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Abstract—We show how the discrete symmetries Z2 and Z3 combined with the superposition principle
result in the SL(2,C) symmetry of quantum states. The role of Pauli’s exclusion principle in the derivation
of the SL(2,C) symmetry is put forward as the source of the macroscopically observed Lorentz symmetry;
then it is generalized for the case of the Z3 grading replacing the usual Z2 grading, leading to ternary
commutation relations. We discuss the cubic and ternary generalizations of Grassmann algebra. Invariant
cubic forms on such algebras are introduced, and it is shown how the SL(2,C) group arises naturally
in the case of two generators only, as the symmetry group preserving these forms. The wave equation
generalizing the Dirac operator to the Z3-graded case is introduced, whose diagonalization leads to a sixth-
order equation. The solutions of this equation cannot propagate because their exponents always contain
non-oscillating real damping factor. We show how certain cubic products can propagate nevertheless. The
model suggests the origin of the color SU(3) symmetry.
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1. INTRODUCTION

In modern physics, which was created by scientific
giants like Galileo, Kepler, Newton and Huygens, the
description of the world surrounding us is based on
three essential realms, which are Material bodies,
Forces acting between them and Space and Time.
Newton’s third law:

a =
1

m
F. (1)

shows the relation between three different realms
which are dominant in our perception and description
of physical world: massive bodies (m), force fields
responsible for interactions between the bodies (“F”)
and space–time relations defining the acceleration
(“a”). Similar ingredients are found in physics of
fundamental interactions: we speak of elementary
particles and fields evolving in space and time.

In formula (1) we deliberately have put the acceler-
ation on the left-hand side, and the inverse of mass anf
the force on the right-hand side in order to separate
the directly observable entity “a” from the product of
two entities whose definition is much less direct and
clear.

Also, by putting the acceleration alone on the
left-hand side, we underline the causal relationship
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between the phenomena: the force is the cause of
acceleration, and not vice versa.

In modern language, the notion of force is gen-
erally replaced by that of a field. The fact that the
three ingredients are related by Eq. (1) may suggest
that perhaps only two of them are fundamentally in-
dependent, the third one being the consequence of the
remaining two.

The three aspects of theories of fundamental inter-
actions can be symbolized by three orthogonal axes,
as shown in the following figure, which displays also
three choices of pairs of independent properties from
which we are supposed to be able to derive the third
one.

The attempts to understand physics with only two
realms out of three represented in (6) (see below) have
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a very long history. They may be divided in three
categories, labeled I, II, and III in the figure.

In the category I one can easily recognize New-
tonian physics, presenting physical world as collec-
tion of material bodies (particles) evolving in absolute
space and time, interacting at a distance. Newton
considered light being made of tiny particles, too; the
notion of fields was totally absent. Any change in
positions and velocities of any massive material object
was immediately felt by all other masses in the entire
Universe.

Theories belonging to the category II assume that
physical world can be described uniquely as a collec-
tion of fields evolving in space–time manifold. This
approach was advocated by Kelvin, Einstein, and later
on by Wheeler. As a follower of Maxwell and Faraday,
Einstein believed in the primary role of fields and tried
to derive the equations of motion as characteristic
behavior of singularities of fields, or the singularities
of the space–time curvature.

The category III represents an alternative point of
view supposing that the existence of matter is primary
with respect to that of the space–time, which be-
comes an “emergent” realm – an euphemism for “il-
lusion”. Such an approach was advocated recently by
Seiberg [1] and Verlinde [2]. It is true that space–time
coordinates cannot be treated on the same footing as
conserved quantities such as energy and momentum;
we often forget that they exist rather as bookkeeping
devices, and treating them as real objects is a “bad
habit”, as pointed out by Mermin [3].

Seen under this angle, the idea to derive the ge-
ometric properties of space–time, and perhaps its
very existence, from fundamental symmetries’ and
interactions’ properties to matter’s most fundamental
building blocks seems quite natural.

Many of those properties do not require any men-
tion of space and time on the quantum mechanical
level, as was demonstrated by Born, Jordan, and
Heisenberg [4, 5] in their version of matrix mechanics,
or by von Neumann’s formulation of quantum theory
in terms of the C∗ algebras [6]. The non-commutative
geometry is another example of formulation of space–
time relationships in purely algebraic terms [7–9].

In what follows, we shall choose the latter point
of view, according to which the space–time relations
are a consequence of fundamental discrete symme-
tries which characterize the behavior of matter on the
quantum level. In other words, the Lorentz symmetry
observed on the macroscopic level, acting on what
we perceive as space–time variables, is an averaged
version of the symmetry group acting in the Hilbert
space of quantum states of fundamental particle sys-
tems.

2. SPACE-TIME AS EMERGENT REALM

In standard textbooks introducing the Lorentz and
Poincaré groups the accent is put on the transforma-
tion properties of space and time coordinates, and the
invariance of the Minkowskian metric tensor gμν =
diag(+,−,−,−). But neither the components of gμν ,
nor the space–time coordinates of an observed event
can be given an intrinsic physical meaning; they are
not related to any conserved or directly observable
quantities.

Under a closer scrutiny, it turns out that only
time—the proper time of the observer—can be mea-
sured directly. The notion of space variables results
from the convenient description of experiments and
observations concerning the propagation of photons,
and the existence of the universal constant c.

Consequently, with high enough precision one can
infer that the Doppler effect is relativistic, i.e. the
frequency ω and the wave vector k form an entity that
is seen differently by different inertial observers, and
passing from ω

c ,k to ω′

c ,k
′ is the Lorentz transforma-

tion.
Both effects, proving the relativistic formulae

ω′ =
ω − V k√
1− V 2

c2

, k′ =
k − V

c2
ω√

1− V 2

c2

,

have been checked experimentally by Ives and Stil-
well in 1937, then confirmed in many more precise
experiences. Reliable experimental confirmations of
the validity of Lorentz transformations concern mea-
surable quantities such as charges, currents, energies
(frequencies), and momenta (wave vectors) much
more than the less intrinsic quantities which are the
differentials of the space–time variables. In princi-
ple, the Lorentz transformations could have been es-
tablished by very precise observations of the Doppler
effect alone.

It should be stressed that had we only the light
at our disposal, i.e., massless photons propagating
with the same velocity c, we would infer that the
general symmetry of physical phenomena is the Con-
formal Group, and not the Poincaré group. To the
observations of light must be added the principle of
inertia, i.e., the existence of massive bodies moving
with speeds lower than c, and constant if not solicited
by external influence.

Translated into the modern language of particles
and fields this means that besides the massless pho-
tons massive particles must exist, too. The distinc-
tive feature of such particles is their inertial mass,
equivalent with their energy at rest, which can be
measured classically via Newton’s law, whose funda-
mental equation a = 1

mF relates the only observable

PHYSICS OF ATOMIC NUCLEI Vol. 80 No. 3 2017



TERNARY GENERALIZATION OF PAULI’S PRINCIPLE 531

quantity (using clocks and light rays as measuring
rods), the acceleration a, with a combination of less
evidently defined quantities, mass and force, which
is interpreted as a causality relation, the force being
the cause, and acceleration being the effect.

It turned out soon that the force F may symbolize
the action of quite different physical phenomena like
gravitation, electricity, or inertia, and is not a primary
cause, but rather a manner of intermediate bookkeep-
ing. The more realistic sources of acceleration—or
rather of the variation of energy and momenta—are
the intensities of electric, magnetic, or gravitational
fields. The differential form of the Lorentz force,
combined with the energy conservation of a charged
particle under the influence of electromagnetic field

dp

dt
= qE+ q

v

c
∧B

dE
dt

= qE · v (2)

is also Lorentz-invariant:

dpμ =
q

mc
Fμ
ν p

ν , (3)

where pμ = [p0,p] is the four-momentum and Fμ
ν is

the Maxwell–Faraday tensor.
These are the fundamental physical quantities that

impose the Lorentz–Poincaré group of transforma-
tions, which are imprinted on the dual space which
we call space and time variables.

3. COMBINATORICS AND COVARIANCE

Since the advent of quantum theory the discrete
view of phenomena observed on microscopic level
took over the continuum view prevailing in the nine-
teenth century physics. The dichotomy between dis-
crete and continuous symmetries has become a major
issue in quantum field theory, of which the fundamen-
tal spin and statistics theorem provides the best
illustration. It stipulates that fields describing par-
ticles which obey the Fermi–Dirac statistics, called
fermions, transform under the half-integer represen-
tations of the Lorentz group, whereas fields describ-
ing particles which obey the Bose–Einstein statistics,
bosons, must transform under the integer represen-
tations of the Lorentz group.

The fundamental principle ensuring the existence
of electron shells and the Periodic Table is the ex-
clusion principle formulated by Pauli: fermionic op-
erators must satisfy the anti-commutation relations
ΨaΨb = −ΨbΨa which means that two electrons
cannot coexist in the same state [10].

Quantum Mechanics started as a non-relativistic
theory, but very soon its relativistic generalization
was created. As a result, the wave functions in the
Schrödinger picture were required to belong to one
of the linear representations of the Lorentz group,

which means that they must satisfy the following
covariance principle:

ψ̃(x̃) = ψ̃(Λ(x)) = S(Λ)ψ(x).

The nature of the representation S(Λ) determines
the character of the field considered: spinorial, vec-
torial, tensorial... As in many other fundamental
relations, the seemingly simple equation

ψ̃(x̃) = ψ̃(Λ(x)) = S(Λ)ψ(x)

creates a bridge between two totally different realms:
the space–time accessible via classical macroscopic
observations, and the Hilbert space of quantum
states. It can be interpreted in two opposite ways,
depending on which side we consider as the cause,
and which one as the consequence.

A question can be asked, what is the cause, and
what is the effect, not only in mathematical terms, but
also in a deeper physical sense.

In other words, is the macroscopically observed
Lorentz symmetry imposed on the micro-world of
quantum physics, or maybe it is already present as
symmetry of quantum states, and then implemented
and extended to the macroscopic world in the clas-
sical limit? In such a case, the covariance principle
should be written as follows:

Λμ′
μ (S)jμ = jμ

′
(ψ′) = jμ

′
(S(ψ)).

In the above formula jμ = ψ̄γμψ is the Dirac current,
ψ is the electron wave function.

In view of the analysis of the causal chain, it seems
more appropriate to write the same transformations
with Λ depending on S:

ψ′(xμ
′
) = ψ′(Λμ′

ν (S)xν) = Sψ(xν). (4)

This form of the same relation suggests that the tran-
sition from one quantum state to another, represented
by the transformation S, is the primary cause that im-
plies the transformation of observed quantities such
as the electric 4-current, and as a final consequence,
the apparent transformations of time and space inter-
vals measured with classical physical devices.

The Pauli exclusion principle gives a hint about
how it might work. In its simplest version, it intro-
duces an anti-symmetric form on the Hilbert space
describing electron’s states:

εαβ = −εβα, α, β = 1, 2; ε12 = 1.

Now, if we require that Pauli’s principle must apply
independently of the choice of a basis in Hilbert space,
i.e. that after a linear transformation we get

εα
′β′

= Sα′
α Sβ′

β εαβ = −εβ
′α′

, ε1
′2′ = 1,

then the matrix Sα′
α must have the determinant equal

to 1, which defines the SL(2,C) group.
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The existence of two internal degrees of freedom
had to be taken into account in fundamental equa-
tion defining the relationship between basic operators
acting on electron states. To acknowledge this, Pauli
proposed the simplest equation expressing the rela-
tion between the energy, momentum, and spin:

Eψ = mc2ψ + σ · pψ. (5)

The existence of anti-particles (in this case the
positron), suggests the use of the non-equivalent rep-
resentation of SL(2,C) group by means of complex-
conjugate matrices. Along with the time reversal, the
Dirac equation can be now constructed. It is invariant
under the Lorentz group.

Eψ+ = mc2ψ+ + σ · pψ−,

−Eψ− = mc2ψ− + σ · pψ+ (6)

Although mathematically the two formulations are
equivalent, it seems more plausible that the Lorentz
group resulting from the averaging of the action of
the SL(2,C) in the Hilbert space of states contains
less information than the original double-valued rep-
resentation which is a consequence of the particle–
anti-particle symmetry, than the other way round. In
what follows, we shall draw physical consequences
from this approach, concerning the strong interac-
tions in the first place.

In purely algebraical terms Pauli’s exclusion prin-
ciple amounts to the anti-symmetry of wave functions
describing two coexisting particle states. The easiest
way to see how the principle works is to apply Dirac’s
formalism [11] in which wave functions of particles in
a given state are obtained as products between the
“bra” and “ket” vectors. Consider the wave function
of a particle in the state |x〉,

Φ(x) = 〈ψ|x〉. (7)

A two-particle state of (|x〉, |y〉) is a tensor product

|ψ〉 =
∑

Φ(x, y)(|x〉 ⊗ |y〉). (8)

If the wave function Φ(x, y) is anti-symmetric, i.e. if
it satisfies

Φ(x, y) = −Φ(y, x), (9)

then Φ(x, x) = 0 and such states have vanishing
probability.

Conversely, suppose that Φ(x, x) does vanish.
This remains valid in any basis provided the new basis
|x′〉, |y′〉 was obtained from the former one via unitary
transformation.

Let us form an arbitrary state being a linear com-
bination of |x〉 and |y〉,

|z〉 = α|x〉+ β|y〉, α, β ∈ C,

and let us form the wave function of a tensor product
of such a state with itself:

Φ(z, z) = 〈ψ|(α|x〉 + β|y〉)⊗ (α|x〉+ β|y〉), (10)

which develops as follows:

α2〈ψ|x, x〉 + αβ〈ψ|x, y〉
+ βα〈ψ|y, x〉 + β2〈ψ|y, y〉 = α2Φ(x, x)

+ αβΦ(x, y) + βαΦ(y, x) + β2Φ(y, y). (11)

Now, as Φ(x, x) = 0 and Φ(y, y) = 0, the sum of
remaining two terms will vanish if and only if (9) is
satisfied, i.e. if Φ(x, y) is anti-symmetric in its two
arguments.

After second quantization, when the states are ob-
tained with creation and annihilation operators acting
on the vacuum, the anti-symmetry is encoded in the
anti-commutation relations

ψ(x)ψ(y) + ψ(y)ψ(x) = 0, (12)

where ψ(x)|0〉 = |x〉.
According to present knowledge, the ultimate

undivisible and undestructible constituents of matter,
called atoms by ancient Greeks, are in fact the
QUARKS, carrying fractional electric charges and
baryonic numbers, two features that appear to be
undestructible and conserved under any circum-
stances [12–14].

Taking into account that quarks evolve inside nu-
cleons as almost point-like objects, one may wonder
how the notions of space and time still apply in these
conditions? Perhaps in this case, too, the Lorentz in-
variance can be derived from some more fundamental
discrete symmetries underlying the interactions be-
tween quarks? If this is the case, then the symmetry
Z3 must play a fundamental role.

In Quantum Chromodynamics quarks are consid-
ered as fermions, endowed with spin 1

2 . Only three
quarks or anti-quarks can coexist inside a fermionic
baryon (respectively, anti-baryon), and a pair quark-
antiquark can form a meson with integer spin. Be-
sides, they must belong to different colors, also a
three-valued set. There are two quarks in the first
generation, u and d (“up” and “down”), which may
be considered as two states of a more general object,
just like proton and neutron in SU(2) symmetry are
two isospin components of a nucleon doublet.

This suggests that a convenient generalization of
Pauli’s exclusion principle would be that no three
quarks in the same state can be present in a nucleon.

Let us require then the vanishing of wave functions
representing the tensor product of three (but not nec-
essarily two) identical states. That is, we require that
Φ(x, x, x) = 0 for any state |x〉. As in the former case,
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consider an arbitrary superposition of three different
states, |x〉, |y〉 and |z〉,

|w〉 = α|x〉+ β|y〉+ γ|z〉
and apply the same criterion, Φ(w,w,w) = 0.

We get then, after developing the tensor products,

Φ(w,w,w) = α3Φ(x, x, x) + β3Φ(y, y, y)

+ γ3Φ(z, z, z) + α2β[Φ(x, x, y) + Φ(x, y, x)

+ Φ(y, x, x)] + γα2[Φ(x, x, z) + Φ(x, z, x)

+ Φ(z, x, x)] + αβ2[Φ(y, y, x) + Φ(y, x, y)

+ Φ(x, y, y)] + β2γ[Φ(y, y, z) + Φ(y, z, y)

+ Φ(z, y, y)] + βγ2[Φ(y, z, z) + Φ(z, z, y)

+ Φ(z, y, z)] + γ2α[Φ(z, z, x) + Φ(z, x, z)

+ Φ(x, z, z)] + αβγ[Φ(x, y, z) + Φ(y, z, x)

+ Φ(z, x, y) + Φ(z, y, x) + Φ(y, x, z)

+ Φ(x, z, y)] = 0.

The terms Φ(x, x, x),Φ(y, y, y) and Φ(z, z, z) do
vanish by virtue of the original assumption; in what
remains, combinations preceded by various powers of
independent numerical coefficients α, β and γ, must
vanish separately.

This is achieved if the following Z3 symmetry is
imposed on our wave functions:

Φ(x, y, z) = jΦ(y, z, x) = j2Φ(z, x, y)

with j = e
2πi
3 , j3 = 1, j + j2 + 1 = 0.

Note that the complex conjugates of functions
Φ(x, y, z) transform under cyclic permutations of
their arguments with j2 = j̄ replacing j in the above
formula

Ψ(x, y, z) = j2Ψ(y, z, x) = jΨ(z, x, y).

Inside a hadron, not two, but three quarks in dif-
ferent states (colors) can coexist.

After second quantization, when the fields become
operator-valued, an alternative cubic commutation
relations seems to be more appropriate:

Instead of ΨaΨb = (−1)ΨbΨa we can introduce

θAθBθC = jθBθCθA = j2θCθAθB, with j = e
2πi
3 .

This particular symmetry has been explored first
in [15] and in [16], then in [17] and [18].

4. QUARK ALGEBRA

Our aim now is to derive the space–time symme-
tries from minimal assumptions concerning the prop-
erties of the most elementary constituents of matter,
and the best candidates for these are quarks.

To do so, we should explore algebraic structures
that would privilege cubic or ternary relations, in

other words, find appropriate cubic or ternary alge-
bras reflecting the most important properties of quark
states. The minimal requirements for the definition of
quarks at the initial stage of model building are the
following:

(i ) The mathematical entities representing the
quarks form a linear space over complex numbers,
so that we could form their linear combinations with
complex coefficients.

(ii ) They should also form an associative algebra,
so that we could form their multilinear combinations.

(iii ) There should exist two isomorphic algebras
of this type corresponding to quarks and anti-quarks,
and the conjugation that maps one of these algebras
onto another, A → Ā.

(iv ) The three quark (or three anti-quark) and
the quark–anti-quark combinations should be dis-
tinguished in a certain way, for example, they should
form a subalgebra in the enveloping algebra spanned
by the generators.

The fact that hadrons obeying the Fermi statis-
tics (protons and neutrons, to begin with) are com-
posed of three quarks raises naturally the question
how their quantum states respond to permutations
between these elementary components.

The symmetric group S3 containing all permu-
tations of three different elements is a special case
among all symmetry groups SN . It is the first in the
row to be non-Abelian, and the last one that pos-
sesses a faithful representation in the complex plane
C1. It contains six elements, and can be generated
with only two elements, corresponding to one cyclic
and one odd permutation, e.g., (abc) → (bca), and
(abc) → (cba). All permutations can be represented
as different operations on complex numbers as fol-
lows.

Let us denote the primitive third root of unity by
j = e2πi/3.

The cyclic abelian subgroup Z3 contains three
elements corresponding to the three cyclic permuta-
tions, which can be represented via multiplication by
j, j2 and j3 = 1 (the identity).

⎛
⎝ABC

ABC

⎞
⎠ → 1,

⎛
⎝ABC

BCA

⎞
⎠ → j,

⎛
⎝ABC

CAB

⎞
⎠ → j2. (13)
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Odd permutations must be represented by idem-
potents, i.e., by operations whose square is the iden-
tity operation. We can make the following choice:⎛

⎝ABC

CBA

⎞
⎠ → (z → z̄),

⎛
⎝ABC

BAC

⎞
⎠ → (z → ẑ),

⎛
⎝ABC

CBA

⎞
⎠ → (z → z∗). (14)

Here the bar (z → z̄) denotes the complex conjuga-
tion, i.e. the reflection in the real line, the hat z → ẑ
denotes the reflection in the root j2, and the star z →
z∗ the reflection in the root j. The six operations close
in a non-abelian group with six elements. However, if
it acts on three objects out of which two are identical,
e.g. (AAB), then odd permutations give the same
result as even ones, so that only the Z3 cyclic abelian
group is operating [19].

With this in mind, let us define the following Z3-
graded algebra introducing N generators spanning
a linear space over complex numbers, satisfying the
following cubic relations:

θAθBθC = jθBθCθA = j2θCθAθB, (15)

with j = e2iπ/3, the primitive root of 1. We have
obviously 1 + j + j2 = 0 and j̄ = j2.

We shall also introduce a similar set of conjugate
generators, θ̄Ȧ, Ȧ, Ḃ, ... = 1, 2, ..., N , satisfying the
similar condition with j2 replacing j:

θ̄Ȧθ̄Ḃ θ̄Ċ = j2θ̄Ḃ θ̄Ċ θ̄Ȧ = jθ̄Ċ θ̄Ȧθ̄Ḃ. (16)

Let us denote this algebra by A.
We shall endow it with a natural Z3 grading, con-

sidering the generators θA as grade 1 elements, their
conjugates θ̄Ȧ being of grade 2. The grades add up
modulo 3; the products θAθB span a linear subspace
of grade 2, and the cubic products θAθBθC are of
grade 0, as first proposed in [18].

Similarly, all quadratic expressions in conjugate
generators, θ̄Ȧθ̄Ḃ are of grade 2 + 2 = 4mod3 = 1,
whereas their cubic products are again of grade 0,
like the cubic products od θA’s.

Combined with the associativity, these cubic rela-
tions impose finite dimension on the algebra gener-
ated by the Z3 graded generators. As a matter of fact,
cubic expressions are the highest order that does not
vanish identically. The proof is immediate:

θAθBθCθD = jθBθCθAθD = j2θBθAθDθC

= j3θAθDθBθC = j4θAθBθCθD, (17)

and because j4 = j 	= 1, the only solution is
θAθBθCθD = 0.

The total dimension of the algebra defined via
the cubic relations (15) is equal to N +N2 + (N3 −
N)/3: the N generators of grade 1, the N2 inde-
pendent products of two generators, and (N3 −N)/3
independent cubic expressions, because the cube of
any generator must be zero by virtue of (15), and the
remaining N3 −N ternary products are divided by 3,
also by virtue of the constitutive relations (15).

The conjugate generators θ̄Ḃ span an algebra Ā
isomorphic with A.

If we want the products between the generators

θA and the conjugate ones θ̄Ḃ to be included into the
greater algebra spanned by both types of generators,
we should consider all possible products, between
both types of generators, which will span the resulting
algebra A⊗ Ā.

The fact that the conjugate generators are en-
dowed with grade 2 could suggest that they behave
just like the products of two ordinary generators
θAθB. However, such a choice does not enable one
to make a clear distinction between the conjugate
generators and the products of two ordinary ones,
and it would be much better, to be able to make the
difference.

Due to the binary nature of the products, another
choice is possible, namely, to require the following
commutation relations:

θAθ̄Ḃ = −jθ̄ḂθA, θ̄ḂθA = −j2θAθ̄Ḃ. (18)

In fact, introducing the “minus” sign, i.e., the mul-
tiplication by −1, we extend the discrete symmetry
group acting on our algebra to the product Z3 × Z2.
It is easy to prove that this product is isomorphic with
the cyclic group Z6.

The choice of commutation relations (18) leads to
the anticommutation property between the conjugate
cubic monomials:

(
θAθBθC

) (
θ̄Ḋθ̄Ė θ̄Ḟ

)

= −
(
θ̄Ḋθ̄Ėθ̄Ḟ

) (
θAθBθC

)
, (19)

characteristic for the fermions. This is another hint
towards the possibility of forming anti-commuting
fermionic variables with cubic combinations of our
“quark” operators [19, 20].
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5. TWO-GENERATOR ALGEBRA
AND ITS INVARIANCE GROUP

The three quarks constituting hadrons (the latter
behaving as fermions) are found in two states, “up”
and “down”, designed by u and d, endowed with
fractional electric charges, +2

3 for the u quark and
−1

3 for the d quark. Therefore the product state uud
will represent a proton (electric charge +1), whilst the
combination udd having zero electric charge repre-
sents a neutron. We shall therefore reduce the number
of generators of our Z3-graded algebra representing
quark operators, to the minimal number, i.e., two
generators only.

Let us consider the simplest case of cubic alge-
bra with two generators, A,B, ... = 1, 2. Its grade-1
component contains just these two elements, θ1 and
θ2; its grade-2 component contains four independent
products,

θ1θ1, θ1θ2, θ2θ1, and θ2θ2.

Finally, its grade-0 component (which is a subalge-
bra) contains the unit element 1 and the two linearly
independent cubic products,

θ1θ2θ1 = jθ2θ1θ1 = j2θ1θ1θ2

and θ2θ1θ2 = jθ1θ2θ2 = j2θ2θ2θ1

with similar two independent combinations of conju-
gate generators θ̄Ȧ.

Let us consider multilinear forms defined on the
algebra A⊗ Ā. Because only cubic relations are
imposed on products in A and in Ā, and the binary
relations on the products of ordinary and conjugate
elements, we shall fix our attention on tri-linear and
bi-linear forms, conceived as mappings of A⊗ Ā into
certain linear spaces over complex numbers. General
multilinear algebras are discussed in [21]; see also
[22, 23].

Consider a tri-linear form ραABC . We shall call this
form Z3-invariant if we can write, by virtue of (15):

ραABCθ
AθBθC =

1

3

[
ραABCθ

AθBθC + ραBCAθ
BθCθA

+ ραCABθ
CθAθB

]
=

1

3

[
ραABCθ

AθBθC

+ ραBCA

(
j2θAθBθC

)
+ ραCABj

(
θAθBθC

)]
,

From this it follows that we should have
ραABCθ

AθBθC

=
1

3

[
ραABC + j2ραBCA + jραCAB

]
θAθBθC , (20)

from which we get the following properties of the ρ-
cubic matrices:

ραABC = j2ραBCA = jραCAB . (21)

Even in this minimal and discrete case, there are
covariant and contravariant indices: the lower and
the upper indices display the inverse transformation
property. If a given cyclic permutation is represented
by a multiplication by j for the upper indices, the
same permutation performed on the lower indices is
represented by multiplication by the inverse, i.e., j2,
so that they compensate each other.

Similar reasoning leads to the definition of the
conjugate forms ρ̄α̇

ĊḂȦ
satisfying the relations similar

to (21) with j replaced by its conjugate, j2:

ρ̄α̇
ȦḂĊ

= jρ̄α̇
ḂĊȦ

= j2ρ̄α̇
ĊȦḂ

. (22)

In the simplest case of two generators, the j-skew-
invariant forms have only two independent compo-
nents:

ρ1121 = jρ1211 = j2ρ1112, ρ2212 = jρ2122 = j2ρ2221,

and we can set

ρ1121 = 1, ρ1211 = j2, ρ1112 = j,

ρ2212 = 1, ρ2122 = j2, ρ2221 = j.

The constitutive cubic relations between the gener-
ators of the Z3-graded algebra can be considered as
intrinsic if they are conserved after linear transforma-
tions with commuting (pure number) coefficients, i.e.
if they are independent of the choice of the basis.

Let UA′
A denote a non-singular N ×N matrix,

transforming the generators θA into another set of
generators, θB

′
= UB′

B θB.

We are looking for the solution of the covariance
condition for the ρ matrices:

Sα′
β ρβABC = UA′

A UB′
B UC′

C ρα
′

A′B′C′ . (23)

Now, ρ1121 = 1, and we have two equations corre-
sponding to the choice of values of the index α′ equal
to 1 or 2. For α′ = 1′ the ρ matrix on the right-hand
side is ρ1

′
A′B′C′ , which has only three components,

ρ1
′

1′2′1′ = 1, ρ1
′

2′1′1′ = j2, ρ1
′

1′1′2′ = j,

which leads to the following equation:

S1′
1 = U1′

1 U2′
2 U1′

1 + j2U2′
1 U1′

2 U1′
1 + jU1′

1 U1′
2 U2′

1

= U1′
1

(
U2′
2 U1′

1 − U2′
1 U1′

2

)
,

because j2 + j = −1.

For the alternative choice α′ = 2′ the ρ matrix
on the right-hand side is ρ2

′
A′B′C′ , whose three non-

vanishing components are

ρ2
′

2′1′2′ = 1, ρ2
′

1′2′2′ = j2, ρ2
′

2′2′1′ = j.
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The corresponding equation becomes now:

S2′
1 = U2′

1 U1′
2 U2′

1 + j2U1′
1 U2′

2 U2′
1 + jU2′

1 U2′
2 U1′

1

= U2′
1

(
U1′
2 U2′

1 − U1′
1 U2′

2

)
,

The remaining two equations are obtained in a similar
manner. We choose now the three lower indices on
the left-hand side equal to another independent com-
bination, (212). Then the ρ matrix on the left hand
side must be ρ2 whose component ρ2212 is equal to 1.
This leads to the following equation when α′ = 1′:

S1′
2 = U1′

2 U2′
1 U1′

2 + j2U2′
2 U1′

1 U1′
2 + jU1′

2 U1′
1 U2′

2

= U1′
2

(
U1′
2 U2′

1 − U1′
1 U2′

2

)
,

and the fourth equation corresponding to α′ = 2′ is:

S2′
2 = U2′

2 U1′
1 U2′

2 + j2U1′
2 U2′

1 U2′
2 + jU2′

2 U2′
1 U1′

2

= U2′
2

(
U1′
1 U2′

2 − U2′
1 U1′

2

)
.

S2′
1 = −U2′

1 [det(U)]. (24)

The remaining two equations are obtained in a similar
manner, resulting in the following:

S1′
2 = −U1′

2 [det(U)], S2′
2 = U2′

2 [det(U)]. (25)

The determinant of the 2× 2 complex matrix UA′
B ap-

pears everywhere on the right-hand side. Taking the
determinant of the matrix Sα′

β one gets immediately

det(S) = [det(U)]3. (26)

However, the U matrices on the right-hand side are
defined only up to the phase, which is due to the cubic
character of the covariance relations (5)–(25), and
they can take on three different values: 1, j or j2, i.e.
the matrices jUA′

B or j2UA′
B satisfy the same relations

as the matrices UA′
B defined above. The determinant

of U can take on the values 1, j or j2 if det(S) = 1.
But for the time being, we have no reason yet to
impose the unitarity condition. It can be derived from
the conditions imposed on the invariance and duality
of binary relations between θA and their conjugates
θ̄Ḃ.

In the Hilbert space of spinors the SL(2,C) action
conserved naturally two anti-symmetric tensors,

εαβ and εα̇β̇ and their duals εαβ and εα̇β̇.

Spinorial indeces thus can be raised or lowered using
these fundamental SL(2,C) tensors:

ψβ = εαβψ
α, ψδ̇ = εδ̇β̇ψβ̇.

In the space of quark states similar invariant form
can be introduced, too. Theere is only one alternative:
either the Kronecker delta, or the anti-symmetric 2-
form ε. Supposing that our cubic combinations of
quark states behave like fermions, there is no choice
left: if we want to define the duals of cubic forms ραABC
displaying the same symmetry properties, we must
impose the covariance principle as follows:

εαβρ
α
ABC = εADεBEεCGρ

DEG
β .

The requirement of the invariance of tensor εAB ,
A,B = 1, 2 with respect to the change of basis of
quark states leads to the condition det(U) = 1, i.e.
again to the SL(2,C) group.

A similar covariance requirement can be formu-
lated with respect to the set of 2-forms mapping
the quadratic quark–anti-quark combinations into a
four-dimensional linear real space. As we already
saw, the symmetry (18) imposed on these expressions
reduces their number to four. Let us define two
quadratic forms, πμ

AḂ
and its conjugate π̄μ

ḂA

πμ

AḂ
θAθ̄Ḃ and π̄μ

ḂA
θ̄ḂθA. (27)

The Greek indices μ, ν... take on four values, and we
shall label them 0, 1, 2, 3.

The four tensors πμ

AḂ
and their hermitian conju-

gates π̄μ

ḂA
define a bi-linear mapping from the prod-

uct of quark and anti-quark cubic algebras into a
linear four-dimensional vector space, whose structure
is not yet defined.

Let us impose the following invariance condition:

πμ

AḂ
θAθ̄Ḃ = π̄μ

ḂA
θ̄ḂθA. (28)

It follows immediately from (18) that

πμ

AḂ
= −j2π̄μ

ḂA
. (29)

Such matrices are non-hermitian, and they can be
realized by the following substitution:

πμ

AḂ
= j2iσμ

AḂ
, π̄μ

ḂA
= −jiσμ

ḂA
, (30)

where σμ

AḂ
are the unit 2 matrix for μ = 0, and the

three hermitian Pauli matrices for μ = 1, 2, 3.
Again, we want to get the same form of these four

matrices in another basis. Knowing that the lower
indices A and Ḃ undergo the transformation with ma-
trices UA′

B and Ū Ȧ′

Ḃ
, we demand that there exist some

4× 4 matrices Λμ′
ν representing the transformation of

lower indices by the matrices U and Ū :

Λμ′
ν πν

AḂ
= UA′

A Ū Ḃ′

Ḃ
πμ′

A′Ḃ′ . (31)

This defines the vector (4× 4) representation of the
Lorentz group. The system (31) contains four groups
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of four equations each, following the choice of values
for indices μ′ on one side, and the indices A and B.
We shall show explicitly only the first four equations

relating the 4× 4 real matrices Λμ′
ν with the 2× 2

complex matrices UA′
B and Ū Ȧ′

Ḃ
, corresponding to the

value μ′ = 0′:

Λ0′
0 + Λ0′

3 = U1′
1 Ū 1̇′

1̇
+ U2′

1 Ū 2̇′

1̇
,

Λ0′
0 − Λ0′

3 = U1′
2 Ū 1̇′

2̇
+ U2′

2 Ū 2̇′

2̇
,

Λ0′
0 − iΛ0′

2 = U1′
1 Ū 1̇′

2̇
+ U2′

1 Ū 2̇′

2̇
,

Λ0′
0 + iΛ0′

2 = U1′
2 Ū 1̇′

1̇
+ U2′

2 Ū 2̇′

1̇
.

The next three groups of four equations are similar to
the above.

With the invariant “spinorial metric” in two com-

plex dimensions, εAB and εȦḂ such that ε12 =

−ε21 = 1 and ε1̇2̇ = −ε2̇1̇, we can define the con-
travariant components πνAḂ . It is easy to show that
the Minkowskian space–time metric, invariant under
the Lorentz transformations, can be defined as

gμν =
1

2

[
πμ

AḂ
πνAḂ

]
= diag(+,−,−,−). (32)

Together with the anti-commuting spinors ψα the
four real coefficients defining a Lorentz vector, xμπ

μ

AḂ
,

can generate now the supersymmetry via standard
definitions of super-derivations.

Let us then choose the matrices Sα′
β to be the usual

spinor representation of theSL(2,C) group, while the
matrices UA′

B will be defined as follows:

U1′
1 = jS1′

1 , U1′
2 = −jS1′

2 ,

U2′
1 = −jS2′

1 , U2′
2 = jS2′

2 , (33)

the determinant of U being equal to j2. Obviously,
the same reasoning leads to the conjugate cubic rep-
resentation of the same symmetry group SL(2,C) if
we require the covariance of the conjugate tensor

ρ̄β̇
ḊĖḞ

= jρ̄β̇
ĖḞ Ḋ

= j2ρ̄β̇
Ḟ ḊĖ

,

by imposing the equation similar to (23)

S̄α̇′

β̇
ρ̄β̇
ȦḂĊ

= ρ̄α̇
′

Ȧ′Ḃ′Ċ′Ū
Ȧ′

Ȧ
Ū Ḃ′

Ḃ
Ū Ċ′

Ċ
. (34)

The matrix Ū is the complex conjugate of the matrix
U , and its determinant is equal to j.

Moreover, the two-component entities obtained
as images of cubic combinations of quarks, ψα =

ραABCθ
AθBθC and ψ̄β̇ = ρ̄β̇

ḊĖḞ
θ̄Ḋθ̄Ė θ̄Ḟ should anti-

commute, because their arguments do so, by virtue of
(18):

(θAθBθC)(θ̄Ḋθ̄Ė θ̄Ḟ ) = −(θ̄Ḋθ̄Ė θ̄Ḟ )(θAθBθC).

We have found the way to derive the covering group
of the Lorentz group acting on spinors via the usual
spinorial representation. The spinors are obtained as
the homomorphic image of tri-linear combination of
three quarks (or anti-quarks). The quarks transform
with matrices U (or Ū for the anti-quarks), but these
matrices are not unitary: their determinants are equal
to j2 or j, respectively. So, quarks cannot be put on
the same footing as classical spinors; they transform
under a Z3 covering of the Lorentz group.

In the spirit of the Kaluza–Klein theory, the elec-
tric charge of a particle is the eigenvalue of the fifth
component of the generalized momentum operator:

p̂5 = −i�
∂

∂x5
,

where x5 stays for the fifth coordinate.
Let the observed electric charge of the proton be

e and that of the electron −e. If we put now the
following factors multiplying the generators θ1 and
θ2:

Θ1 = θ1e−
iqx5

3� , Θ2 = θ2e
2iqx5

3� ,

The eigenvalues of the fifth component of the momen-
tum operator are, respectively:

p̂Θ1 = −i�∂5

(
θ1e

2iqx5

3�

)
= −q

3
Θ1,

p̂Θ2 = −i�∂5

(
θ2e−

iqx5

3�

)
=

2q

3
Θ2.

The only non-vanishing products of our generators
being θ1θ1θ2 and θ1θ2θ2, for the admissible products
of functions representing the ternary combinations we
readily get:

p̂θ1θ1θ2 = qθ1θ1θ2, p̂θ1θ2θ2 = 0,

which correspond to the usual combinations of (uud)
and (udd) quarks, representing two baryons: the
proton and the neutron.

6. A Z3 GENERALIZATION OF DIRAC’S
EQUATION

Let us first underline the Z2 symmetry of Maxwell
and Dirac equations, which implies their hyperbolic
character, which makes the propagation possible.
Maxwell’s equations in vacuo can be written as fol-
lows:

1

c

∂E

∂t
= ∇∧B, −1

c

∂B

∂t
= ∇∧E. (35)
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These equations can be decoupled by applying the
time derivation twice, which in vacuum, where
divE = 0 and divB = 0 leads to the d’Alembert
equation for both components separately:

1

c2
∂2E

∂t2
−∇2E = 0,

1

c2
∂2B

∂t2
−∇2B = 0.

Nevertheless, neither of the components of the
Maxwell tensor, be it E or B, can propagate sep-
arately alone. It is also remarkable that although
each of the fields E and B satisfies a second-order
propagation equation, due to the coupled system (35)
there exists a quadratic combination satisfying the
first-order equation, the Poynting four-vector:

Pμ =
[
P 0,P

]
, P 0 =

1

2

(
E2 +B2

)
,

P = E ∧B, with ∂μP
μ = 0.

The Dirac equation for the electron displays a similar
Z2 symmetry, with two coupled equations which can
be put in the following form:

i�
∂

∂t
ψ+ −mc2ψ+ = i�σ ·∇ψ−,

−i�
∂

∂t
ψ− −mc2ψ− = −i�σ ·∇ψ+, (36)

where ψ+ and ψ− are the positive and negative energy
components of the Dirac equation; this is visible even
better in the momentum representation:[

E −mc2
]
ψ+ = cσ · pψ−,

[
−E −mc2

]
ψ− = −cσ · pψ+. (37)

The same effect (negative energy states) can be
obtained by changing the direction of time, and
putting the minus sign in front of the time derivative,
as suggested by Feynman [24].

Each of the components satisfies the Klein–
Gordon equation, obtained by successive application
of the two operators and diagonalization:[

1

c2
∂2

∂t2
−∇2 −m2

]
ψ± = 0.

As in the electromagnetic case, neither of the compo-
nents of this complex entity can propagate by itself;
only all the components can.

Apparently, the two types of quarks, u and d,
cannot propagate freely, but can form a freely prop-
agating particle perceived as a fermion, only under an
extra condition: they must belong to three different
species called colors; short of this they will not form a
propagating entity. Somewhat similar approach can
be found in the so-called Nambu mechanics, which
introduces generalized Poisson brackets involving si-
multaneously three functions instead of two [25].

Therefore, quarks should be described by three
fields satisfying a set of coupled linear equations,
with the Z3 symmetry playing a similar role as the Z2

symmetry in the case of Maxwell’s and Dirac’s equa-
tions. Instead of the “–” sign multiplying the time
derivative, we should use the cubic root of unity j and
its complex conjugate j2 according to the following
scheme:

∂

∂t
|ψ〉 = Ĥ12|φ〉,

j
∂

∂t
|φ〉 = Ĥ23|χ〉,

j2
∂

∂t
|χ〉 = Ĥ31|ψ〉. (38)

We do not specify yet the number of components in
each state vector, nor the character of the hamiltonian
operators on the right-hand side; the three fields |ψ〉,
|φ〉 and |χ〉 should represent the three colors, none of
which can propagate by itself.

The quarks being endowed with mass, we can
suppose that one of the main terms in the hamilto-
nians is the mass operator m̂; let us suppose that the
remaining parts are the same in all three hamiltoni-
ans. This will lead to the following three equations:

∂

∂t
|ψ〉 − m̂|ψ〉 = Ĥ|φ〉,

j
∂

∂t
|φ〉 − m̂|φ〉 = Ĥ|χ〉,

j2
∂

∂t
|χ〉 − m̂|χ〉 = Ĥ|ψ〉. (39)

Supposing that the mass operator commutes with
time derivation, by applying three times the left-hand
side operators, each of the components satisfies the
same common third-order equation:[

∂3

∂t3
− m̂3

]
|ψ〉 = Ĥ3|ψ〉. (40)

The anti-quarks should satisfy a similar equation
with the negative sign for the Hamiltonian operator.
Quite obviously, the so defined Hamiltonian is not
hermitian; however, this does not exclude the appear-
ance of physically sound solutions, as demonstrated
by Bender and collaboratrs [26]. The fact that there
exist two types of quarks in each nucleon suggests
that the state vectors |ψ〉, |φ〉 and |χ〉 should have
two components each. When combined together, the
two postulates lead to the conclusion that we must
have three two-component functions and their three
conjugates:⎛

⎝ψ1

ψ2

⎞
⎠ ,

⎛
⎝ψ̄1̇

ψ̄2̇

⎞
⎠ ,

⎛
⎝ϕ1

ϕ2

⎞
⎠ ,

⎛
⎝ϕ̄1̇

ϕ̄2̇

⎞
⎠ ,
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⎛
⎝χ1

χ2

⎞
⎠ ,

⎛
⎝χ̄1̇

χ̄2̇

⎞
⎠ ,

which may represent three colors, two quark states
(e.g. “up” and “down”), and two anti-quark states
(with anti-colors, respectively).⎛

⎝ψ1

ψ2

⎞
⎠ ,

⎛
⎝ψ̄1̇

ψ̄2̇

⎞
⎠ ;

⎛
⎝ϕ1

ϕ2

⎞
⎠ ,

⎛
⎝ϕ̄1̇

ϕ̄2̇

⎞
⎠ ;

⎛
⎝χ1

χ2

⎞
⎠ ,

⎛
⎝χ̄1̇

χ̄2̇

⎞
⎠ .

Finally, in order to be able to implement the action
of the SL(2,C) group via its 2× 2 matrix represen-
tation defined in the previous section, we choose the
Hamiltonian Ĥ equal to the operator σ · ∇, the same
as in the usual Dirac equation. The action of the Z3

symmetry is represented by factors j and j2, while
the Z2 symmetry between particles and anti-particles
is represented by the “–” sign in front of the time
derivative.

The differential system that satisfies all these as-
sumptions is as follows:

−i�
∂

∂t
ψ −mc2ψ = −i�c(σ ·∇)ϕ̄,

i�
∂

∂t
ϕ̄− jmc2ϕ̄ = −i�c(σ ·∇)χ,

−i�
∂

∂t
χ− j2mc2χ = −i�c(σ ·∇)ψ̄,

i�
∂

∂t
ψ̄ −mc2ψ̄ = −i�c(σ ·∇)ϕ,

−i�
∂

∂t
ϕ− j2mc2ϕ = −i�c(σ ·∇)χ̄,

i�
∂

∂t
χ̄− jmc2χ̄ = −i�c(σ ·∇)ψ. (41)

Here we made a simplifying assumption that the mass
operator is just proportional to the identity matrix, and
therefore commutes with the operator σ ·∇.

The functions ψ, ϕ and χ are related to their con-
jugates via the following third-order equations:[

−i
∂3

∂t3
− m3c6

�3

]
ψ = −i(σ · ∇)3ψ̄

= [−iσ · ∇] (Δψ̄),[
i
∂3

∂t3
− m3c6

�3

]
ψ̄ = −i(σ · ∇)3ψ

= [−iσ · ∇] (Δψ), (42)

and the same, of course, for the remaining wave func-
tions ϕ and χ.

The overall Z2 × Z3 symmetry can be grasped
much better if we use the matrix notation, encoding
the system of linear equations (41) as an operator
acting on a single vector composed of all the com-
ponents. Then the system (41) can be written with
the help of the following 6× 6 matrices composed of
blocks of 3× 3 matrices as follows:

Γ0 =

⎛
⎝I 0

0 −I

⎞
⎠ , B =

⎛
⎝B1 0

0 B2

⎞
⎠ ,

P =

⎛
⎝ 0 Q

QT 0

⎞
⎠ , (43)

with I the 3× 3 identity matrix, and the 3× 3matrices
B1, B2, and Q defined as follows:

B1 =

⎛
⎜⎜⎜⎝

1 0 0

0 j 0

0 0 j2

⎞
⎟⎟⎟⎠ , B2 =

⎛
⎜⎜⎜⎝

1 0 0

0 j2 0

0 0 j

⎞
⎟⎟⎟⎠ ,

Q =

⎛
⎜⎜⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎟⎠ .

The matrices B1 and Q generate the algebra of trace-
less 3× 3 matrices with determinant 1, introduced
by Sylvester [27] and Cayley [28] under the name
of nonion algebra. With this notation, our set of
Eqs. (41) can be written in a very compact way:

−i�Γ0 ∂

∂t
Ψ = [Bm− i�Qσ · ∇] Ψ. (44)

Here Ψ is a column vector containing the six fields,
[ψ,ϕ, χ, ψ̄, ϕ̄, χ̄], in this order.

But the same set of equations can be obtained if
we dispose the six fields in a 6× 6 matrix, on which
the operators in (44) act in a natural way:

Ψ =

⎛
⎝ 0 X1

X2 0

⎞
⎠ , with X1 =

⎛
⎜⎜⎜⎝

0 ψ 0

0 0 φ

χ 0 0

⎞
⎟⎟⎟⎠ ,

X2 =

⎛
⎜⎜⎜⎝

0 0 χ̄

ψ̄ 0 0

0 ϕ̄ 0

⎞
⎟⎟⎟⎠ . (45)

By consecutive application of these operators we
can separate the variables and find the common equa-
tion of sixth order that is satisfied by each of the

PHYSICS OF ATOMIC NUCLEI Vol. 80 No. 3 2017



540 KERNER

components:

−�
6 ∂

6

∂t6
ψ −m6c12ψ = −�

6Δ3ψ. (46)

Identifying quantum operators of energy and momen-
tum,

−i�
∂

∂t
→ E, −i�∇ → p,

we can write (46) simply as follows:

E6 −m6c12 = |p|6c6. (47)

This equation can be factorized showing how it was
obtained by subsequent action of the operators of the
system (41):

E6 −m6c12 = (E3 −m3c6)(E3 +m3c6)

= (E −mc2)(jE −mc2)(j2E −mc2)(E +mc2)

× (jE +mc2)(j2E +mc2) = |p|6c6.
The Eq. (46) can be solved by separation of variables;
the time-dependent and the space-dependent factors
have the same structure:

A1e
ωt +A2e

jωt +A3e
j2ωt,

B1e
k.r +B2e

jk.r +B3e
j2k.r

with ω and k satisfying the following dispersion rela-
tion:

ω6

c6
=

m6c6

�6
+ |k|6, (48)

where we have identified E = �ω and p = �k.

The relation

ω6

c6
=

m6c6

�6
+ |k|6,

is invariant under the action of Z2 × Z3 = Z6 sym-
metry, because to any solution with given real ω and
k one can add solutions with ω replaced by jω or j2ω,
jk or j2k, as well as −ω; there is no need to introduce
also −k instead of k because the vector k can take on
all possible directions covering the unit sphere.

The nine complex solutions can be displayed in
two 3× 3 matrices as follows:

⎛
⎜⎜⎜⎝

eωt−k·r eωt−jk·r eωt−j2k·r

ejωt−k·r ejωt−jk·r ejωt−j2k·r

ej
2ωt−k·r ej

2ωt−k·r ej
2ωt−j2k·r

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

e−ωt−k·r e−ωt−jk·r e−ωt−j2k·r

e−jωt−k·r e−jωt−jk·r e−jωt−j2k·r

e−j2ωt−k·r e−j2ωt−k·r e−j2ωt−j2k·r

⎞
⎟⎟⎟⎠

and their nine independent products can be repre-
sented in a basis of real functions as

⎛
⎜⎜⎜⎝

eωt−k·r eωt+
k·r
2 cos(k · ξ) eωt+

k·r
2 sin(k · ξ)

e−
ωt
2
−k·r cosωτ e−

ωt
2
+k·r

2 cos(ωτ − k · ξ) e−
ωt
2
+k·r

2 cos(ωτ + k · ξ)

e−
ωt
2
−k·r sinωτ e−

ωt
2
+k·r

2 sin(ωτ + k · ξ) e−
ωt
2
+k·r

2 sin(ωτ − k · ξ)

⎞
⎟⎟⎟⎠ ,

where τ =
√
3
2 t and ξ =

√
3
2 k · r; the same can be

done with the conjugate solutions (with −ω instead
of ω).

The functions displayed in the matrix do not repre-
sent a wave; however, one can produce a propagating
solution by forming certain cubic combinations, e.g.

eωt−k·re−
ωt
2
+k·r

2 cos(ωτ − k · ξ)e−ωt
2
+k·r

2

× sin(ωτ − k · ξ) = 1

2
sin(2ωτ − 2k · ξ).

What we need now is a multiplication scheme that

would define triple products of non-propagating so-
lutions yielding propagating ones, like in the example
given above, but under the condition that the factors
belong to three distinct subsets b (which can be later
on identified as “colors”).

This can be achieved with the 3× 3 matrices of
three types, containing the solutions displayed in the
matrix, distributed in a particular way, each of the
three matrices containing the elements of one partic-
ular line of the matrix:
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[A] =

⎛
⎜⎜⎜⎝

0 A12e
ωt−k·r 0

0 0 A23e
ωt+k·r

2 cosk · ξ

A31e
ωt+k·r

2 sink · ξ 0 0

⎞
⎟⎟⎟⎠ , (49)

[B] =

⎛
⎜⎜⎜⎝

0 B12e
−ω

2
t+k·r

2 cos(τ + k · ξ) 0

0 0 B23e
−ω

2
t−k·r sin τ

B31e
ωt−k·r cos τ 0 0

⎞
⎟⎟⎟⎠ , (50)

[C] =

⎛
⎜⎜⎜⎝

0 C12e
−ω

2
t+k·r

2 cos(u) 0

0 0 C23e
−ω

2
t+k·r

2 sin(v)

C31e
−ω

2
t+k·r

2 cos(u) 0 0

⎞
⎟⎟⎟⎠ , (51)

where we set

u = τ + k · ξ, v = τ − k · ξ.
Now it is easy to check that in the product of the
above three matrices, ABC all real exponentials can-
cel, leaving the periodic functions of the argument
τ + k · r. The trace of this triple product is equal to

tr(ABC) = [sin τ cos(k · r) + cos τ sin(k · r)]
× cos(τ + k · r) + cos(τ + k · r) sin(τ + k · r),

representing a plane wave propagating towards −k.
Similar solution can be obtained with the opposite
direction. From four such solutions one can produce
a propagating Dirac spinor.

This model makes free propagation of a single
quark impossible (except for a very short distances
due to the damping factor), while three quarks can
form a freely propagating state.
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