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Abstract—We summarize some previous work on SU(4) describing hadron representations and trans-
formations as well as its noncompact “counterpart” SU ∗(4) being the complex embedding of SL(2,H).
So after having related the 16-dim Dirac algebra to SU ∗(4), on the one hand we have access to real,
complex, and quaternionic Lie group chains and their respective algebras, on the other hand it is of course
possible to relate physical descriptions to the respective representations. With emphasis on the common
maximal compact subgroup USp(4), we are led to projective geometry of the real 3-space and various
transfer principles which we use to extend the previous work on the rank 3-algebras above. On real spaces,
such considerations are governed by the groups SO(n,m) with n+m = 6. The central thread, however,
focuses here on line and Complex geometry which finds its well-known counterparts in descriptions
of electromagnetism and special relativity as well as—using transfer principles—in Dirac, gauge, and
quantum field theory. We discuss a simple picture where Complexe of second grade play the major
and dominant rôle to unify (real) projective geometry, complex representation theory and line/Complex
representations in order to proceed to dynamics.
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1. INTRODUCTION

In [1] and [2] we have given arguments why and
how to treat the Dirac algebra and various of its
aspects in terms of groups on real, complex, and
quaternionic representation spaces. There, we have
identified spin and isospin degrees of freedom within
the compact group SU(4) (A3) and its representa-
tions, and we have related the non-compact group
SU ∗(4), emerging from the complex embedding of
quaternions, to the Dirac algebra via the identifica-
tions γ0 = iQ30, γj = −iQ2j and γ5 = iQ10, Qαβ

denoting group elements, generators of the Lie al-
gebra su∗(4), or elements from the five-dimensional
Riemannian space SU ∗(4)/USp(4), or from the vec-
tor space p, su∗(4) = h+ p, h = usp(4), according
to the respective context(s). In [3], using the Lie
algebras of [2] as an intermediary step towards pro-
jective and line geometry, we have extended the above
approach, originally given in terms of (transforma-
tion) groups and their (Lie) algebras, by relating those
algebras to a geometrical counterpart in terms of pro-
jective and especially line and Complex1) geometry.

∗The text was submitted by the author in English.
**E-mail: dahm@bf-IS.de
1)We use the terminology proposed in [3] which has been

introduced by Plücker, and we denote by “Complex” (with
capital “C”) a line complex in order to avoid confusion with
complex numbers.

Here, we want to summarize in Section 2 briefly
some of the major arguments developed so far and
arrange them in a logic sequence in order to serve as
a twofold basis for upcoming work and discussions:
On one hand, we can reduce the group theoretical,
algebraical and differential geometrical models which
have been discussed over the years to their origi-
nal content and concept which is based on nothing
but Klein’s Erlanger program. This means, a ge-
ometry is determined by the identification of states
and the transformation groups, however, there exist
various (geometrical) representations which can be
(inter-)related using transfer principles. Practically,
a single algebraic rep or equation can have different
content and meaning depending e.g. on the inter-
pretation of the coordinates involved. A lot of such
representations and related transfer principles have
been discussed in literature, we have mentioned some
examples in [3] (see also references). Within this
setting, we subsume complex representation theory
and quantum field theory as subsets obtained by us-
ing appropriate complexifications of line geometry
and projective (point and line) coordinates. On the
other hand, it is known for more than a century
(see e.g. [4] and references therein) how to derive
euclidean, elliptic, and hyperbolic geometry (and as
such their transformation groups like a “Lorentz”
group, a “Poincaré” group, or a “Galilei” group, or
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homogeneous transformations on appropriate repre-
sentation spaces as well) from projective geometry.2)

That is why in Section 3 we use a very simple
picture which helps to illustrate and understand the
coincidence of various models and representations
used so far. It is able to illustrate the concepts and
derive physical aspects of dynamical systems for later
use.

2. ON THE ROAD TO PROJECTIVE
AND LINE GEOMETRY

Thinking of simple dynamical systems, the driving
terms of almost all dynamical models are typically
twofold: We choose a basic setup or description of
the system in terms of one or more (then interact-
ing or coupled) usually (irreducible) representations
(later for short “irreps”) and assume a certain dy-
namical behavior governed by certain group or al-
gebra transformations, thus intrinsically assuming a
“well-behaved” nature of the dynamical system. The
typical representation theory is thus based on Klein’s
Erlanger program, especially when using derivatives
and analyticity to formulate the dynamics and sys-
tem behavior in terms of point manifolds and dif-
ferential geometry. In this picture, the initial and
the final state may both be characterized in terms
of the chosen representation(s) (later “reps”) thus
implicitly assuming a valid global coordinatization
of the process.3) Dynamics is described by apply-
ing a transformation (or a series of transformations
completely described e.g. by Lie algebra generators
or group actions) to the initial state, and applying
the transformations is sufficient to “reach” and char-
acterize the final state in well-behaved rep spaces.
Hence, in such scenarios the usual way to investigate
dynamics by applying (Lie) group or algebra theory,
invariant theory and appropriate algebraic concepts
often is sufficient and helpful, especially when work-
ing with compact groups. However, non-compact
groups and non-existing global coordinate systems
complicate this algebraically founded approach con-
siderably, and it helps to go back to the very foun-
dations and use geometric pathways to reestablish
physical reasoning and avoid some of the “rep-only”
or “rep-induced” problems when having chosen not

2)Here, we do not want to discuss more details or geomet-
rical limits like contractions and expansions to relate ho-
mogeneous and affine transformations with respect to the
“Poincaré” group but we simply refer to [5], chapter 10
and references therein, as an overview and providing some
examples and related algebra.

3)Or at least some knowledge on how to relate the coordinate
systems used throughout the process/description.

the best or most exact rep. The major (and al-
most the only) physical driving term is the termi-
nology of an “action” (or “energy”)—its formulation
and conservation (or non-conservation) of energy—
which allows to apply certain formalisms. In stan-
dard textbooks, this treatment is usually mapped to
applying differential geometry in terms of Hamilton
and/or Lagrange formalism and appropriate differ-
ential equations. Group schemes and applications
considering energy as a conserved quantity usually
apply representation theory of compact groups to
physical problems while identifying states with real or
complex irreps—thus introducing “necessary” invo-
lutions (like complex conjugates, adjoints, hermitic-
ity, . . . ) and the related metrical properties by hand.
Please note, that most of such properties from the
viewpoint of projective geometry are derived features,
i.e. they are already contained in projective geometry
and they are derived typically by applying constraints
on geometrical settings, objects, states, and groups,
e.g. by certain geometrical limits or identifications of
elements and objects.

Now we do not argue to abandon this approach
but it is well known (although almost forgotten) that
equivalent descriptions are possible, mostly due to the
fact that Lie theory is a special (polar) and subsidiary
concept of line and/or projective geometry in that
we investigate tangents to a point manifold and their
related dynamics, or “line elements” as unions of
“points” and lines.4) So instead of being concerned of
point manifolds only (in terms of projective geometry:
investigating the orders of the curves), we can as well
look for the tangents more general as lines and their
behavior (in projective geometry, e.g., by the classes
of the curves or surfaces, by polar behavior and duality
or a possible projective generation of those objects)
or even use and relate both pictures as has been
suggested by Plücker e.g. in terms of his dimensional
formulae [6]. A simple example has been referenced
in [3] where the representation (or requirement) of a
quadratic Complex automatically yields light cones
when expressed in terms of point coordinates (of the
manifold). In other words, representing physical ob-
jects by quadratic Complexe (i.e. Complexe of second
grade) yields objects like (second-order) cones and
“light cones” in a manifold or point picture auto-
matically, as has been structurally required by [7].
Please recall that typically light cones are introduced

4)In euclidean R
3, we may represent such efforts by choosing

3-dim point reps x = (x, y, z) whereas the line elements are
represented by 5-dim elements (x, y, z, dx : dy : dz), i.e. it
is the ratios of the elements dx, dy, dz which enter theory
and describe the direction of the line intersecting the point
x; a concept which leads to Monge’s and Pfaff’s equations
(see [3]).
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ad hoc by special relativity in conjunction with Weyl’s
gauge philosophy, and invariances and “metrics” like
the “Lorentz metric” in special relativity require an
“extension” of the mathematical standard definition
of a metric and a separate, non-standard treatment
of negative metric values. This can be avoided us-
ing projective geometry and line (or better Complex)
representations as well as Complex geometry. As
such, Dirac’s square root of the energy written in
terms of momenta (for the free part) or in terms
of line coordinates, respectively, is a simple square
of a line (or Complex) square, hence we find (lin-
ear 4-dim) transformation group reps acting on line
reps [3]. This yields exactly our statement above
relating the Dirac matrices to linear reps of SU ∗(4)
or SO(5, 1), and we can use group and representation
theory to perform the algebra and provide analytic
reps. The “potential” part may be formulated as well
keeping in mind that we have to respect normals,5)

too, which can be included in line geometry using a
simple euclidean/affine six-vector representation of a
line which decomposes into a 3-dim polar vector and
a 3-dim axial vector having different orders in terms
of point coordinates (see e.g. [3], Eq. (I.B (2)), and
references therein). This, however, is achieved having
chosen a special geometrical setup by fixing geomet-
rical objects which at the same time restricts (real)
projective transformations to orthogonal ones, i.e. we
have introduced “invariant” or “fixed” (geometrical)
objects with respect to the respective (coordinate)
transformations. So we feel free to choose (from
our viewpoint) better suited reps, and we understand
point and manifold discussions subsequently as a
subsidiary concept6) only. However, at any time it is
possible to switch back to differential geometry and
symmetric spaces [1].

From above, we follow the reasoning and inter-
pretation of tangent “objects” in order to map them
on lines or Complexe. As an example, we use the
global Riemannian space SU ∗(4)/USp(4) (see [1],
Section 2, Eq. (3)) with the rep

X := expV = cosh ||x||1 + sinh ||x|| xa||x||Pa, (1)

5)Differential geometry uses gradients and (potential) func-
tions to represent normal behavior within the differential
formalism by using the fact that a differential operator di-
minishes the power of a point/manifold coordinate by 1.
The same happens geometrically when introducing normal
vectors by ni ∼ εijkxiyk, i.e. a (sub-)determinant. Please
note however, that both reps above work only in affine or
non-homogeneous euclidean coordinates! Hence, the dis-
cussion of polar and axial vectors and “parity” discussions
at a first glance are related to this euclidean/affine picture
only! A more sophisticated treatment can also investigate the
Complex of normals of point curves or appropriate surfaces.

6)Axiomatically, a point is fixed by incidence of two lines.

where Pa, 1 ≤ a ≤ 5, denote the five noncompact
generators of the reductive Lie algebra decomposition
of su∗(4) when substracting the ten (compact) usp(4)
generators. Now with respect to the interpretation
of the coset coordinates in Eq. (1) we feel free to
interpret the Pa as (generalized) velocity operators
causing the symmetry transformations and to relate
them to (infinitesimal) line representations.7) The
symmetry (or “invariance”) group has been shown
to be SO(5, 1) which reflects in hyperbolic functions
and the rank 1, negatively curved “space” ([1] and
references).

From the viewpoint of dynamics in the underlying
manifold, we may use the Lie algebra to develop the
point motion by transforming “point” and tangent (or
the “point velocity”) with appropriate (Hamiltonian)
symmetry constraints. On the other hand, we may
take the viewpoint of Complexe (e.g., a (quadratic)
tangential Complex or a tetrahedral Complex), aban-
don the construction of manifolds by points, conti-
nuity and analyticity, and instead switch to the as-
sociated notion of classes and envelopping struc-
tures of such a manifold where polarity and dimen-
sional formulae enter. There exist, as we’ll see in
Section 3, also possibilities to construct or gener-
ate curves and surfaces in projective geometry. So
discussing projective geometry of R

3, (selfdual or
conjugated) lines, Complexe and Complex geometry
seem best suited as an underlying framework. There,
it is well known that a representation in terms of
point/manifold coordinates has to be expressed by
four (real) homogeneous coordinates whereas Com-
plexe right from the beginning have different, even
higher-dimensional reps in terms of (antisymmetric)
line coordinates, and the condition of a quadratic
Complex comprises automatically a light cone rep
in point coordinates. Introducing a “time” variable
in the coordinate rep of the underlying point man-
ifold (thus side-by-side the concept of a vectorial
“velocity” and the notion of dynamics in this local
setup), we can identify c (interpreted as “infinity” in
velocity space) in the light cone definition, and by
defining inhomogeneous/affine point coordinates we
obtain ratios of velocities [3] (for overall/equal local

7)Which, however, have to be identified only after having
complexified some generators and compared to an SO(3, 3)
Plücker rep or the SO(6) Klein rep. In general, we can
thus obtain the whole series SO(n,m), n+m = 6, as can
be seen from the signature of the squares. However, the
respective interpretation of the coordinates has to be changed
appropriately and carefully! Please note, that “naive” com-
plexification of the coordinates usually leads to SU(n,m),
n+m = 4, but SO(5, 1) is related to the quaternionic em-
bedding SU ∗(4) and as such represents a special case.
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Fig. 1. Linear motion of points.

time) which is consistent with Gilmore’s presenta-
tion [5] of the typical coset constructions of represen-
tation spaces of transformation groups or symmetric
spaces. The point coordinates themselves can be
extracted only from this (euclidean) dynamical picture
by introducing a transformation parameter t com-
mon to all local coordinates xi ∼ vit, where vi are
the transformation parameters or (generalized) veloc-
ities.8) So from the viewpoint of an overall picture,
we may use different t-values to enumerate different
consecutive geometrical point sets of the dynamical
system in the manifold. Hence we can label and
relate the individual system states time tn by time
tn+1 from an overall (static) and purely geometrical
setup, while assuming appropriate transformations
connecting the labeled states. The velocities (respec-
tively their ratios) for the same time value reflect the
rôle of building equivalence classes like the homoge-
neous coordinates of the point picture. This, on the
other hand, is consistent with the group picture and
the rep construction scheme using Lie algebras where
one-parameter transformation groups transform and
develop the physical/dynamical system [5].

3. A SIMPLE PICTURE DEPARTING
FROM POINT GEOMETRY

For us, before going too much into detailed an-
alytical discussions, a simple underlying picture de-
parting from the usual point (or manifold) picture

8)Or using, more generally, projective (4-dim) transforma-
tions relating different homogeneous coordinates xα while
avoiding an overall “t.” Anyhow, all approaches using linear
“time” have to reflect and represent “velocity” equivalence
classes from (special) relativity with respect to coordinates in
projective geometry appropriately, and linear “time” (param-
eter) dependence may be even replaced by more complicated
dependencies.

allows to attach and construct the various repre-
sentations and models, if we start from nothing but
two individual and distinguishable points x1 and y1
(see Fig. 1a).

Taking the points x1 and y1 for given (represented
by circles) and transforming them individually by
some (linear) action (Fig. 1b) to different points x2
and y2 (represented by diamonds), we may represent
each connection of the two points in the point sets
x1 −→ x2 and y1 −→ y2, generated by the (sym-
metry) transformation, by a line (Fig. 1c). Then
already this very basic assumption comprises a lot
of information and content in order to attach a wealth
of formalism as we know from analysis and differential
geometry.

Here however, and that’s why we have drawn
Fig. 1d, we gain a fortune in that the tetrahedron
(which results when connecting the four points by
lines) yields a foundation of connecting three (an-
alytic) approaches we have used before only sepa-
rately.9)

3.1. Projective Geometry of R3, Points
and Coordinate Systems

If we identify the four points (x1, x2, y1, y2) of
our picture individually, because having skew lines,
no more than three points lie in each plane. Hence,
we are already very close to delivering a coordinate
definition in projective 3-space. The only additional
information necessary to fix the coordinate system is
a unit point E, and—having introduced such a point
E—we can proceed with well-known coordinate ge-
ometry, algebra, and analysis [4]. The tetrahedron
given in Fig. 1d can be identified as the fundamental
coordinate tetrahedron, and we may apply classi-
cal projective geometry with real transformations (or
4× 4 real matrix reps, however, we have to take care
about the transformation rep, e.g., its rank and further
rep properties).

In order to lead over to the next subsection, we
introduce a unit point E in a manner that the coor-
dinates of the four points (x1, x2, y1, y2) in Fig. 1
are mapped to the coordinates ((1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1)). However, it is important to
mention that alternatively instead of starting with the

9)We are aware of richer mechanisms and content from pro-
jective geometry in that the two lines e.g. may be interpreted
in terms of generators of a hyperboloid or general ruled
surfaces or—associating e.g. focal properties—in terms of
ray systems [8]. For now, we leave those details for upcoming
discussions because the current focus is to supersede or unify
the technical frameworks used so far.
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four points like before one can also identify the six
sides of the tetrahedron and use them as line coor-
dinates in a so-called six-vector rep of a line.10)

3.2. SU(4) and SU ∗(4)

Now in [9], appendix F.6 (see also [10]), we have
constructed various representations of SU(4) which
we may use immediately based on the above given
points of the tetrahedron. Because SU(4) (A3) is
compact and of rank 3, we can transform the roots to
a real 3-dim rep and draw pictures of the reps (see [9]).
The fundamental rep 4 of SU(4) yields a tetrahedron,
so we feel free to identify the root space diagram 4
with the fundamental tetrahedron of real projective
3-dim geometry and vice versa! Moreover, due to
Young diagrammatics we may understand various
representations as being build out of compositions
of tetrahedra, a special case is the representation 20
comprising four nucleon and sixteen delta degrees of
freedom which we have discussed at various places
before (see references). We have stated a surprising
“selfsimilarity” of the representations (see Fig. 2),
and, sloppy speaking, 20 is a “cubic” of 4 due to the
third order symmetric tensor product.11)

Acting with (general) complex transformations, of
course, transforms the individual points of the tetra-
hedron 4 to general complex (4-dim) coordinates,
however, we know that 4 and 20 both are irreps of
su(4), so for very special choices of complex transfor-
mations (i.e. su(4) transformations12)) we transform
tetrahedra into themselves.13) So obviously, here we
can relate SU(4) Lie theory with (real) 3-dim pro-
jective geometry. To relate to noncompact SU ∗(4),

10)Here once more, we could follow much deeper concepts from
projective geometry e.g. by interpreting each of the two skew
lines as an axis of a sheaf of planes thus intersecting the
other line in a point series, i.e. we obtain this line being
represented as point set with appropriate projective relations.
Two conjugated lines (related by reciprocal polarity) lead to
ray systems of 1st order and class [8], [3] and to null systems.
However, that’s beyond scope here.

11)So with respect to 3rd-order curves, it is natural to expect
(up to a common/overall normalization factor of the states)
eigenvalues of ±1 and ±3, see [9] and [3].

12)Care has to be taken when acting with the group SU(4)
because this involves anticommutators as well which com-
plicates the situation considerably. Especially, also ternary
products like Lie and Jordan triple systems (based on com-
mutators and anticommutators) enter the scenario and yield
additional information and constraints (see e.g. [1] and refer-
ences), although the consequences are not independent from
the underlying algebra or group.

13)A detailed discussion of the topics mentioned here has been
given in [11] but due to some time problems this is not
published yet. Therefore, a short summary is given in Ap-
pendix 4.

Fig. 2. SU(4) multiplets 4 and 20.

we have to keep in mind that SU ∗(4) represents
the complex embedding of quaternionic SL(2,H), and
that we began by embedding two independent quater-
nions (“spin” and “isospin” Lie algebras), i.e. two
A1 into A3. Now with respect to such scenarios
e.g. in elliptic geometry we have cited already some
relevant literature (see references in [3]), here we want
to emphasize only Study’s work and Lie’s line-sphere
transformation as examples. The easiest interpreta-
tion at this time is to understand the so-called “six-
vector” of the line in terms of two 3-dim “vectors” (its
“polar” and its “axial” part) and require conservation
of the 3-dim vector squares, even in the complex
case.14) SU∗(4) on complex rep spaces or SL(2,H) as
general real transformations of two real quaternions
(and isomorphic to the Dirac algebra) thus can be
used to represent certain geometrical transformations
and behaviors, especially when mapped/transferred
to line or projective geometry.

3.3. Projective Geometry from Scratch

It is even possible to look at the tetrahedron from
a strictly synthetic viewpoint in terms of line geome-
try [12]. This can be easily seen by extending the basic
planes of the tetrahedron in all spatial directions. So
a general line15) in R

3 will hit the planes in four
different points. Now von Staudt showed [12] that the
anharmonic ratio16) of the four intersection points of
this line with the tetrahedral planes and that of the
four planes each comprising this line and one of the
four tetrahedral points is the same as long as the order
of elements in the anharmonic ratio is the same ([12],
Erstes Heft, § 2, especially numbers 35 and 36). So

14)This allows to represent and investigate typical properties of
3-dim “vector” reps, of course, within its associated (eu-
clidean) interpretation, “vector” pictures like “parity” and
“chirality” and appropriate counterparts when transferred to
complex rep spaces e.g. in the context of SL(2,C). However,
here we do not want to discuss such features or detailed reps
of “chiral symmetry”.

15)The line shouldn’t lie in one of the planes and shouldn’t hit
one of the vertices of the tetrahedron.

16)German: Wurf, Doppelverhältnis.
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the “playground” is set for transformations respect-
ing anharmonic ratios or investigations of the set of
the ∞1 anharmonic ratios, i.e. we are in the center
of projective geometry. The more general theory of
quadratic Complexe was developed in [6] or in Reye’s
“reprise” [13] (there especially part 2) of von Staudt’s
work.

Historically, and that’s the basis to propose line
geometry to describe dynamics as well, Complexe
(and especially tetrahedral Complexe) appeared in
various contexts. When considering the movement
of rigid bodies around one of its points, the (infinites-
imal) rotation axes build a (second-order) cone. Fur-
ther examples are their Dreibeins of (orthogonal) axes
of inertia which are attached to each point of the body
and as well attached to each point of space when
“moving space” with the body, and also the related
normals to confocal surfaces of second grade which
were parametrized by

x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1, (2)

λ ∈ R representing the 1-dim parameter of the set of
surfaces. And we may use quadratic Complexe as
well to approach “light cone” or sphere reps in point
coordinates (see [3] for a reference to Plücker and
work of Binet and Dupin). In plane coordinates u, v,
w, Eq. (2) reads as

(a2 + λ)u2 + (b2 + λ)v2 + (c2 + λ)w2 = 1.

Being linear in λ, we can attach a normal in the
contact point of the surface with the plane, and we
thus arrange/obtain a unique mapping of planes in
space to normals. Similar investigations have been
done for infinitesimal transformations, for the Com-
plex of tangents related to (infinitesimal) motions
and related second grade cone(s). More general,
we can map two (rigid) bodies pointwise onto each
other, or extend this mapping to projectively mapping
points in space [13]. If we use lines to connect the
original points with their individual images, the lines
constitute a tetrahedral Complex, so our picture in
Fig. 1d above is obviously a subset of the general
construction scheme. Moreover, considering normals
of concentric second-order surfaces, which obey a
constant anharmonic ratio with certain planes in-
cluding the plane at infinity, leads to a tetrahedral
Complex. This holds also for the normals of confocal
surfaces of second order (see e.g. [12, 13] and refer-
ences therein). We have mentioned already the well-
known feature of, e.g., Lorentz transformations to
leave (affine euclidean) normal coordinates x, y with
respect to a z axis of motion invariant [3]. This can
be translated back to the transformations of homo-
geneous, or projective coordinates, normal planes (or
null systems) or to the line coordinates themselves.

(b)(a)
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x1

y1 y1y2 y2

x2
x2

x1

x1

y1 y1
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Fig. 3. Higher-order motion.

So asking for invariance of certain ratios of homo-
geneous line coordinates or invariance of some line
coordinates themselves leads to subsets of projective
transformations and may be considered separately.

Having based our discussion so far on quadratic
Complexe (i.e., Complexe of grade 2) and especially
tangential and tetrahedral Complexe, on one hand, we
feel very comfortable to apply the full framework of
projective geometry, including dynamical treatment
of points, second-order curves and surfaces, polar
relationships, etc. in a more general and purely geo-
metrical framework. On the other hand, this approach
provides and satisfies the treatment of the require-
ments of [7] in a more general description than only
using points and point manifolds. Of course, we are
aware of transfer principles mapping objects like lines,
Complexe or spheres to points in higher-dimensional
spaces,17) however, here we want to take up at first
the “classical” position of a real 3-dim projective ge-
ometry and mention the enormous wealth of this de-
scription (without switching to more complicated ap-
proaches which usually introduce additional ad hoc-
assumptions or axioms on manifolds). So using [7]
for the moment as a guideline to state the necessary
(minimal) theoretical requirements of relativity, line
and Complex geometry provide a unification basis for
us with special emphasis on Complexe of first and
second grade [6, 13].

Before closing this section, it should be mentioned
that we may replace the straight lines in Fig. 1 by
curves as well, see Fig. 3. If the curves themselves
respect further properties or obey further constraints,
e.g. with respect to polar relations, null systems,
conics with projective generation, Complex curves,

17)E.g., the Plücker–Klein quadric, Laguerre geometry, cyclog-
raphy, etc.
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intersections of higher-order surfaces, higher-order
curves, etc., this enriches the given picture consid-
erably but the treatment is completely possible within
the approach presented here.

4. OUTLOOK

After having presented various representations of
projective geometry, our roadmap is fixed towards
looking deeper into dynamics from the viewpoint of
projective geometry with special emphasis of line and
Complex geometry. We have mentioned few aspects
already in the last section and in [3]. At the time
of writing, we are convinced of having described and
represented various aspects of projective geometry so
far in terms of different group models and/or repre-
sentations, so it is worth to look deeper into dynamics
formulated in terms of line and Complex geometry.
Last not least, we want to thank Schmeikal for deep
and enlightening discussions at the Goslar confer-
ence 2015 and in Vienna in summer 2015, for his
hospitality, interest and time there during my visit,
and especially for his great work on logic based on
fourfold base elements [14] which we want to see
related to the two orientable lines or line elements in
Fig. 1 (or Fig. 3). Moreover, it is a great pleasure to
thank George Pogosyan and his team for the great
conference athmosphere and organization in Yerevan
and for the enormous hospitality while staying there.

Appendix

5. SHORT REMARK ON SU(4)
REPRESENTATIONS

We want to summarize briefly some SU(4) rep
facts as far as they are—to our opinion—related to our
reasoning with respect to projective geometry.18)

The rank-3 group SU(4) (or A3) has three funda-

mental representations or [1, 0, 0], or [1, 1, 0],

and or [1, 1, 1], of dimensions 4, 6 and 4, respec-
tively, (see e.g. [9], Appendix F.6, or [15], p. 99/100)
and we may perform standard transformation oper-
ations with the reps above or construct interactions
or construct invariants, etc. Now from Young dia-
grammatics, we know that the reps are antisymmetric
with respect to vertical rows (due to the permutation
group construction scheme). Moreover, we know
that [1, 1, 0] is selfconjugate and of dim 6, whereas

18)Conference talk at ICCA 9, Weimar, 2011, and QTS 7,
Prague, 2011, [11], publication upcoming soon.

[1, 0, 0] and [1, 1, 1] (each of dim 4) are mapped to
each other by conjugation, and we thus work with an
involution.

Now identifying 4 ∼ [1, 0, 0] with a point rep, the
antisymmetric “products” of point reps in case of
∼ [1, 1, 0] are equivalent to the very definition of a
line rep (see [3] for the analytic expression), whereas
∼ [1, 1, 1] maps to a third-order (sub-)determinant
which complies to the “standard definition” of plane
coordinates uα, 0 ≤ α ≤ 3, in terms of (projective)
4-dim point coordinates of R3, i.e. we find natural
associations to 6 and the second 4. Whereas the
higher-order products can by calculated/represented
by Young diagrammatics, here as a second approach
towards the background rep theory, we want to men-
tion a special, but established aspect of projective
geometry (see [16], I § 3, no. 8), valid for general
polyhedrons with respect to duality in 3-dim space,
here however applied with respect to the tetrahedron.
There, denoting by e vertices, f areas and k edges, the
dual (or “reciprocal”) polyhedron consists of e areas,
f vertices, and k edges. Now, in the case of the tetra-
hedron, we thus find/recover the mappings 4 ←→ 4
and 6 �, which reflect in the three fundamental reps
4, 4, and 6, and emphasize their identification with
point-, area- and line-reps (edges).

So we feel authorized to use projective (3-dim)
geometry from scratch, and subsume the group-
theoretical approaches and reps to cover certain
analytical facets thereof. As with respect to the
usual discussion of complex numbers, we point to
the LONG discussion in (geometric) literature and
with respect to geometric interpretations. And no,
we do not want to discuss and understand complex
numbers only from the (contaminated) viewpoint of
complex analyticity and differential geometry.

Last not least, we want to point to the use of
the background discussed above in the case of self-
polar tetrahedra in coordinate systems and especially
in line and Complex geometry (see, e.g., [4]) as well as
the well-known context of [8] to focal surfaces which
we can relate immediately to vertices in QFT. The
very definition of a focal surface ([8], p. 5) yields the
definition of a standard vertex (1 line or momentum
←→ 2 lines or momenta), so for n = 2 and k = 2
(i.e. ray systems of order 2 and class 2) we may apply
this framework in that we identify a QFT vertex as
being a point of the focal surface and proceed with
line/Complex geometry instead of (sometimes) mys-
terious “quantum” argumentation in terms of point
manifolds.19)

19)Reading [8], it is noteworthy to point to theorems 33 (§ 7)
and 38 (§ 8) for later use as well as to emphasize the common
ground with Jacobi’s and Hamilton’s classical approaches to
dynamics.
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