules, e.g., in [26–28].
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